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Neural networks have proven to be very successful in automatically capturing the
composition of language and different structures across a range of multi-modal tasks.
Thus, an important question to investigate is how neural networks learn and organise such
structures. Numerous studies have examined the knowledge captured by language models
(LSTMs, transformers) and vision architectures (CNNs, vision transformers) for respective
uni-modal tasks. However, very few have explored what structures are acquired by multi-
modal transformers where linguistic and visual features are combined. It is critical to
understand the representations learned by each modality, their respective interplay, and
the task’s effect on these representations in large-scale architectures. In this paper, we take
a multi-modal transformer trained for image captioning and examine the structure of the self-
attention patterns extracted from the visual stream. Our results indicate that the information
about different relations between objects in the visual stream is hierarchical and varies from
local to a global object-level understanding of the image. In particular, while visual
representations in the first layers encode the knowledge of relations between
semantically similar object detections, often constituting neighbouring objects, deeper
layers expand their attention across more distant objects and learn global relations
between them. We also show that globally attended objects in deeper layers can be
linked with entities described in image descriptions, indicating a critical finding - the indirect
effect of language on visual representations. In addition, we highlight how object-based input
representations affect the structure of learned visual knowledge and guide the model
towards more accurate image descriptions. A parallel question that we investigate is
whether the insights from cognitive science echo the structure of representations that
the current neural architecture learns. The proposed analysis of the inner workings of multi-
modal transformers can be used to better understand and improve on such problems as
pre-training of large-scale multi-modal architectures, multi-modal information fusion and
probing of attention weights. In general, we contribute to the explainable multi-modal natural
language processing and currently shallow understanding of how the input representations
and the structure of the multi-modal transformer affect visual representations.
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1 INTRODUCTION

The ability of transformers to capture contextualised
representations and encode long-term relations has led to
their successful application in various NLP tasks (Vaswani
et al., 2017; Devlin et al., 2019; Radford et al., 2019). Their large
size, layer depth and numerous multi-head self-attention
mechanisms are the main reasons for their excellent
performance. However, the structure of such ever-larger
models imposes new challenges on understanding and
explaining their inner workings. Since there is no clear
cognitive motivation behind tremendously successful
transformers (Rogers et al., 2020), a set of sophisticated
methods is required to examine how information is
processed and what is learned by such models. Multiple
explainability methods and tools have been proposed in the
‘BERTology’ field, which investigates whether transformers
can learn helpful information. In these approaches, self-
attention is typically inspected for the presence of specific
linguistic knowledge as a product of cognition. For example,
some research has focused on identifying valuable information
for syntactic, co-referential, and translation tasks (Raganato
and Tiedemann, 2018; Belinkov and Glass, 2019). Notably, Vig
and Belinkov (2019) show that more complex linguistic
phenomena are captured in deeper attention heads of the
model, building on top of much simpler knowledge present
in earlier layers of the model. Such hierarchical learning of
linguistic information is further exemplified by showing that
proper nouns are learned in deeper layers, and low-level
constructs such as determiners are captured in lower layers.
Others have inspected each attention head individually for the
specific type of information (Voita et al., 2019), or even tried to
explain attention by comparing it to human input in particular
contexts (Hoover et al., 2020). However, it has been
emphasized that attention is not always an explanation of
the linguistic knowledge learned by the model (Jain and
Wallace, 2019), and several other factors have to be taken
into account when explaining such models (Kobayashi et al.,
2020). Some other popular explainability methods include
neuron-based analysis and transfer learning (Rethmeier
et al., 2020) and promising gradient-based analysis, which
directly reflects the knowledge learned by the model (Wallace
et al., 2019). However, it has been recently shown that it is
relatively easy to manipulate and corrupt gradient-based
explainability methods (Wang et al., 2020).

The transformers have also taken by storm the field of
computer vision, one of the last bulwarks of CNNs.
Dosovitskiy et al. (2021) have shown that vanilla
transformer demonstrates impressive results on the task of
image classification if supplied with simple BERT-style image
representations (e.g., 2D image patches). Interestingly, the
authors show that the vision transformer can gradually
increase its attention on the semantically plausible parts of
the image, structuring its visual knowledge. Specifically,
attention heads in surface layers uniformly attend to many
different areas in the image, with attended patches relatively
close to each other. In contrast, deeper attention heads focus on

specific image patches, while the distance between attended
patches becomes larger. Caron et al. (2021) observed that
attention heads in vision transformer capture class-specific
features of objects (e.g., shapes, parts), which can be
indicators of emerging visual knowledge of the world.
Interestingly, the authors show that the model focuses more
on “class-specific” features when trained with self-supervision.
In contrast, using object labels in a standard supervised setting
dissolves its focus and re-distributes the model’s attention
across different parts of the image. This finding raises a
question of the effect that language has on visual
representations1. While more focus on a single object might
be beneficial for image classification, a more sophisticated
multi-modal task (e.g., image captioning) requires scene-
level knowledge about objects and relations between them.
Thus, more global attention shaped by the conceptual
knowledge from language is required for such tasks. One
shortcoming of many current vision-only transformers is
that the representations learned by such models lack
grounding in the broader relational knowledge between
different objects expressed in image descriptions. This
characteristic of the vision transformers provides additional
motivation for the current study and our exploration of how
language-and-vision transformers can benefit from a
combination of two modalities.

Somewhat surprisingly, only recently multi-modal
transformer representations have started getting attention
from scientists. Cao et al. (2020) probe the pre-trained multi-
modal transformers for several language-and-vision tasks and
show that these models encode a variety of useful textual, visual
or cross-modal representations. However, a better
understanding of how multi-modal representations are
structured and implicitly learned is currently missing in the
literature. Additionally, we need to know what is the role of
explicit factors, such as the way the image is fed to the model.
Therefore, in this paper, we address the problem of transparency
of multi-modal representations and experiment with the two-
stream image captioning transformer introduced by Herdade
et al. (2019). In this transformer, each modality (language and
vision) is first attended separately by modality-dependent self-
attention, and then the two are fused by the third component,
cross-modal attention. The separation of the system into three
modules allows us to examine fine-grained uni-modal
representations in the multi-modal architecture. A dedicated
module for merging of visual and linguistic information allows
us to study how they are fused. Thus, a two-stream transformer
can utilise the combination of conceptual knowledge of how
objects can be distributed and related to each other based both
on linguistic and visual information. Such models learn to
perform a variety of tasks:

1Note that there is also an effect of how a target object is placed in the image. In
standard image classification set-up, the target object is located in the centre of the
image, intuitively simplifying the task for the model.
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◇ Visually parse the scene: find patterns/invariances that are
visually salient across different visual contexts (vision stream).

◇ Extract knowledge from linguistic descriptions: find salient
patterns between word representations and sequences of
words (language stream).

◇ Combine both information types to make visually and
linguistically dependent representations which are grounded
in how we structure and label the world as reflected in
language and what we observe visually (cross-modal stream).

The analysis of representations learned by the multi-modal
architectures is also relevant in the context of the call for a
change in what semantic representations we use in natural
language processing (Bender and Koller, 2020; Bisk et al., 2020).
As the authors point out, semantic representations learned
from word embeddings are insufficient and grounded
representations are required. Investigating multi-modal
models allows us to study how such representations differ
from representations learned in completely uni-modal
architectures. In Ilinykh and Dobnik (2021), we demonstrate
that visual knowledge indirectly affects language
representations in the multi-modal transformer. Our
experiments show that the self-attention in the language
stream becomes more focused on previously generated
nouns, aligning with visual modality and image objects. A
natural continuation of this analysis is to examine whether
the structure of visual representations is influenced by
conceptual knowledge of the world, reflected in language.
Therefore, we examine how a multi-modal transformer
proposed by Herdade et al. (2019) organises and structures
learned knowledge of the visual modality. We focus on the
vision stream and inspect 1) how visual knowledge is
represented in a transformer as exemplified by self-attention,
2) how visual knowledge is affected by the overall training task,
which is image caption generation, and 3) whether the observed
attentional patterns are intuitively interpretable to us.

We address the following questions:

1) Given the multi-layered nature of transformer blocks and,
therefore, differences in input representations at each step,
self-attention heads at each layer are expected to differ in the
type of knowledge that they encode. We investigate what kind
of knowledge is captured by different layers by examining
visual self-attention patterns between objects.

2) Knowing that both language and perception have a
hierarchical structure (Tenenbaum et al., 2011), we also
expect hierarchical learning of visual information in
transformers. Is there a progression of attended
representations from low-level local relations to high-level
global dependencies between objects corresponding to our
conceptual knowledge? Moreover, is there a connection
between learned dependencies and the input
representations, which can be either semantically informed
(e.g., object detections) or disentangled from any conceptual
meaning (e.g., image patches)?

