

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-[4-Chloro-3-(trifluoromethyl)phenyl]-4-phenyl-1*H*-1,2,3-triazole

Jarrad M. Altimari,^a Peter C. Healy^b* and Luke C. Henderson^c

^aSRC for Biotechnology, Chemistry and Systems Biology, Faculty of Science and Technology, Deakin University, Vic, 3216, Australia, ^bQueensland Micro and Nanotechnology Centre, Griffith University, Brisbane 4111, Australia, and ^cInstitute for Frontier Materials, SRC for Biotechnology, Chemistry and Systems Biology, Faculty of Science and Technology, Deakin University, Vic, 3216, Australia Correspondence e-mail: P.Healy@griffith.edu.au

Received 11 October 2012; accepted 12 October 2012

Key indicators: single-crystal X-ray study; T = 249 K; mean σ (C–C) = 0.003 Å; R factor = 0.041; wR factor = 0.091; data-to-parameter ratio = 11.8.

In the title compound, $C_{15}H_9ClF_3N_3$, the phenyl and chlorotrifluoromethyl benzene rings are twisted with respect to the planar triazole group, making dihedral angles of 21.29 (12) and 32.19 (11)°, respectively. In the crystal, the molecules pack in a head-to-tail arrangement along the *a* axis with closest inter-centroid distances between the triazole rings of 3.7372 (12) Å.

Related literature

For background to the synthesis of *N*-aryl-1,2,3-triazoles, see: Bock *et al.* (2006); Irie *et al.* (2012). For biological background, see: Jia & Zhu (2010); Henderson *et al.* (2012); Alam *et al.* (2006, 2007). For related structures, see: Lin *et al.* (2008); Lin (2010).

Experimental

Crystal data $C_{15}H_9ClF_3N_3$ $M_r = 323.70$ Monoclinic, C2/c

<i>a</i> =	30.7475 (16)
<i>b</i> =	5.8877 (3) Å
<i>c</i> =	15.4364 (8) Å

Å

 $\beta = 105.470 \ (5)^{\circ}$ $V = 2693.2 \ (2) \ \text{\AA}^3$ Z = 8Mo $K\alpha$ radiation

Data collection

Oxford Diffraction GEMINI S Ultra diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2012), $T_{min} = 0.902$, $T_{max} = 0.928$

Refinement $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.091$ S = 1.072355 reflections $\mu = 0.32 \text{ mm}^{-1}$ T = 249 K $0.33 \times 0.26 \times 0.24 \text{ mm}$

3934 measured reflections 2355 independent reflections 1899 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.021$

199 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.18 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO* (Agilent, 2012); data reduction: *CrysAlis PRO*; program(s) used to solve structure: *TEXSAN* (Molecular Structure Corporation, 2001) and *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *TEXSAN* and *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *PLATON* (Spek, 2009).

We acknowledge support of this work by Griffith University, the Queensland University of Technology, the Strategic Research Center for Biotechnology, Chemistry and Systems Biology and the Institute for Frontier Materials Deakin University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5159).

References

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.

- Alam, M. S., Kajiki, R., Hanatani, H., Kong, X., Ozoe, F., Matsui, Y., Matsumura, F. & Ozoe, Y. (2006). J. Agric. Food Chem. 54, 1361–1372.
- Alam, M. S., Ozoe, F., Matsumura, F. & Ozoe, Y. (2007). *Bioorg. Med. Chem.* **15**, 5090–5104.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bock, V. D., Hiemstra, H. & van Maarseveen, J. H. (2006). *Eur. J. Org. Chem.* pp. 51–68.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Henderson, L. C., Altimari, J. M., Dyson, G., Servinis, L., Niranjan, B. & Risbridger, G. P. (2012). *Bioorg. Chem.* 40, 1–5.
- Irie, T., Fujii, I. & Sawa, M. (2012). Bioorg. Med. Chem. Lett. 22, 591-596.
- Jia, Z. & Zhu, Q. (2010). Bioorg. Med. Chem. Lett. 20, 6222-6225.
- Lin, J. R. (2010). Acta Cryst. E66, 01967.
- Lin, J. R., Yao, J. Y. & Zhao, H. (2008). Acta Cryst. E64, o1843.
- Molecular Structure Corporation. (2001). *TEXSAN* for Windows. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2012). E68, o3159 [doi:10.1107/S1600536812042705]