3) Does the language task have an effect on visual
representations? Due to the back-propagation mechanism

and the multi-modal fusion module, representations of one
modality might contain artefacts of another modality in the
two-stream multi-modal transformer (Ilinykh and Dobnik,
2021). Is conceptual linguistic knowledge implicitly reflected
in visual self-attention?

The remainder of the paper is organised as follows. In
Section 2.1, we review the model’s architecture and introduce
the notion of the attention link, an important concept that we
use to interpret knowledge captured by the model. We also
describe our experimental setup. Then, we provide a short
analysis of how the input representations we use in our
experiments might affect what and how the model learns
(Section 2.2). We proceed to the main experiments in
Section 3. Section 3.1 and 3.2 describe the analysis of the
knowledge in all layers in terms of thematic relatedness of the
objects, visual proximity and strength of the attention links. In
Section 3.3, we identify the knowledge split in what is learned
by earlier and deeper layers of the model by analysing
representations from different layers for similarity with
each other. We also examine the spread of attention
between objects as shown by attention patterns in the
model’s layers. Section 3.4 describes our analysis of
whether the high-level knowledge from language modality
can be detected in layers of visual self-attention in some form.
We inspect representations learned with a different input type
(e.g., image patches) in Section 3.5 and compare them to the
knowledge captured when using object detections. Finally, in
Section 4, we connect our results with studies on human
cognition. We conclude with a summary of how our
experiments contribute to a better understanding of large-
scale neural models and identify possible research questions
for future work (Section 5).

2 MATERIALS AND METHODS

2.1 Two-Stream Multi-Modal Transformer
Traditional multi-modal architectures (Xu et al., 2016; Lu et al.,
2017) learn a single set of attention weights with RNN or LSTM
attending over convolutional features. In comparison, current
transformer-based architectures encode information with
multiple attentions, either processing each modality
independently as in two-stream or multi-stream models (Lu
et al., 2019; Tan and Bansal, 2019) or simultaneously (one-
stream) (Chen et al., 2020; Su et al., 2020). The separation of
different modalities (multi-stream) allows us to 1) inspect the
fine-grained attention patterns learned at each modality or level
of organisation and 2) examine the effect of information fusion
on representations of each modality. Therefore, we use the image
captioning transformer by Herdade et al. (2019), which is based
on the standard transformer model (Vaswani et al., 2017),
consisting of three different self-attention blocks. Effectively,
the modular design allows two-stream architectures to learn to
encode contrasting requirements of each modality, similar to the
conditions imposed by human vision and human language. In
addition, the third module (cross-modal attention) fuses both
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types of information which is intuitively comparable with how
humans combine perceptual and conceptual understanding to
describe the world.

We focus on image captioning because this generation task
represents a basic linguistic pragmatic case. In comparison, the
VQA task (Antol et al., 2015) is a multi-label classification
problem, which requires more focus on specific objects
mentioned in a question. Visual dialogue (Das et al., 2017)
imposes additional challenges, which often require knowledge
beyond images and texts, e.g. memory and tracking of attention
focus on objects. We believe that inspecting multi-modal
representations for visual dialogue is out of the scope of the
current paper and hope to address this problem in future work.

The primary difference between the model introduced by
Herdade et al. (2019) and other two-stream architectures
(notably, LXMERT (Tan and Bansal, 2019) and ViLBERT (Lu
et al., 2019)) is the method that is used to encode spatial

information about objects. Both LXMERT and ViLBERT do
not incorporate any object relative geometry. Instead, they
simply utilise coordinates of bounding boxes or their spatial
location. In addition, we find BERT-inspired LXMERT and
VilBERT to be more suited for learning general multi-modal
representations, while the multi-modal transformer by Herdade
et al. (2019) is particularly tailored for better use of modalities for
a specific task of caption generation.

Figure 1 describes the main components of our model. The
model consists of three modules, where each of them operates
with different input representations and consists of L � 6 layers
and H � 8 attention heads in each of these layers. For the masked
self-attention (the orange box), we mask all words (wt+1, . . . , wT),
which follow the word at the current timestep wt, with the
[MASK] token. We set T to 16. Such design is necessary for
the uni-directional task of image caption generation in which
sequences of words are formed gradually as the description

FIGURE 1 | The architecture of the multi-modal transformer and a detailed visualisation of its image encoder (visual self-attention). The model consists of three
parts: self-attention on visual information, masked self-attention on textual input and cross-attention, which learns multi-modal fusion. The predicted word is
concatenated with the previously generated words and passed as the new input to the masked self-attention. The image encoder takes (i) visual representations of
objects produced by a pre-trained faster R-CNN and (ii) geometric representations between detected objects. The self-attention operates at the level of detected
image objects, building attention links of various strength between them. The intensity of the orange lines indicates the intensity of the attention links between objects. The
attention links are created by every attention head in all layers of the image encoder and, if present, can vary in terms of attention strength.
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unfolds. The masked self-attention produces representations for
the next word wt+1 given the previous context and the most
recently generated word (w1, . . . , wt). In our experiments, we
refer to the masked self-attention module as the text encoder since
this part of the model effectively learns the representation of the
next word from the text. The cross-attention module later uses
this representation with the output from visual self-attention to
predict the next word along the lines of the standard decoding
process.

Self-attention on visual information (the blue box) is another
important part of the model. In a typical text-based transformer
such as text-to-text transfer transformer (T5) (Raffel et al., 2020),
this part of the model learns textual representations. However, in
a multi-modal task, the self-attention is performed on image
objects, which are detected and labelled prior to the model’s
training. We refer to this part of the model as image encoder (the
motivation behind the naming is similar to text encoder). To
prepare input for the image encoder, we use the released feature
extractor (Anderson et al., 2018)2 that has been pre-trained on
object annotations from Visual Genome (Krishna et al., 2016).
This model is based on Faster-RCNN (Ren et al., 2015) with the
ResNet-101 (He et al., 2016) as its visual backbone. Its output
consists of visual and geometric features of objects within
bounding boxes, labels (“cup”) and attributes (“red”). Each
attribute-label pair is accompanied by a specific score,
indicating the model’s confidence about the correctness of the
attribute. In our experiments, we keep only such attributes that
have a confidence score of 0.1 or more. Each detected object is
represented by a single feature vector fn ∈ R1×D, where D � 2048.
All object features form a feature set F � {f1, . . . , fN} with N � 36.

In addition, Herdade et al. (2019) also extract geometric
features G � 〈x, y, w, h〉 which represent the centre
coordinates, width and height of every object in the image.
The image encoder is provided with geometric representations,
used as the positional encoding of object representations. The
idea of using positional information in visual self-attention is
motivated by the fact that objects in images do not have a natural
order in terms of their arrangement, unlike words, and supplying
models with such geometric knowledge might provide
information about the topology of objects. Here we briefly
describe how visual and geometric features are combined,
while referring the reader to Herdade et al. (2019) for more
information. First, inspired by Hu et al. (2018), a 4-dimensional
displacement vector between every two objects is computed.
Similar to Vaswani et al. (2017), authors learn positional
(geometric) embeddings by applying the sinusoidal function to
the displacement vector and get a high-dimensional intermediate
geometric representation E ∈ R1×N×N×d. This representation is
then flattened and multiplied with a learned linear matrix
Wg ∈ R1×H×N×N and passed through ReLU non-linearity to
obtain geometric attention weights as follows:

ΩG � EWg. (1)

At the same time, visual representations are used to learn
queries Q and keys K, two standard parameters of the self-
attention:

U � Dropout(ReLU(WpF)), Q � UWq, K � UWk, (2)

where F is the set of visual features or output of the previous layer,
Wp ∈ RD×M, Wq ∈ R1×H×d×N and Wk ∈ R1×H×d×N are learned
during training. Wp is used to reduce the dimension of visual
features resulting inU. The visual attention weights are calculated
as follows:

ΩV � QKT��
dk

√ . (3)

1/
��
dk

√
is a scaling factor, which provides efficient learning for

larger inputs since their size can affect the gradient of the softmax
function andmake it too small. Next, geometricΩG and visualΩV

attention weights are combined as follows:

Ω � log(ΩG) +ΩV, (4)

where log is used to normalise the distribution of geometric
weights. Finally, the third standard parameter of transformer’s
self-attention, value V, is multiplied with the combined features:

V � UWv, headh,ℓ(F) � sof tmax(Ω)V, (5)

where Wv ∈ R1×H×d×N is the learned matrix, Ω is the N × N
matrix with combined attention weights, headh,ℓ corresponds to
the specific attention head h in the layer ℓ. The authors set M to
512, d to 64 and dk to 64. Note that the geometric features are
provided to every visual self-attention layer. Every attention head
at each layer learns its own set of transformer parameters (Q, K,
V) and merges the fixed set of geometric features with the output
from the previous layer, using it to produce the final result. In the
end, the output of the last layer is passed to the cross-attention
module (the red box), which attends to both visual and textual
representations to generate the next word wt+1.

In our experiments, we are using attention weights between
objects predicted by individual attention heads h within each
layer ℓ of the image encoder. We refer to them as attention links
to emphasise their role in connecting different objects. The
attention weights are extracted from the image encoder
according to Eq. (3). Then, we apply softmax over these
representations to obtain the set of attention links. The notion
of attention link represents observable attention between two
identical or different objects. The attention link is strong if the
weight that it establishes between the objects is close to 1.
Otherwise, the attention link is weak if it is close to 0 which
indicates no attention. Note that the attention weights of a
specific head will typically focus on particular objects rather
than all objects.

In terms of the dataset, we use the Karpathy test split
(Karpathy and Fei-Fei, 2015) of the MSCOCO image
captioning dataset (Lin et al., 2014) to test our model and
extract attention weights. The test split consists of 5,000
images with five captions per image, while train and validation
splits contain 113,000 and 5,000 images, respectively. We take the
pre-trained checkpoint of the multi-modal transformer released2https://github.com/peteanderson80/bottom-up-attention
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by Herdade et al. (2019) 3. The choice of the checkpoint was based
on the CIDEr-D score (Vedantam et al., 2015). The released
checkpoint is not perfect and does not achieve human
performance in generating image descriptions. In this
evaluation exercise, we are interested in the attention that a
model would predict for natural, therefore, human-generated
descriptions. Hence, we perform the model testing in a teacher
forcing setting: every next generated word is replaced with the
corresponding word from the ground-truth captions and used as
part of the following input to the model. We collect attention
links from the image encoder for every caption generated
this way.

2.2 Learning From Object Detections, Not
Pixels
The first layer of visual self-attention is provided with visual
features of detected objects and geometric information about
them. These objects become connected by attention links of
various strengths at every layer during learning, resulting in
many pairwise relations. We ask whether learned attention
links are influenced in any way by the type of input that the
model uses. In particular, we want to know how the input data
guides the model’s learning and what knowledge the model builds
between attended objects.

Figure 2 shows an example of the output from the object
detector. The sub-figure B demonstrates that many bounding
boxes capture parts of what we would consider being the same
entity: e.g. “black paw” of the “leg” which belongs to the “cat”
object. The extractor can detect the same object multiple times
(“yellow banana peel”), and identifying the wrong object is also
possible. Therefore, the input to the first layer of the transformer
consists of features of objects of different granularity, ranging
from entire entities (“cat”) to their parts (‘head’). In comparison,

vision transformers (Dosovitskiy et al., 2021) start with the
analysis of images on the pixel level when only perceptual
information is available. The image encoder in our model is
expected to benefit from the conceptual knowledge of the objects,
as provided by the object extractor, pre-trained on human
annotations of visual scenes. The model thus might be primed
to group various objects into larger concepts (“ear”, “leg”, “paw”
belong to “grey cat”), acquiring lower-level cognitive information
about part-whole relations and a better understanding of local
relations between objects.

In addition, the input is represented by visual features of
bounding boxes representing objects over the entire image and
their geometric information, and so the transformer is
expected to capture a global understanding of an image.
The self-attention in transformers can be interpreted as a
parallel to larger receptive fields (Parmar et al., 2018) since
it operates on a group of objects across the image. In contrast,
convolution operators fall back on determining dependencies
and relations between objects, while efficiently detecting
objects and extracting their features (Kelleher and Dobnik,
2017). For instance, relations such as “the leg is next to the ear”
or “the banana is in front of the nose” will not be learned by
CNNs because of the small size of the convolutional kernel
while objects and their features (“leg”, “ear”, “banana”, “nose”)
will be detected (Kelleher and Dobnik, 2017; Ghanimifard and
Dobnik, 2018). Thus, one type of knowledge that is encoded by
attention weights is the knowledge of long-distance visual
dependencies between objects (see, for example, the study
by Ghanimifard and Dobnik (2019)).

Self-attention can capture both local and global knowledge as
it is not limited by the size of the receptive field nor by the kind of
information that we present to it in the vector, i.e. we can mix
features of a different kind. The knowledge that we give to the
transformer is a higher-level knowledge that is the output of the
feature extractor, which detects objects based on the convolution
algorithm. In the following experiments, we examine the
attention links established by different layers of visual

FIGURE 2 | Example of object detection output from the MSCOCO dataset. The original image (A) and a subset of the detected objects represented by bounding
boxes, labels and attributes (B). The caption for the original image: “a cat that is eating some kind of banana”.

3https://github.com/yahoo/object_relation_transformer
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self-attention and the type of relations they resemble by learning
from features of detected objects.

3 EXPERIMENTS

3.1 Thematic Analysis of Attended Objects
We inspect to what degree objects that are linked by attention are
thematically related to each other. The output of the feature
extractor provides us with both object features and object
descriptions. Thus, we can measure the association between
objects through semantic similarity of their descriptions. We
represent the descriptions of detected objects as word
embeddings by using the Word2Vec model (Mikolov et al.,
2013) pre-trained on Google News dataset and available in
Gensim (Řehůřek and Sojka, 2010). Next, we cluster the label
embeddings into C clusters, using the k-means algorithm for
clustering (Lloyd, 1982). Prior to clustering, we remove all
attributes from the object descriptions since they provide an
irrelevant dimension of comparison and might affect the clusters,
making them less object-specific. For example, excluding “grey”
from “grey table” and “grey cat” prevents situations when two
descriptions of thematically unrelated objects (table and cat) are
placed in the same semantic cluster of grey objects because of the
shared colour dimension. We examine the cluster membership of
every pair of detected objects. If they are in the same cluster, then
the two objects are thematically associated; otherwise, the two
objects are not related thematically. We set the number of
thematic clusters C � 3 as this is the average number of
objects described by humans in noun phrases from captions.
This indicates that there are on average three relevant objects
present in images.

We calculate the average proportion of attention links between
objects that are within the same semantic cluster according to :

Prop(α | ℓ, h) � 1
|IMG|

× ∑img∈IMG∑N
i�1∑N

j�1α(ni, nj, clust(ni) � clust(nj))
∑img∈IMG∑N

i�1∑N
j�1α(ni, nj)

,

(6)

where ℓ, h stands for a specific layer and attention head, IMG is
the test set of images,N is the number of objects in an image, clust
denotes the cluster of a specific object, α is the attention link
between the objects.

The results in Figure 3 demonstrate that surface layers encode
visual properties within thematic categories, whereas deeper
layers focus on visual properties that go beyond the
automatically identified thematic categories. For example, the
attention links in the first layer are created between objects within
the same thematic cluster on average in 50% of cases, compared to
41% in the last layer. More specifically, the top-5 (in the
descending order) attention heads that link thematically
related objects are all located in the first three layers of the
visual encoder (1–4, 3–7, 1–1, 1–2, 3–1)4 with four of them
located in the first layer. The best attention head (1–4) builds links
between thematically related objects in 62% of cases, while the
head that builds such connections the least does so in 33% of cases
(6–2). The results indicate that the knowledge of thematically
related objects, which possibly includes local dependencies (e.g.,
part-whole relations), is primarily captured in the first layers.

We support the results with the visualisations of attention
links between objects in different layers in two images in Figure 4
and Figure 5. We use the tools provided by Vig (2019) for
visualisations. Looking at Figure 4 (layer 1), we see that “white
cow” is strongly attended by objects thematically related to cows
as entities, indicating the learning of local dependencies. For
example, “long tail”, “white head” and “white leg” are all parts of
the entity “white cow”. Similarly, in Figure 5 (layer 1), attention
heads relate parts of an object (“tires”) to the object itself
(“motorcycle”). However, the attention links in deeper layers
capture a different kind of knowledge. In particular, in Figure 4
(layer six), the attention heads link “white cow” with objects
describing animal’s surroundings: “tall trees”, “green tree”,
“yellow building”. At the same time, in Figure 5, attention
heads in layer six also connect “red motorcycle” with other
objects in the scene: “walking man”, “metal door”, “green
traffic light” etc. These differences in attention between
objects in earlier and deeper layers indicate that earlier layers
might focus on learning relations, which are more local such as
part-whole relations. In comparison, deeper layers capture a
different type of thematic relatedness, e.g. relations between
different objects.