1-[4-Chloro-3-(trifluoromethyl)phenyl]-4-phenyl-1H-1,2,3-triazole

Jarrad M. Altimari, Peter C. Healy and Luke C. Henderson

Comment

The structure of the title compound, (I), was determined as part of an ongoing project developing *N*-aryl-1,2,3-triazoles as amide mimetics for medicinal applications. The synthesis of 1,2,3-triazoles *via* copper mediated 1,3-dipolar reactions has become one of the most widely used methodologies to tether molecules together or to a surface (Bock *et al.*, 2006; Irie *et al.*, 2012). Electronically deactivated *N*-phenyl-1,2,3-triazoles have been employed in several areas such as the combinatorial development of kinase inhibitors (Jia & Zhu, 2010) in the development of monoamine oxidase inhibitors, androgen receptor antagonists (Henderson *et al.*, 2012) and as GABA receptor antagonists (Alam *et al.*, 2006; Alam *et al.*, 2007). This compound provides an aryl chloride moiety in the *para*-position relative to the triazole ring providing a synthetic handle for further structural elaboration.

In the molecular structure of (I) (Fig. 1) the planar phenyl and chloro-trifluoromethyl benzene rings are twisted with respect to the central planar triazole group with dihedral angles of 21.29 (12) and 32.19 (11)°, respectively. In the triazole ring, the N1—N2 and N2—N3 bond lengths are 1.357 (3) and 1.310 (3) Å, respectively. and are similar to those reported for related compounds (Lin *et al.*, 2008; Lin, 2010). In the crystal lattice, the molecules stack in a head to tail arrangement along the *a* axis (Fig. 2) with the centroid-centroid distances between the triazole rings 4.1494 (12) and 3.7372 (12) Å.

Experimental

Phenyl acetylene (127 mg, 1.25 mmol, 1 eq), 4-azido-1-chloro-2-(trifluoromethyl) benzene (230 mg, 1.04 mmol, 1 eq) and copper(I) chloride (10 mg, 10 mol%) were stirred in water (3 ml) for 10 min. The solution was then stirred under microwave irradiation at 100°C for 30 min in a sealed vessel. The solution cooled to room temperature, dichloromethane (3 ml) was added and the biphasic mixture stirred for 3 min. The aqueous phase was then extracted using dichloromethane (2 *x* 10 ml), the combined organic layers were washed with HCl (4*M*, 5 ml), NaOH (1*M*, 5 ml), water (5 ml). The organic phase dried over MgSO₄, filtered and concentrated under vacuum. The solution was then taken up in chloroform and allowed to slowly evaporate. *v* (max) cm⁻¹ 3124, 1495, 1310, 1147, 1037. ¹H NMR (400 MHz, CDCl₃): δ = 9.50 (1H, s, triazole H), 8.42 (1H, s, ArH), 8.32 (1H, dd, J = 8.7, 2.6 Hz, ArH), 8.02 (1H, d, J = 8.7 Hz, ArH), 7.95 (2H, d, J = 8 Hz, ArH), 7.51 (2H, m, ArH), 7.40 (1H, m, ArH). ¹³C NMR (100 MHz, CDCl₃): δ = 148.22, 136.16, 133.98, 130.91 (*m*), 130.47, 129.65, 129.04, 128.53 (q, J²_{C—F} = 32 Hz), 125.93, 125.70 (*m*), 122.89 (q, J¹_{C—F} = 272 Hz), 120.62, 119.75. *M*.pt: 443–445.3 K. HRMS, m/z calcd for(C₁₅H₉ClF₃N₃) 324.05099, found 324.05011.

Refinement

The carbon-bound H atoms were constrained as riding with C—H = 0.95 Å, and with $U_{iso}(H) = 1.2U_{eq}$ of the parent C atom.