In earlier layers, the model operates only with low-level visual
features of bounding boxes. Nevertheless, it can capture semantic
similarities between objects in terms of their labels. This semantic
information must come from elsewhere, possibly as a side effect of
image segmentation into objects performed by the object detector.
At the same time, the immediate input to the model is the set of

FIGURE 3 | For every attention head, we show the proportion (in %) of
attention links between objects in the same semantic cluster vs all attention
links disregarding the cluster. The results are averaged across all images in the
test set. Attention heads and layers are shown in horizontal and vertical
axes accordingly. The darker the colour, the larger the ratio. The colour scale
on the right indicates the range of attention proportions (minimum is 0,
maximum is 100).

4We use layer-head notation.
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visual object features, and learning similarities and differences
between these features has made models perform so well on the
number of visual and multi-modal tasks, e.g. image classification
(Krizhevsky et al., 2012). Thus, we examine if semantically similar
objects also share similar visual features produced by the object
detector. We calculate the cosine distance cosvis between feature
vectors of objects within the same thematic cluster and objects from
two different clusters, following the :

cosvis � vi · vj⊤

‖vi‖ · ‖vj‖ , (7)

where vi and vj are two feature vectors from the set of visual features
V, belonging to either the same thematic cluster or two different
clusters for a specific image. We first averaged the scores across all
combinations of object features, then across all combinations of
clusters, and, finally, across images.We ignore clusters that consist of
a single object. We found that the visual features of objects placed in
the same thematic cluster are more similar to each other (0.50) than
the objects in two different clusters (0.31). This finding indicates that
semantic similarity entails visual similarity, as has been observed in
the learning behaviour of both humans (Rosch, 1975, 1978) and
machines (Deselaers and Ferrari, 2011). This result can be attributed

FIGURE 4 | An image with (i) bounding boxes for a subset of detected objects (in red), and with (ii) visual self-attention connections for all six layers between this
subset of 36 objects. Caption for the image: “two cows outside, one laying down and the other standing near a building”. Differently coloured squares on top of each layer
visualisation indicate different attention heads. Each layer is displayed with two identical lists of objects: the left column shows the source objects, while the right column
depicts the target objects which receive attention from source objects.
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to bounding boxes in the input, which are in either part-whole
relations and tend to largely overlap (e.g., “leg” and “gray cat”) or
visually similar (e.g., bounding boxes of two cows in Figure 4). Thus,
in earlier layers, the model links thematically related (semantic bias)
and visually similar objects (visual bias). Deselaers and Ferrari (2011)
also illustrate that distant objects are semantically less similar, while
visually close elements are more similar to each other. In the
following experiment, we examine if a similar bias is observed in
our model based on the attention links of the image encoder.

3.2 The Effect of Geometric and Thematic
Biases
In this experiment we inspect if there is an association between
the number of attention links relating object pairs and the
distance between the centres of these two objects. We make an

analysis for objects in the same vs different thematic clusters. The
center coordinates of each object (ObjCentx and ObjCenty) are
calculated according to Eq. (8), where xmin and ymin stand for the
bottom-left coordinate point of the 2D bounding box covering
the object, w is width, h is height. We calculate the Euclidean
distance between two points in terms of image pixels. Attention
weights are taken as they are without any modification.

ObjCentx � xmin + w/2
ObjCenty � ymin + h/2

(8)

Figure 6 shows the distribution of attention links for different
configurations of layers and thematic clusters in terms of
attention strength (e.g., high or low attention weight) and
distance between two objects. The left-skewed pattern in the
marginal histogram for the horizontal axis of Figure 6A shows
that more than 500, 000 of the attended and thematically related

FIGURE 5 | An image with attention links between objects. Caption for the image: “red motorcycle parked outside of large building in the city”. All other details
about this figure are as for Figure 4.
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pairs of objects are close to each other ( ∼ 50 pixels). While there
are still many thematically related objects that are not next to each
other (e.g., numerous + in the range between 200 and 600 pixels),
the majority of the related objects are immediate neighbours of
one another. For example, in Figure 2 the centre of the bounding
box of “grey cat” is 105 pixels away from the centre of “brown ear”
and 219 pixels from “leg”. A gradual and stable left-to-right
decrease of the bars’ sizes in the horizontal histogram is followed
by an increasing distance between the objects on the horizontal
axis, indicating that this layer learns a direct association between

visual proximity and semantic similarity of objects. In
comparison, we see fewer links between adjacent objects in
Figure 6B since according to the horizontal histogram on top
of the sub-figure, there are less than 250, 000 links between
objects in close visual proximity ( ∼ 50 pixels), which is much
smaller than the number of the closest thematically related objects
observed in Figure 6A. Also, most of the thematically non-related
objects are at least ∼ 200 − 300 apart. Note that the decreasing
frequency of marks is accompanied by the increase in distances
between paired objects. However, this decrease starts with the

FIGURE 6 | Four visualisations portraying the distribution of attention links (depicted as +marks) in terms of their strength (the vertical axis) and distance between
centres of two connected objects (the horizontal axis). We split attention links into two groups: those between the objects that are either in the same or a different
thematic cluster. (A) and (B) demonstrate the patterns observed in the first layer, while (C) and (D) demonstrate patterns in the last layer of the image encoder. Amarginal
histogram accompanies each visualisation for both the vertical (top) and the horizontal (right) axes. The histograms show a distribution of +marks for each
dimension (either horizontal or vertical) in the scatter plot defined by a maximum of 20 bins. The scales for the bar sizes (e.g., frequencies of marks in each bar) are shown
on the left side of the horizontal histogram and below the vertical one.
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objects approximately ∼ 300 pixels away from each other. The
pattern for thematically unrelated objects is very similar in the last
layer (Figure 6D). While the overall number of links between
such objects is much smaller (888, 103 vs 3, 773, 134 in the first
layer), the vast majority of the objects ( ∼ 100, 000) are nearly 300
pixels apart.

On the other hand, in the last layer (Figure 6C), the pattern
observed for thematically related objects is different fromwhat we
have seen in the first layer. There are dramatically fewer links
between neighbouring objects (< 50, 000). Most objects are also
more distant from each other, between 200 and 400 pixels. The
last layer builds only 600,233 links between thematically related
objects, while the first layer learns 3,439,620 such links. These
differences indicate that the first layer might contain links
between numerous objects in part-whole relations, where parts
are both thematically related and visually close to each other, e.g.,
“leg” and “grey cat” in Figure 2, while the last layer learns
thematic relations of a different kind with fewer objects, which
are in a larger distance from one another, e.g., bounding boxes of
two cows in Figure 4.

We used the non-parametric independent Mann–Whitney U
test (Mann and Whitney, 1947) to examine if the differences in
distances between attended objects are statistically significant
between four different sets of attention links in Figure 6 (A,
B, C, D). In this experiment, we refer to distances between objects
according to the label of the corresponding sub-figure in Figure 6.
For example, A refers to distances between thematically related
objects as captured by the first layer. We found that the
differences between combinations of all four sets of distances
are statistically significant with extremely large U5 and p
consistently being 0.0. Such behaviour can be attributed to the
size of our sets since it has been shown that statistical tests suffer
from diminishing p-values when the size of the samples gets
bigger, and even slight differences between large groups are
considered significant (Lin et al., 2013). For example, A and B
have more than 3,000,000 elements, while C and D have fewer
items (600,000), but these numbers are still very large. Thus, we
also compute Cohen’s d (Cohen, 1988) to measure the effect size
between two populations to estimate the degree of differences,
which might give us the indication of significance. The test has
shown that the effect size of significance is medium between A-D6

(d � 0.701), small for A-C (d � 0.494), A-B (d � 0.423) and B-D
(d � 0.292), very small for C-D (d � 0.182) and B-C (d � 0.096).
This result demonstrates that, in general, distributions seen in
earlier layers are different from those in the deeper layers. Intra-
layer, the differences are insignificant for the last layer (C-D) and
somewhat significant for the first layer (A-B). In addition, the
difference between set A and other sets is more significant than all
other set combinations. Therefore, we argue that local relations
between semantically similar objects are captured in the first
layer, less so in the last layer. Overall, the results show that the
layers of the image encoder capture different kinds of knowledge,

supporting the hypothesis of separation between learning of local
and global dependencies in early and deeper layers of the model,
respectively.