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO* (Agilent, 2012); data reduction: *CrysAlis PRO* (Agilent, 2012); program(s) used to solve structure: *TEXSAN* (Molecular Structure Corporation, 2001) and *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *TEXSAN* (Molecular Structure Corporation, 2001) and *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *PLATON* (Spek, 2009).

Figure 1

The molecular structure of the title compound with atom labelling and displacement ellipsoids for non-H atoms drawn at the 40% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Figure 2

Molecular packing of the title compound viewed along [0 1 0].

1-[4-Chloro-3-(trifluoromethyl)phenyl]-4-phenyl-1H-1,2,3-triazole

Crystal data	
$C_{15}H_9ClF_3N_3$	$\beta = 105.470 \ (5)^{\circ}$
$M_r = 323.70$	V = 2693.2 (2) Å ³
Monoclinic, $C2/c$	Z = 8
Hall symbol: -C 2yc	F(000) = 1312
a = 30.7475 (16) Å	$D_{\rm x} = 1.597 { m Mg m^{-3}}$
b = 5.8877 (3) Å	Mo <i>K</i> α radiation, $\lambda = 0.71070$ Å
c = 15.4364 (8) Å	Cell parameters from 1854 reflections

 $\theta = 3.4 - 30.3^{\circ}$ $\mu = 0.32 \text{ mm}^{-1}$ T = 249 K

Data collection

Oxford Diffraction GEMINI S Ultra diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 16.0774 pixels mm⁻¹ ω and φ scans Absorption correction: multi-scan (CrvsAlis PRO; Agilent, 2012), $T_{\rm min} = 0.902, \ T_{\rm max} = 0.928$

Refinement

Refinement on F ²	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from
$wR(F^2) = 0.091$	neighbouring sites
S = 1.07	H-atom parameters constrained
2355 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0327P)^2 + 2.2063P]$
199 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.18 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Block, colourless

 $R_{\rm int} = 0.021$

 $h = -36 \rightarrow 33$ $k = -5 \rightarrow 6$

 $l = -9 \rightarrow 18$

 $0.33 \times 0.26 \times 0.24$ mm

3934 measured reflections

 $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.4^{\circ}$

2355 independent reflections

1899 reflections with $I > 2\sigma(I)$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 . conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.78052 (2)	0.33228 (12)	0.32573 (4)	0.0454 (2)	
0.76886 (4)	0.0366 (3)	0.48769 (11)	0.0575 (6)	
0.78035 (5)	-0.1587 (3)	0.37911 (10)	0.0587 (5)	
0.81441 (4)	-0.2452 (3)	0.51428 (10)	0.0522 (5)	
0.96027 (6)	0.1414 (3)	0.56964 (11)	0.0285 (6)	
0.97402 (6)	-0.0774 (3)	0.58511 (13)	0.0369 (6)	
1.01508 (6)	-0.0729 (3)	0.63832 (12)	0.0358 (6)	
1.02780 (7)	0.1481 (4)	0.65769 (13)	0.0276 (7)	
0.99302 (7)	0.2849 (4)	0.61383 (14)	0.0281 (7)	
0.91648 (7)	0.1919 (4)	0.51321 (13)	0.0275 (6)	
0.88165 (7)	0.0422 (4)	0.51110 (13)	0.0281 (7)	
0.83879 (7)	0.0861 (4)	0.45597 (13)	0.0277 (7)	
0.83212 (7)	0.2782 (4)	0.40213 (13)	0.0293 (7)	
0.86683 (7)	0.4302 (4)	0.40630 (14)	0.0335 (7)	
	x 0.78052 (2) 0.76886 (4) 0.78035 (5) 0.81441 (4) 0.96027 (6) 0.97402 (6) 1.01508 (6) 1.02780 (7) 0.99302 (7) 0.99302 (7) 0.91648 (7) 0.88165 (7) 0.83879 (7) 0.83212 (7) 0.86683 (7)	xy $0.78052 (2)$ $0.33228 (12)$ $0.76886 (4)$ $0.0366 (3)$ $0.78035 (5)$ $-0.1587 (3)$ $0.81441 (4)$ $-0.2452 (3)$ $0.96027 (6)$ $0.1414 (3)$ $0.97402 (6)$ $-0.0774 (3)$ $1.01508 (6)$ $-0.0729 (3)$ $1.02780 (7)$ $0.1481 (4)$ $0.99302 (7)$ $0.2849 (4)$ $0.91648 (7)$ $0.1919 (4)$ $0.88165 (7)$ $0.0422 (4)$ $0.83879 (7)$ $0.0861 (4)$ $0.83212 (7)$ $0.2782 (4)$ $0.86683 (7)$ $0.4302 (4)$	xyz 0.78052 (2) 0.33228 (12) 0.32573 (4) 0.76886 (4) 0.0366 (3) 0.48769 (11) 0.76835 (5) -0.1587 (3) 0.37911 (10) 0.81441 (4) -0.2452 (3) 0.51428 (10) 0.96027 (6) 0.1414 (3) 0.56964 (11) 0.97402 (6) -0.0774 (3) 0.58511 (13) 1.01508 (6) -0.0729 (3) 0.63832 (12) 1.02780 (7) 0.1481 (4) 0.65769 (13) 0.99302 (7) 0.2849 (4) 0.61383 (14) 0.91648 (7) 0.1919 (4) 0.51321 (13) 0.88165 (7) 0.0422 (4) 0.51110 (13) 0.83879 (7) 0.0861 (4) 0.45597 (13) 0.83212 (7) 0.2782 (4) 0.40213 (13) 0.86683 (7) 0.4302 (4) 0.40630 (14)	xyz $U_{iso}*/U_{eq}$ 0.78052 (2)0.33228 (12)0.32573 (4)0.0454 (2)0.76886 (4)0.0366 (3)0.48769 (11)0.0575 (6)0.78035 (5) $-0.1587 (3)$ 0.37911 (10)0.0587 (5)0.81441 (4) $-0.2452 (3)$ 0.51428 (10)0.0522 (5)0.96027 (6)0.1414 (3)0.56964 (11)0.0285 (6)0.97402 (6) $-0.0774 (3)$ 0.58511 (13)0.0369 (6)1.01508 (6) $-0.0729 (3)$ 0.63832 (12)0.0358 (6)1.02780 (7)0.1481 (4)0.65769 (13)0.0276 (7)0.99302 (7)0.2849 (4)0.61383 (14)0.0281 (7)0.91648 (7)0.1919 (4)0.51321 (13)0.0275 (6)0.88165 (7)0.0422 (4)0.51110 (13)0.0277 (7)0.83879 (7)0.0861 (4)0.45597 (13)0.0277 (7)0.83212 (7)0.2782 (4)0.40213 (13)0.0293 (7)0.86683 (7)0.4302 (4)0.40630 (14)0.0335 (7)