In Figure 7, we provide additional analysis of the data and
show the box plot of distances between attended objects for
different distributions. The distance between 50% of all objects
across all data sets (as witnessed by the quartiles) is lower than
500 pixels, while the outliers are nearly 1,000 pixels away from
each other. The data in A is skewed to lower distances more than
in other sets, supporting the idea of learning of local dependencies
of thematically related objects in the first layer. This result
suggests that the model links two objects that are both
approximately in the image’s central area, not on the
periphery. Intuitively, such learning mirrors the perspective of
how the pictures are typically taken, e.g. most of the salient
objects are usually distributed in the centre of the image, not
around its corners. However, there are numerous outliers in all
four sets, indicating, possibly, links between false object
detections or simply non-informative links. Also, outliers
might indicate such objects in images that are far away from
each other but still belong to the same thematic cluster, as is the
case for A. Additionally, the outliers in terms of distances between
attended objects might generally occur due to the ability of self-
attention to attend across all objects in the scene simultaneously.
The outliers in the first layer are more spread and distant from
each other, reaching differences as much as 1,200 pixels,
compared to the last layer. At least half of the objects in C
and D (two quartiles representing each box) are also more distant
than in A and B. This finding indicates that deeper layers focus on
more distant objects but not on objects that are extremely far
from each other. Overall, the box plot shows that the first layer
learns dependencies between neighbouring objects and a general
understanding of the scene, attending between several very
distant objects. In contrast, the last layer expands its focus
across more distant objects and shrinks its scene-level
attention, linking fewer objects on different ends of the image.

FIGURE7 |Box plots of distances between attended objects depending
on thematic relatedness and depth of the layer. The vertical axis has
measurements in pixels. Names of the data sets correspond to the conditions
described in Figure 6.

5The U values were ranging from 237,983,526,041.0 to 1,391,402,498,035.0.
Medians of the sets in pixels: A � 203, B � 295, C � 318, D � 352.
6The notation X-X means that we compare two different sets, e.g., A and D.
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We also examine whether the strength of attention is
significantly different across all four plots shown in
Figure 6. We used the Mann-Whitney U test and found
that the differences between all sets of attention strength
are significant7. As we previously argued, significance
testing for large data sets has to be accompanied by
measuring the effect size to decide if the difference can be
neglected. We used Cohen’s d and found that the effect size of
significance is large between sets from the first and the last
layer (A-C: 2.447, A-D: 2.381, B-C: 2.661, B-D: 2.586) and very
small between sets within the same layer (A-B: 0.073, C-D:
0.042). This result shows striking differences between
attention strength observed in earlier and deeper layers. For
example, in Figure 6 the strength of the attention links ranges
from 0 to one in the first layer. Most of the links are weak, as
indicated by the marginal histogram on the right side of both
sub-figures. In contrast, the deeper layers are generally more
confident in connecting pairs of objects as most connections
are close to the maximum strength (1.0). One possible
explanation for such difference is that the model operates
with original features of objects in lower layers and, thus,
builds a large number of attention links of various strengths. In
comparison, at higher layers, the representations are built on
top of the information from lower layers and might closely
correspond to the conceptual knowledge of objects. Therefore,
we observe more confidence in the attention patterns in deeper
layers rather than in earlier layers.

In Figure 8, we provide a bar plot that visualises differences in
the attention strength of links built in the first and the last layer of
the model. The figure caption also describes standard deviation

(SD) of values in each set. In earlier layers, the model has very
diverse attention based on the SD values, its mean is relatively
small ( ∼ 0.2). Attention in deeper layers has much smaller SD
values, and its mean is nearly 1.0. These results additionally
supports the idea that deeper heads are more focused on specific
relations, while in earlier parts of the model the attention is
distributed across many objects.

Overall, we have found a noticeable and statistically
significant difference in the knowledge captured by earlier
and deeper layers of the image encoder. The first layer, in
particular, captures a general understanding of the scene by
linking neighbouring objects with low certainty (small
attention strength). In contrast, the last layer is highly
confident in linking objects, additionally spreading its
attention across more distant objects. There is also a
difference in the thematic knowledge captured between the
layers: the first layer might acquire information about the
thematic relatedness of objects in local dependencies (e.g.,
part-whole relations). In contrast, the last layer broadens the
notion of thematic relatedness and capture similarities
between whole entities in larger distances.

3.3 Knowledge Split Between Self-Attention
Layers
We also examine the differences between layers in terms of the
similarity of the corresponding weights with each other.
Specifically, given the previous experiments on differences
between the first and the last layer only, we want to inspect
where (between which layers) the shift in the learned knowledge
happens in the image encoder. Following Zhou et al. (2021), we
compute the cosine similarity between attention patterns
observed in two neighbouring layers for all images in the test
set. In particular, for every object ni in the image, we compute
cosine score between two vectors representing attention
originating from this object to every other object in the image
at layer k and layer m:

FIGURE 8 | Bar plot that shows means of the attention strength in each
of four conditions. The y-axis describes the strength of the attention, ranging
from 0.0 to 1.0. Names of the data sets correspond to the conditions
described in Figure 6. Standard deviation for different sets: SD (A) �
0.406, SD (B) � 0.384, SD (C) � 0.164, SD (D) � 0.184.

FIGURE 9 | The average cosine similarity between attention weights in
neighbouring layers. The horizontal axis shows the specific pair of layers that
the scores were calculated for, while the vertical axis shows the cosine scores.

7U values were ranging from 264,300,345,444.0 to 6,185,043,831,303.0; p � 0.0 for
all combinations, except for C-D (p � 2.176e − 154). Medians of the sets in
attention strength: A � 8.228e − 22, B � 1.154e − 23, C � 1.0, D � 1.0.
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cosk,mh,ni �
Ak

h,ni
· Am

h,ni
⊤

‖Ak
h,ni

‖ · ‖Am
h,ni

‖ , (9)

where Ap
h,ni

is the self-attention vector for a specific object, k and
m are two neighbouring self-attention layers (e.g., layer three and
layer four), and h is the attention head. The final cosine similarity
scores for each attention head are averaged over all objects
(divided by N). We also average the scores over heads and
images to obtain a single score per pair of layers. Here, we
examine the similarity between attention patterns of
neighbouring layers only since we want to inspect how visual
knowledge is sequentially processed from earlier to deeper layers.

Figure 9 shows the results. The attention patterns are highly
dissimilar in the first three layers. In contrast, deeper layers (4, 5,
6) encode more similar knowledge, showing an increase in
similarity by almost 0.25 points. This indicates that the results
of the analysis in Section 3.1 and 3.2 can be valid for the layer
four and five because of their strong similarity with the last layer.
At the same time, the dissimilarity between the first three layers
can be explained based on what we know about the first layer,
which builds many different links of various strengths between
the objects. Thus, it is possible that layers two and three also build
a large number of varied links of different strengths. In general,
the results suggest that the shift in similarity occurs somewhere in
the middle of the image encoder. Such change can be attributed to
the type of information each layer operates with and how.

We also examine the level of dispersion of attention links in
different layers of the model and compute the attention entropy E
of the attention distribution α for each attention head according
to the Eq. (10), where si and tj are specific source and target
objects, α is the attention value between them.

Eαℓ,h(tj) � −∑
|S|

i�1
α(si, tj) log(α(si, tj)) (10)

The results in Figure 10 show that all attention heads do not
contribute equally to the formation of attention links. In general,

the entropy is highest in the first layer and slowly diminishes with
the depth of the model. This pattern demonstrates that attention
converges to relate fewer objects in deeper layers compared to the
earlier ones. Based on the results in Section 3.2, this knowledge is
also established betweenmore distant objects. This shows that the
attention in deeper parts of the model becomes saturated and
focused on specific relations, possibly reflecting the knowledge of
core entities in the scene, perceived on the scene level, not local
level. Overall, the image encoder captures at least two types of
knowledge, which can be associated with either the first layers of
the model or the deeper ones. Disperse and dissimilar attention in
the initial layers indicates that the model starts with learning
general and varied aspects of the scene. In contrast, highly focused
and similar links in deeper layers show that the model converges
to a more concrete understanding of the image, potentially
establishing task-dependent relations between objects. At the
same time, the representations in deeper layers are not
extremely similar (e.g., they do not reach a 0.9 score or
higher). It indicates that the attention patterns in these layers
still show active learning of diverse connections between image
objects and are less likely to encode any layer-redundant
information. Note that it is much harder to establish strong
attention links in earlier layers, given only a few steps of visual
information processing in previous layers. The confidence of
deeper layers, thus, might be not only built on top of the previous
processing but also shaped by the task.

Eventually, the image encoder is required to produce valuable
representations for caption generation, and the last layer outputs
such representations. In turn, captions describe only specific
relations between objects and not the whole set of all possible
relations. Thus, the reasons for the presence of focused relations
in deeper layers can be two-fold. First, the emergence of more
concentrated knowledge can be due to the learning of complex
information from low-level image understanding in the initial
layers, as observed in the experiments. Second, indirect
interference of the language task, leading to high-level
conceptual knowledge of the scene in deeper layers, can also
be an important factor. Representations from these layers are
used as input to the cross-attention module, which fuses them
with language representations to generate the image description.
In the following experiment, we examine whether there is an
association between the caption and representations from the last
layer of the image encoder.

3.4 Tracing the Knowledge of Language in
Visual Representations
Here, we examine if deeper layers of visual self-attention achieve a
better pairing of noun phrases in captions, typically describing
objects in relations on the global scale, with objects in the scene
through the attention links. By inspecting whether visual
representations include signs of conceptual (language)
knowledge, we enrich our understanding of how different
modalities affect each other in the multi-modal transformer
(see our work in Ilinykh and Dobnik (2021) for the discussion
on how language representations are affected by visual
information).

FIGURE 10 | We show the normalised entropy of visual self-attention
heads. The result has been normalised by the maximum attainable entropy
log(N). The darker colour indicates higher entropy.

Frontiers in Artificial Intelligence | www.frontiersin.org December 2021 | Volume 4 | Article 76797113

Ilinykh and Dobnik Language Knowledge Impacts Visual Representations

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Our goal is to compute the proportion of attention links,
which mirror the pairing of objects and noun phrases in captions.
In our analysis we name objects that receive attention as target
objects, normally shown on the right side of attention
visualisations (e.g., Figure 4 and Figure 5), while objects that
are source of attention are named as source objects. Note that
each target object might be connected with any other object in the
scene, receiving attention from multiple source objects. This can
lead to such attention links, which are hard to interpret since the
target is attended bymany different source objects. An example of
this can be observed in Figure 5, Layer 3: the attention head
represented in purple predicts the “motorcylce” as the target of
attention for all the source objects on the left. Similar to null
attention observed in the analysis of textual models (Vig and
Belinkov, 2019), we treat such attention links as non-informative.
Specifically, if a target object is linked with more than 30 source
objects, we ignore all such links for the current attention head.

Next, we prepare the set of noun phrases and object labels for
linking. We use spaCy8 to identify and extract noun phrases from
image captions. Since the labels of the detected objects describe
specific objects (e.g., “a cat”) rather than other parts of the scene
(e.g., “the right corner”), we perform additional filtering of noun
phrases. We remove any phrase which contains at least one word
from the special word list9. We keep adjectives in noun phrases
since object labels are typically provided with attributes. Note that
numerals and determiners are removed from the noun phrases in
order to reach structural similarity with object descriptions for
the linking process. After obtaining the set of noun phrases from
the caption, we process the detected objects to collect their labels.
For every object, we retrieve the predicted label (noun) and its
attribute (adjective). The attribute is removed if the extractor is
not confident about the attribute’s correctness, when the
confidence is lower than 0.1.

We want to inspect whether the linking between the target
object and source objects corresponds to two different noun
phrases, which are also related, but in the context of image
description. According to the attention links between objects
(e.g., Figure 4), a target object (the right side of visualisations) is
often linked with multiple source objects (the left side). While
linking one object label depicting the target with the noun phrase
is relatively simple, connecting multiple source objects with a
single noun phrase is not straightforward. Objects might be
associated with more than one noun in the caption, and the
other way around, a caption might be related to more than one
visual entity in the image.We take a simpler approach and inspect
if at least a subset of source objects for a specific target can be
grouped into a single thematic cluster, thus, describing a single
entity. By identifying from all the detected objects those
representing the core scene entities, we ensure that the large
part of different links captures identifiable relation for a single
target. For example, if many source objects can be associated with

a single entity that is linked with a different entity depicted by the
target (e.g., the target “cow” is attended by a large subset of source
objects which form a thematic cluster of “building”), the attention
head can be interpreted to be confident in linking these two
entities. In contrast, highly diverse links between target and
source objects (e.g., the target “cow” is linked by several kinds
of objects representing “building”, “trees”, and “street”) leads to a
weaker knowledge of specific relations in the scene since no
semantic category is dominating the weights. Such a spread of
focus might lead to less interpretable and diluted knowledge. To
distinguish between confident and non-confident patterns of
attention, we cluster source objects based on the same strategy
we used in the first experiment (Section3.1). In particular, we
impose a relatively soft requirement and examine if at least 25% of
the source objects can be grouped into a single thematic cluster.
We ensure that this cluster is different from the cluster of the
target object. If we can not group at least a quarter of source
objects’ labels into a single cluster, we ignore the whole set of links
for this particular set of source objects and a target. This simple
mechanism ensures that we select only those attention links
between objects that are strongly focused and connect entities
from two different thematic clusters.

Once the objects are clustered, wematch their labels with noun
phrases by computing their semantic similarity score. We use
BERTScore10 (Zhang et al., 2020) to get the most semantically
similar object label for every noun phrase. This model allows us to
use the power of pre-trained contextual BERT embeddings
(Devlin et al., 2019) to match each noun phrase with every
object description and the other way around by computing
cosine similarity. The model also correlates well with the
human judgements and outputs results of multiple
performance metrics: precision, recall, F1 score. A recall
metric is computed as the averaged sum of maximum cosine
similarities between each token in the noun phrase and a token in
the object description. Precision is calculated similarly, but
between each token in the object description and a token in
the noun phrase. F1 score is a classic combination of precision
and recall. In the end, we receive a single F1 score for every
combination of a noun phrase and the whole set of object
descriptions, which can be either targets or sources of attention.

We match the source objects and noun phrases as follows.
First, as described previously, we take the subset of object
descriptions if one-fourth (the size of the subset) of the whole
set can be grouped into a single cluster. F1 scores of the nine
objects in the subset (25% from N � 36) are ranked from highest
to lowest for each noun phrase. We examine if there is an F1 score
higher than 0.6 in at least one of these subsets of source objects to
ensure that the word similarity scores are sufficiently high. If that
is the case, a set of nine objects is linked with the noun phrase that
has the highest similarity score with this set compared to other
noun phrases. For example, “a cat” will be chosen as the linked
noun phrase for nine source objects if their highest F1 score is 0.8
for the object description “white cat” from this set, compared to a

8https://spacy.io/.
9The list of words used to filter noun phrases [‘right’, ‘left’, ‘top’, ‘bottom’, ‘the left’,
‘the right’, ‘the top’, ‘the bottom’, ‘the back’, ‘the front’, ‘back’, ‘front’, ‘far’, ‘the far’,
‘close’, ‘the close’].

10We take the best performing layer (40) of the microsoft/deberta-xlarge-
mnli model.
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different noun “the table”, for which the highest F1 score (0.6) for
an object description from the set is smaller. The target object’s
label is inspected for the biggest F1 score across all noun phrases
and matched with the noun phrase with an F1 score higher
than 0.6.

Given two noun phrases describing the source and target
objects, we check if these two phrases are different. If these
phrases are different, we proceed to calculate the proportion of
attention links between mapped objects vs all objects for all
images and target-source connections. Note that if we were
able to successfully map nouns with object descriptions, the
computed proportion for the specific target is Proptarget � 9/36
� 0.25. We get the final results by averaging these proportions
across all targets and images.

The results are shown in Figure 11 in percentages. The
knowledge of relations between two different entities
mentioned in the caption and expressed as linked objects is
more pronounced in deeper layers of the model. In fact,
Figure 3 shows that deeper attention heads are more active
when connecting objects in different thematic clusters, which
possibly correspond to two different noun phrases. These objects
describe entities that constitute the visual scene as a whole and are
also more distant from each other (Figure 6B). For example, in
Figure 2 the “grey cat” is 305 pixels away from the “yellow
banana”, which is much further than the distance between the
vast majority of semantically similar objects ( ∼ 50 pixels,
Figure 6A). In addition, the caption for this image (“a cat that
is eating some kind of banana”) describes it with global relations
between objects, not with local, thematic relations (e.g., “a cat
with paws and a tail is eating some kind of banana with a yellow
peel”). The structure of image descriptions depends on the
pragmatic context of the task and instructions given to the
describers. In the case of the MSCOCO dataset, the

instructions forced the participants to describe the image as a
whole with a single sentence. These regulations have primed
humans to mention only a subset of the most important objects in
the scene, leading to 11.30 words per sentence on average,
according to the statistics of MSCOCO dataset. We have
identified that such knowledge of described objects is
concentrated in deeper attention heads, indicating the traces of
language information in visual representations. This finding also
corresponds to the idea that deeper layers provide cross-attention
with the necessary task-dependent representations, encoding
more global knowledge of the scene in terms of whole entities
(not numerous detections of objects of smaller granularity)11.