C16	0.90929 (7)	0.3881 (4)	0.46234 (14)	0.0324 (7)
C17	0.80065 (7)	-0.0695 (4)	0.45873 (15)	0.0365 (8)
C41	1.07225 (7)	0.2101 (4)	0.71678 (13)	0.0276 (7)
C42	1.10818 (7)	0.0584 (4)	0.73080 (14)	0.0344 (7)
C43	1.15027 (7)	0.1168 (5)	0.78475 (15)	0.0394 (8)
C44	1.15723 (8)	0.3258 (5)	0.82582 (15)	0.0398 (8)
C45	1.12182 (8)	0.4780 (5)	0.81243 (14)	0.0389 (8)
C46	1.07966 (7)	0.4216 (4)	0.75828 (14)	0.0333 (7)
H5	0.99210	0.43430	0.61430	0.0340*
H12	0.88700	-0.09090	0.54740	0.0330*
H15	0.86140	0.56400	0.37040	0.0400*
H16	0.93320	0.49300	0.46580	0.0390*
H42	1.10380	-0.08670	0.70260	0.0410*
H43	1.17450	0.01160	0.79350	0.0470*
H44	1.18610	0.36500	0.86340	0.0480*
H45	1.12650	0.62270	0.84080	0.0470*
H46	1.05570	0.52790	0.74940	0.0400*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}
Cl1	0.0334 (3)	0.0438 (4)	0.0481 (3)	0.0047 (3)	-0.0079 (3)	0.0048 (3)
F1	0.0322 (7)	0.0558 (11)	0.0906 (11)	-0.0039 (8)	0.0271 (8)	-0.0025 (9)
F2	0.0579 (9)	0.0458 (10)	0.0574 (9)	-0.0175 (8)	-0.0109 (7)	-0.0089 (8)
F3	0.0371 (8)	0.0447 (10)	0.0679 (9)	-0.0101 (7)	0.0019 (7)	0.0210 (8)
N1	0.0223 (9)	0.0286 (11)	0.0336 (9)	0.0001 (8)	0.0055 (7)	0.0002 (8)
N2	0.0283 (10)	0.0288 (12)	0.0489 (11)	-0.0018 (9)	0.0020 (9)	-0.0005 (9)
N3	0.0257 (9)	0.0317 (12)	0.0447 (11)	0.0000 (9)	0.0003 (8)	0.0003 (9)
C4	0.0243 (11)	0.0294 (13)	0.0300 (11)	-0.0012 (10)	0.0087 (9)	0.0004 (10)
C5	0.0246 (11)	0.0266 (13)	0.0331 (11)	-0.0036 (10)	0.0077 (9)	-0.0017 (10)
C11	0.0225 (10)	0.0309 (13)	0.0288 (10)	-0.0002 (10)	0.0066 (9)	-0.0014 (10)
C12	0.0260 (11)	0.0294 (13)	0.0280 (10)	0.0024 (10)	0.0058 (9)	0.0011 (10)
C13	0.0255 (11)	0.0288 (13)	0.0286 (11)	-0.0020 (10)	0.0068 (9)	-0.0048 (9)
C14	0.0264 (11)	0.0326 (14)	0.0276 (11)	0.0034 (10)	0.0051 (9)	-0.0022 (10)
C15	0.0341 (12)	0.0321 (14)	0.0346 (12)	0.0041 (11)	0.0096 (10)	0.0064 (10)
C16	0.0274 (11)	0.0332 (14)	0.0372 (12)	-0.0039 (10)	0.0099 (10)	0.0015 (10)
C17	0.0263 (11)	0.0368 (15)	0.0419 (13)	-0.0019 (11)	0.0012 (10)	0.0003 (12)
C41	0.0262 (11)	0.0310 (13)	0.0259 (10)	-0.0011 (10)	0.0075 (9)	0.0030 (10)
C42	0.0306 (11)	0.0335 (14)	0.0373 (12)	0.0007 (11)	0.0059 (10)	0.0005 (11)
C43	0.0284 (12)	0.0453 (17)	0.0417 (13)	0.0045 (12)	0.0044 (10)	0.0083 (12)
C44	0.0305 (12)	0.0508 (17)	0.0324 (12)	-0.0082 (13)	-0.0016 (10)	0.0047 (12)
C45	0.0422 (13)	0.0381 (15)	0.0323 (12)	-0.0082 (12)	0.0026 (10)	-0.0042 (11)
C46	0.0332 (12)	0.0345 (14)	0.0315 (11)	0.0031 (11)	0.0076 (10)	0.0002 (10)

Geometric parameters (Å, °)

2) C15—C16	1.383 (3)
3) C41—C42	1.392 (3)
3) C41—C46	1.391 (3)
3) C42—C43	1.383 (3)
	2) C15—C16 3) C41—C42 3) C41—C46 3) C42—C43