Note that the attention heads in the first layer have bright
uniform patterns, indicating lesser mapping of nouns in captions
and object descriptions. We attribute such knowledge to the
design of self-attention, which might somewhat understand
relations between objects on the scene level in the initial
layers. However, this knowledge is less expressed in the first
layers and more articulated in deeper layers. Besides, the patches
for multiple heads in deeper layers are nearly entirely white. We
believe that these heads might also capture mapping between
nouns and objects but in terms of a different and hypothetical
image description. For example, one can describe images in
various ways (e.g., each image in MSCOCO comes with five
descriptions). Figure 2A can also be described as “a cat is on the
white floor” or “someone is feeding a cat with a banana in their
hand”. In these texts, the focus is on such image entities that differ
from those mentioned in the original caption (“a cat that is eating
some kind of banana”). It is possible that due to the nature of self-
attention, deeper layers were able to capture these potential
relations between different objects as well, given that the
model was provided with all five captions for each image
during training. In addition, similar entities co-occur across
images in different conditions and configurations. This type of
knowledge might give self-attention even more power to juggle
the observed objects in myriad ways. However, an additional set
of experiments is required to unveil what else is learned at the
output of the visual self-attention, and we leave this for future
investigation.

3.5 Representing Image With Patches, Not
Objects
In our experiments, the model attends across the visual features of
bounding boxes, which correspond to objects in images,
providing the model with semantic information about images.
Such representations have shown to be more suitable for image
captioning and visual question answering (Li et al., 2017;
Anderson et al., 2018). However, more recently, dividing
images into a uniform grid of patches of the same size and
feeding them to a BERT-inspired visual transformer has
demonstrated improvements on the task of image classification

FIGURE 11 | The proportion of attention links between target and
source objects which can be associated with at least one noun in the caption.
The nouns cannot be identical (e.g., “cows” and “building” in “two cows
outside, one laying down and the other standing near a building”), and
both the target and the source objects linked with them must correspond to
two different thematic clusters. For better visualisation, the highest value is set
to 10%.

11Note that some descriptions might be not necessarily global, e.g. “a cat that has
whiskers and ears”. Thus, there is a noise in the model because there is no guarantee
that descriptions only describe details at a scene level.
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Dosovitskiy et al. (2021). Note that prior to their application in
vision transformers, grid-like representations have been widely
used in encoder-decoder networks for image captioning (Xu et al.,
2016; Lu et al., 2017), but were shown to be less informative than
object-level representations.

Here we perform an ablation study, examining the distances
between attended objects in two settings: 1) when the model is
given grid-level features (image patches), 2) or when the model
uses object-level features. Note that we used object-level
representations in all other experiments in this manuscript.

We divide each image into the set of 6 × 6 patches, resulting
in 36 patches per image, comparable with all our experiments in
which we detected 36 object regions. Next, we pass image patches
through ResNet-101 (He et al., 2016) and extract the set of patch-
based visual features P � {p1, . . . , pN}. These representations are
used as an input to the self-attention layers similar to linearly
projected patch embeddings in Dosovitskiy et al. (2021). Our
feature extractor is fixed and not updated during training. We
train the model from scratch on the set of image patches and the
corresponding caption. We follow the instructions in the original

FIGURE 12 | The distribution of the attention links (depicted as +marks) in terms of their strength (the vertical axis) and distance between centres of two connected
objects (the horizontal axis). (A) and (B) correspond to the patterns from the first and the last layer of the model for grid-based features (e.g., image patches), while (C)
and (D) represent links when we use object representations as input features. We disregard objects’ thematic clusters in these visualisations for a fair comparison with
the grid-based approach. Information about other parts of the figures (e.g. histograms) is identical to the description in Figure 6.
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paper by Herdade et al. (2019) and use the official code
implementation12 to train the model in two stages: first, with a
standard cross-entropy loss, then we use self-critical
reinforcement learning (Rennie et al., 2017). The model is also
provided with the relative positions of image patches. We test the
model on the Karpathy test split (Karpathy and Fei-Fei, 2015) in a
teacher-forcing setting and extract its attention links with the
corresponding weights. The grid-based representations are not
informed semantically; hence, they might not correspond to a
semantically plausible object in the region. Therefore, we perform
the analysis of distances between attended parts of the image
identical to the geometric analysis in Section 3.2

Figure 12 shows the distribution of attention links when the
model is provided with either image patches (A, B) or object
representations (C, D). We focus on the analysis of distances
between attended objects, similar to our experiment in
Section3.2. First, note that the two distributions of attention
links between layer one and layer six for the grid-based approach
are visually very similar (A and B, histograms on top). We
compute Cohen’s d score to measure the effect size between
the observed populations to get the estimation of the degree of
differences since a large size of the data makes results of
significance testing non-informative, which has been observed
in Section 3 2. Our results have shown that the effect size is small
for A-D (d � 0.489), B-D (d � 0.422), and C-D (d � 0.402), very
small for A-B (d � 0.082), A-C (d � 0.030), B-C (d � 0.039). Layer-
wise, we observe that object representations affect the structure of
the learned information in earlier vs deeper layers, which is
reflected in a more noticeable difference between C-D, while
this difference is practically absent between patterns in A and B.
This leads to the conclusion that semantic information indeed
provides more structure to what and how the model learns. Also,
the distances patterns that are learned with grid-based features
have not shown a large effect size of significance when compared
with the patterns captured in the first layer of the object-based
approach (A and B vs C). In contrast, the effect size becomes
bigger when comparing patterns in both A and B with distances
in the last layer of the model that uses semantically informed
representations (D). Combined with the results in section 3.4, we
conclude that there is no clear distinction between local and
global knowledge in layers of the model when it is provided with
image patches. Overall, our ablation experiment has shown how
semantic information allows the model to organise the
information that it learns hierarchically. We note that our
results echo what has been observed by Raghu et al. (2021),
who have shown that visual transformers that operate with image
patches (aka grid features) do not structure their knowledge in the
context of the image classification tasks.

4 DISCUSSION AND IMPLICATIONS

Our primary goal in this paper was to identify what kind of
representations are learned in the vision stream of the multi-

modal transformer. Specifically, we have examined how different
parts of the visual self-attention learn to attend between objects of
varying granularity. In addition, we have also inspected if visual
representations contain artefacts of world knowledge (language).
Our model benefits from higher-level object detections and builds
a variety of relations between objects, in contrast with the vast
majority of vision transformers that receive pixel-level image
representations as their input and lack grounding in richer
language representations. In addition, the CNN-based object
detector produces numerous bounding boxes, frequently
corresponding to what humans consider parts of a single
object. This, in turn, affects the type of knowledge our model
captures or “sees” when attending across objects. The effect of
using semantically informed visual representations has been
validated by the ablation experiment in Section 3.5. Figure 13
illustrates how all of the results reported in this paper can be
placed in a single visualisation. We conclude with the following
results:

• Thematic analysis of objects based on their labels has shown
that lower layers more frequently form attention links
between objects, which belong to the same thematic cluster.

• Analysis of distances between attended objects
demonstrates that objects in the same thematic class are
also closer together. Thus, lower layers encode knowledge of
local dependencies between objects, which might
correspond to part-whole relations.

• The attention strength increases in deeper layers and stays at
much lower levels in the earlier layers. This finding reflects
gradually increasing confidence of the model about the
objects that it has to relate for a better understanding of
the whole image.

• One important finding is the effect of the input
representations on how and what visual self-attention
learns. We have demonstrated that higher-level object
detections structure the internal representations of the
model, while patch-based representations do not inform
the model about object semantics; hence, there is no gradual
learning from local to global knowledge.

• Lower layers compared with each another lead to very
dissimilar attention patterns; higher layers exhibit more
similarities. This result shows a shift in knowledge
between the layers, with deeper ones being more specialised.

• Larger entropy in the earlier layers indicates their dispersion
and attention between many different combinations of
objects. In contrast, deeper layers are much more
confident and focused on individual objects, indicating
learning of saturated information about relations.

• Lastly, matching attended objects with noun phrases in image
descriptions indicates that objects referred to in a description
are more often attended in the deeper layers. This result shows
the indirect influence of language on the model’s visual
representations in the context of the image captioning task.