N1—N2	1.357 (3)	C43—C44	1.375 (4)
N1—C5	1.352 (3)	C44—C45	1.382 (4)
N1—C11	1.426 (3)	C45—C46	1.383 (3)
N2—N3	1.310 (3)	С5—Н5	0.8800
N3—C4	1.369 (3)	C12—H12	0.9500
C4—C5	1.366 (3)	С15—Н15	0.9500
C4—C41	1.473 (3)	C16—H16	0.9500
C11—C12	1.381 (3)	C42—H42	0.9500
C11—C16	1.381 (3)	С43—Н43	0.9500
C12—C13	1.389 (3)	C44—H44	0.9500
C13—C14	1.386 (3)	C45—H45	0.9500
C13—C17	1.498 (3)	C46—H46	0.9500
C14—C15	1.381 (3)		
Cl1…F1	3.1445 (18)	C41…H15 ^x	3.0300
Cl1…F2	3.0063 (19)	C42…H45 ^{vi}	3.0400
Cl1…F2 ⁱ	3.1086 (19)	C42…H15 ^x	3.0100
Cl1…F2 ⁱⁱ	3.2167 (16)	C43…H15 ^x	2.9900
F1…C11	3.1445 (18)	C44…H15 ^x	3.0000
F1···F1 ⁱⁱⁱ	2.835 (2)	C45…H42 ⁱ	3.0400
F1…F3 ^{iv}	3.075 (2)	C45…H15 ^x	3.0100
F2…Cl1 ^v	3.2167 (16)	С46…Н5	3.0000
F2····Cl1 ^{vi}	3 1085 (19)	C46…H15 ^x	3 0300
F2C11	3 0063 (19)	H5N2 ⁱ	2 9400
F3····C45 ^{vii}	3 295 (3)	H5…C16	2.9400
$F_3 \cdots C_{15}^{vi}$	3 235 (3)	H5C46	3,0000
F3F1 ^{iv}	3.075 (2)	H5H16	2 5400
	2 8100	H5H46	2.5400
F3H45 ^{vii}	2.6100	H12F3	2.3100
F3H12	2.0000	H12N2	2.5400
N2U5vi	2.3400		2.5800
N2H12	2.9400	H12H43	2.3300
N21142	2.3800	H15C42x	2 0100
N3H42	2.0400	H15C42"	2,0000
C12 C42ix	5.449 (5) 2.5(0 (2)		2.9900
$C12 \cdots C43^{in}$	3.569 (3)		3.0000
C12····C44 […]	5.487 (5) 2.527 (2)		3.0100
C15····C45 [*]	3.527 (3)	H15····C46 [*]	3.0300
C15····C46 ^x	3.486 (3)	H16····C5	2.8000
C15F31	3.235 (3)	H16····H5	2.5400
C43···C12 ^{IX}	3.569 (3)	H42…N3	2.6400
C44…C12 ^{IX}	3.487 (3)	H42····C45 ^{vi}	3.0400
$C45$ ···F 3^{x_1}	3.295 (3)	$H42\cdots C14^{xn}$	3.0800
C45…C15 ^x	3.527 (3)	H42····C15 ^{xii}	2.9200
C46…C5 ^{ix}	3.449 (3)	H42····C16 ^{xii}	3.0400
C46…C15 ^x	3.486 (3)	H44…F1 ^{xiii}	2.8100
C5…H16	2.8000	H45…C42 ⁱ	3.0400
C5…H46	2.8300	H45····F3 ^{xi}	2.6000
C14···H42 ^{xii}	3.0800	H45····H12 ^{xi}	2.5300
C15····H42 ^{xii}	2.9200	H46…C5	2.8300

supplementary materials

C16····H42 ^{xii}	3.0400	H46…H5	2.5100
С16…Н5	2.9800		
N2—N1—C5	110.45 (18)	C4—C41—C42	120.3 (2)
N2—N1—C11	120.29 (18)	C4—C41—C46	121.2 (2)
C5—N1—C11	129.26 (19)	C42—C41—C46	118.5 (2)
N1—N2—N3	107.10 (17)	C41—C42—C43	120.7 (2)
N2—N3—C4	109.13 (17)	C42—C43—C44	120.4 (2)
N3—C4—C5	108.19 (19)	C43—C44—C45	119.5 (2)
N3—C4—C41	122.3 (2)	C44—C45—C46	120.6 (2)
C5—C4—C41	129.5 (2)	C41—C46—C45	120.4 (2)
N1—C5—C4	105.1 (2)	N1—C5—H5	127.00
N1—C11—C12	118.77 (19)	С4—С5—Н5	127.00
N1—C11—C16	120.2 (2)	C11—C12—H12	120.00
C12—C11—C16	121.0 (2)	C13—C12—H12	120.00
C11—C12—C13	119.9 (2)	C14—C15—H15	120.00
C12—C13—C14	118.9 (2)	C16—C15—H15	120.00
C12—C13—C17	119.4 (2)	C11—C16—H16	120.00
C14—C13—C17	121.63 (19)	C15—C16—H16	120.00
Cl1—C14—C13	121.30 (17)	C41—C42—H42	120.00
Cl1—C14—C15	117.89 (17)	C43—C42—H42	120.00
C13—C14—C15	120.8 (2)	C42—C43—H43	120.00
C14—C15—C16	120.1 (2)	C44—C43—H43	120.00
C11—C16—C15	119.1 (2)	C43—C44—H44	120.00
F1—C17—F2	106.84 (18)	C45—C44—H44	120.00
F1—C17—F3	106.38 (18)	C44—C45—H45	120.00
F1-C17-C13	111.87 (19)	C46—C45—H45	120.00
F2-C17-F3	106.10 (19)	C41—C46—H46	120.00
F2-C17-C13	113.17 (18)	C45—C46—H46	120.00
F3-C17-C13	112.02 (18)		
	(10)		
C5—N1—N2—N3	-0.2 (2)	C11—C12—C13—C17	-176.1 (2)
C11—N1—N2—N3	179.82 (18)	C12—C13—C14—C15	-3.3 (3)
N2—N1—C5—C4	-0.1 (2)	C17—C13—C14—Cl1	-7.2 (3)
C11—N1—C5—C4	179.94 (19)	C12—C13—C17—F1	116.4 (2)
N2—N1—C11—C12	32.1 (3)	C12—C13—C17—F2	-122.9 (2)
N2—N1—C11—C16	-148.4 (2)	C17—C13—C14—C15	174.3 (2)
C5—N1—C11—C12	-147.9 (2)	C12—C13—C14—Cl1	175.22 (16)
C5—N1—C11—C16	31.6 (3)	C14—C13—C17—F2	59.6 (3)
N1—N2—N3—C4	0.4 (2)	C14—C13—C17—F3	179.48 (19)
N2—N3—C4—C5	-0.4 (2)	C12—C13—C17—F3	-3.0 (3)
N2—N3—C4—C41	179.51 (19)	C14—C13—C17—F1	-61.2 (3)
C41—C4—C5—N1	-179.6 (2)	Cl1—C14—C15—C16	-176.31 (17)
N3—C4—C5—N1	0.3 (2)	C13—C14—C15—C16	2.2 (3)
C5—C4—C41—C42	-158.3 (2)	C14—C15—C16—C11	0.5 (3)
C5—C4—C41—C46	20.4 (3)	C4—C41—C42—C43	178.7 (2)
N3—C4—C41—C46	-159.5 (2)	C42—C41—C46—C45	-0.3 (3)
N3—C4—C41—C42	21.9 (3)	C46—C41—C42—C43	0.0 (3)
C16—C11—C12—C13	1.2 (3)	C4—C41—C46—C45	-179.0 (2)

N1-C11-C12-C13	-179.29 (19)	C41—C42—C43—C44	0.3 (3)
N1-C11-C16-C15	178.24 (19)	C42—C43—C44—C45	-0.3 (4)
C12-C11-C16-C15	-2.2 (3)	C43—C44—C45—C46	0.0 (4)
C11—C12—C13—C14	1.6 (3)	C44—C45—C46—C41	0.3 (3)

 Symmetry codes: (i) x, y+1, z; (ii) -x+3/2, y+1/2, -z+1/2; (iii) -x+3/2, -y+1/2, -z+1; (iv) -x+3/2, -y-1/2, -z+1; (v) -x+3/2, y-1/2, -z+1/2; (vi) x, y-1, z; (vii) -x+2, y-1, -z+3/2; (viii) x-1/2, -y+1/2, z-1/2; (ix) -x+2, y, -z+3/2; (x) -x+2, -y+1, -z+1; (xi) -x+2, y+1, -z+3/2; (xii) -x+2, -y, -z+1; (xiii) x+1/2, -y+1/2, z+1/2.