The first conclusion that we make here is that visual
information is built-up hierarchically, starting with learning of
local dependencies between objects and finishing with more12https://github.com/yahoo/object_relation_transformer
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global understanding of the scene, also in terms of the described
objects. Similarly, structured representation learning has been
observed for linguistic information, starting with more local
dependencies in earlier layers and expanding to the global
dependencies (e.g., subject-verb agreement) in deeper layers of
BERT (Jawahar et al., 2019). In the beginning, the multi-modal
transformer connects objects which are visually, semantically and
locally close to each other and expands onto learning relations
between more distant objects, collecting information about the
image as a whole. In earlier layers, the model builds many links of
lower strength between objects. In deeper layers, the model is re-
distributing its attention towards fewer objects, but with much
more confidence, reflected in larger attention strength. The
deeper layers are affected not only by local visual
dependencies from previous layers but also by the pragmatic
nature of the image captioning task. In this task, there is a
preference for depicting global scene-level relations in the
caption, as participants were instructed to describe a scene
with a single sentence. At the same time, all modalities are a
part of a system as they are trained together, and therefore, one
does expect their co-influence. Both language and vision
information might optimise each other because the model

needs to find a sensible mapping of one to another. Thus, due
to the back-propagation of the information in the model (from
caption to cross-attention to visual self-attention), deeper layers
of visual self-attention might be indirectly guided by conceptual
knowledge. At the same time, as our experiment in section 3.5
has shown, the structure of the learned knowledge is directly
affected by the type of input representations (e.g., image patches
or semantically informed object detections) given to the model.

The hierarchical processing of visual information has also
been observed in humans. Our results recall the results of Hubel
and Wiesel (1959): visual information is processed hierarchically
with simpler biological cells responding to such phenomena as
light orientation and more complex cells capturing movements.
However, we can build a stronger parallel between our results and
the theory of visual routines (Ullman, 1984). According to this
theory, humans process visual information in sequential order,
starting from more straightforward representations and later
applying task-dependent rules to them. In particular, base
representations are such features, which depend solely on
visual input and typically are 2D image patches or sketches.
Such features encode basic information about the scene: depth,
colour and orientation. They are uniformed and bottom-up

FIGURE 13 | A visual conceptualisation of the most important findings of the current study. The colour intensity of each attention head increases with layer depth,
resembling the increase in attention strength. Left: as shown, earlier layers capture more local dependencies between thematically related objects, while deeper layers
connect distant objects. Below: the input to the model is the set of semantically informed features of detected objects, which is in contrast to the grid-based approach,
where image patches carry no semantics. Above: we also denote an indirect influence (dotted lines) from the cross-attention module, which possibly occurs due to
backpropagation and is reflected in the heavier grounding of noun phrases in deeper heads that we examine in Section 3.4. Overall, this figure demonstrates the whole
variety of findings that we present in this manuscript.
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driven. As the next step, visual routines are applied to base
representations to produce more complex features. Visual
routines, in turn, are divided into a two-step process: in the
first step, universal routines are used to achieve some general
understanding of the scene. universal routines constitute the set
of rules that allow us to perform some initial analysis of the scene
and capture general aspects of the scene to isolate objects and
describe their colour, shape, and other characteristics. Such
routines are not task-dependent, and they are required to
define such information, which more complex visual routines
can later use. For example, universal routines might provide us
with sufficient information to classify an image as a whole with
objects in it. Finally, given the holistic understanding of the image
from applying universal routines, we use more specific and top-
down driven visual routines to complete the task at hand. When
explaining visual self-attention and its processes through the
prism of visual routines, it is possible to say that its input are
base representations (object features), with different layers
learning both universal and visual routines. In other words,
the first layers of the model would mirror the behaviour of
universal routines, capturing general information about the
image. In contrast, deeper layers are specialised in building
relations regarding the global arrangement of objects and their
importance for the captioning task.

Moreover, humans learn about elements ‘below’ object level
(e.g., the set of semantic and visual features corresponding to
part-whole relations) and ‘after’ (e.g., identification of object
relations) (Ben-Yosef and Ullman, 2018). This structure
mirrors the process of learning of local and global information
observed in visual self-attention. Local knowledge, in particular,
can also be related to the innate ability of humans to represent
objects through the hierarchy of their parts. The principle of
compositionality can be observed not only in the language in the
sense of Fregean tradition but also in human vision, e.g.
computational vision (Geman et al., 2002). Parts often cannot
be represented in isolation, without any contextual constraint on
them, that would allow them to form a coherent whole.
Consolidating parts into a whole is not task-dependent and
can be seen as a bottom-up guided feature of human
cognition. Yosinski et al. (2014) show that such basic abilities
may be considered as general knowledge that is acquired in earlier
layers.

We have also observed that the objects attended in deeper
layers are more likely to be matched with noun phrases in image
descriptions. This result suggests that conceptual (language)
knowledge is indirectly present in visual representations of
deeper layers. Here, we show that this result corresponds to
the insights from a well-developed load theory of selective
attention and cognitive control (Lavie et al., 2004). As this
theory suggests, in terms of human cognition, attention acts
through two selective mechanisms: perceptual selection and
cognitive control (Dobnik and Kelleher, 2016). In the
generation of image descriptions, both of these processes are
required. In particular, describing an image is a complex cognitive
task as the describer must select what information to include in
the description. Using all perceptual and background knowledge,
humans decide what objects they should mention. Thus, the

perceptual selection is identical to filtering perceptual
information by our sensors, while cognitive control is a
selection of elements from this information given the task. In
other words, humans cognitively control when and how to
describe specific objects and relations between them, which are
perceived and filtered visually. Note that the pragmatic nature of
the image captioning task places strong restrictions on what is to
be described. For example, in the task of image paragraph
generation as Ilinykh and Dobnik (2020) note, there is a
progression in image description from the general (“an image
with two chairs.“) to more specific knowledge (“the chair on the
left is black”). In this case, the restrictions on filtering visual
scenes and controlling what to describe are not substantial since
the model generates descriptions of a larger set of objects and
relations throughout multiple sentences.

In our experiments, the model back-propagates
representations from cross-attention to each uni-modal
stream. The cross-modal representations include both vision
and language information combined. Hence, we expect that
there is an effect that task-dependent information has on
visual representations. We attribute this effect to the
mechanism of cognitive control, which influences visual
representations in deeper layers to be more beneficial for
cross-attention and, eventually, the task at hand (image
captioning). At the same time, deeper representations are
created from the lower-level knowledge of local object
dependencies coming from earlier layers. In our experiments,
we have observed that the number of attention links decreases
with the increased depth of the model, and they also become
stronger (more focused). We see parallels with perceptual
selection in this effect: initially, the model constructs many
different attention links and filters them layer after layer.
Overall, we have provided a preliminary evidence that the
representations in deeper layers are affected not only by visual
information coming from visual input, but also by conceptual
knowledge, that indirectly makes deeper representations to be
more language-aware (Section 3.4). However, we leave a more
detailed analysis for future work.

One important implication of our work is the effect that the
structure of large-scale models has on the representations learned
by different modules responsible for processing different
modalities and their fusion. As all modules are trained end-to-
end and optimised jointly, it becomes impossible to avoid
information leaks from one modality to another. However, in
multi-stream architecture, these effects can be seen and analysed in
isolation for each modality. One benefit of using such
representation is their indirect grounding in a different
modality. For example, as we have revealed in this paper, visual
representations alone contain perceptual knowledge about the
scene, which is structured and partially organised by task-
related language knowledge. Combined with the results in
Ilinykh and Dobnik (2021), we argue that uni-modal
representations resemble at least partial grounding in a different
modality, which is just as good as a result of the cross-modal fusion
of two modalities, that is often too complex to explain and utilise.
We believe that an extensive set of experiments is required to
examine if the training task and structure of the multi-stream
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transformers is the exact reason for such exciting blends of
different modalities in a single modality’s representation.

5 CONCLUSION

A large number of papers has focused on the analysis of
representations captured by uni-modal architectures, e.g.
BERT (Devlin et al., 2019). This manuscript shifts the
attention from uni-modal to multi-modal architectures and
presents the analysis of visual representations learned by the
two-stream image captioning transformer. We show that the
visual knowledge is hierarchically structured as resembled by the
self-attention weights of the visual stream. In particular, while
earlier layers are better at learning the information about
thematically related and visually close objects in the scene,
deeper layers focus on objects that depict core entities on the
image scale, capturing relations between them. We also
demonstrate that the task affects the high-level knowledge in
deeper layers, resulting in the artefacts of language found in visual
information. We support our findings with several insights from
the experiments in cognitive science. Overall, our extensive
analysis touches upon fundamental questions on the effects of
the model’s architecture and multi-modality on the model’s
representations. We argue that representations of each
modality can be enriched with important information from a
different modality, which helps build more efficient and robust

architectures. In future work, we are planning to test each of the
three modules in the multi-stream transformer for several multi-
modal tasks such as visual co-reference resolution and multi-
modal human-object interaction.
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