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Abstract

Pinaceae, the largest family of conifers, has a diversified organization of chloroplast (cp)

genomes with two typical highly reduced inverted repeats (IRs). In the current study, we

determined the complete sequence of the cp genome of an economically and ecologically

important conifer tree, the loblolly pine (Pinus taeda L.), using Illumina paired-end sequenc-

ing and compared the sequence with those of other pine species. The results revealed a

genome size of 121,531 base pairs (bp) containing a pair of 830-bp IR regions, distinguished

by a small single copy (42,258 bp) and large single copy (77,614 bp) region. The chloroplast

genome of P. taeda encodes 120 genes, comprising 81 protein-coding genes, four ribo-

somal RNA genes, and 35 tRNA genes, with 151 randomly distributed microsatellites.

Approximately 6 palindromic, 34 forward, and 22 tandem repeats were found in the P. taeda

cp genome. Whole cp genome comparison with those of other Pinus species exhibited an

overall high degree of sequence similarity, with some divergence in intergenic spacers.

Higher and lower numbers of indels and single-nucleotide polymorphism substitutions were

observed relative to P. contorta and P. monophylla, respectively. Phylogenomic analyses

based on the complete genome sequence revealed that 60 shared genes generated trees

with the same topologies, and P. taeda was closely related to P. contorta in the subgenus

Pinus. Thus, the complete P. taeda genome provided valuable resources for population and

evolutionary studies of gymnosperms and can be used to identify related species.

Introduction

Gymnosperms are represented by a diverse and magnificent group of coniferous species dis-

tributed across eight families, consisting of 70 genera containing more than 630 species [1].

They are thought to have arisen from seed plants approximately 300 million years ago and are

one of the ancient main plant clades. Gymnosperms possess larger genomes than flowering

plants [2–5]. Recently, rapid progress has been made in angiosperm genome sequencing and
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analysis, but because of the complexity and order of magnitude increase in genome sizes, simi-

lar progress has not been attained for gymnosperms. Furthermore, comparative studies

revealed that transposable elements, repetitive sequences, and gene duplication are common

in gymnosperm genomes [4, 6–8]. Conifers are the main representatives of the gymnosperms,

predominant in various ecosystems and representing 82% of terrestrial biomass [9].

Pinus taeda (loblolly pine) is a model species for the largest genus in the division Coniferae.

It is an economically important and relatively fast-growing representative of conifers native to

the southeastern United States. Previously, the loblolly pine was famous for providing pulp,

lumber, and paper to commercial markets, but recently became a main bioenergy feedstock in

lignocellulosic ethanol production [10]. Moreover, loblolly pine is considered an important

species for comparative genomic studies between angiosperms and gymnosperms [8]. For

example, microsatellites and single-nucleotide polymorphisms (SNPs) have been studied to

determine population genetic parameters and the associations of phenotypes [11–13], create

genetic maps [14–16], and develop genomic selection prediction models [17]. However, the

number of available genetic markers remains small, particularly considering the large size of

the pine genome. According to recent evaluations [18], the loblolly pine nuclear genome size is

21–24 Gbp. This is approximately four-fold larger than that of the angiosperm with the largest

genome, Hordeum vulgare (barley), for which a reference genome is available, and approxi-

mately 7–8-fold larger than the human genome [19].

Chloroplasts are known to be derived from cyanobacterium through endosymbiosis and

co-evaluation over time [20]. The gymnosperm chloroplast (cp) genome, particularly in

conifers, has distinguishing characteristics among angiosperms. These features such as the

high levels of variation (intra-specific) [21–24], paternal inheritance [25–28], and a different

RNA editing pattern [29] were observed in studies. Generally, in angiosperms, cp genomes

range from 130,000 to 160,000 base pairs (bp), with two duplicate inverted repeats (IRs) con-

taining large single copy (LSC) and small single copy (SSC) regions. However, the compara-

tive sizes of IRs, SSC, and LSC, are nearly unchanged, while the gene order and content are

significantly conserved [30]. In contrast, the IR sizes of species form gymnosperms highly

fluctuate among taxa [31–33]. Similarly, previous reports showed that the IR size for Cycas
taitungensis is 23 kbp [34] and Ginkgo biloba is 17 kbp [35]. In contrast, P. thunbergii has a

very small IR of 495 bp [36, 37]. Furthermore, in synergism with P. thunbergii, various coni-

fer species have been found to lack the comparatively large IRs typically found in gymno-

sperms [31, 33, 38, 39]. This decrease in IR size is thought to cause extensive rearrangement

in conifer cp genomes [33]. Based on the IRs, the cp genomes can be classified into three

categories: (i) with two IRs, (ii) with one IRs, and (iii) with additional tandem repeats [30].

The cp genomes are essential and extremely valuable for understanding the phylogenetic

relationships and designing specific molecular markers because of their firm mode of

inheritance. Using a total evidence approach [40], the cp genomes or various concatenated

sequences were studied to elucidate the phylogeny among various species [41–43]. Similarly,

Steane [44] showed that the organization of the P. thunbergii cp genome differs from that of

other related angiosperms.

The advent of high-throughput next-generation sequencing technologies from Illumina,

Pacific Biosciences, Life Technologies, and Roche, among others, have rapidly improved geno-

mic studies [45, 46]. In addition to draft or whole genomes of microbes and animals, genomic

studies were performed to determine the chromosomal structures and molecular organization

of wheat [47, 48] and maize [49]. In addition, these technologies have been extensively used to

evaluate organelles, particularly chloroplast. Although the first complete nucleotide sequence

of Nicotiana tabacum was generated by clone sequencing of plasmid and cosmid libraries over

a long time [50], more than 800 cp genomes (including 300 from crops and trees) have now
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been sequenced and deposited in the NCBI Organelle Genome Resources database [51].

The evolution of cp genomes in terrestrial plants can now be studied using these database

resources [51]. To date, a total of 16 complete chloroplast genomes in the genus Pinus have

been sequenced and submitted to NCBI. In the current study, the complete cp genome of P.

taeda (GenBank accession number: KY964286) was sequenced using next-generation sequenc-

ing tools. The goal of this study was to determine the cp genome organization of P. taeda and

its global pattern of structural and comparative variation in the cp genome of P. taeda with 14

Pinus species (P. koraiensis, P. sibirica, P. armandii, P. lambertiana, P. krempfii, P. bungeana,

P. gerardiana, P. monophylla, P. nelsonii, P. contorta, P. massoniana, P. tabuliformis, P. taiwa-
nensis, P. strobus, and P. thunbergii).

Materials and methods

Chloroplast genome sequencing and assembly

Plastid DNA was extracted from the fresh needle leaf parts of P. taeda using the DNeasy Plant

Mini Kit (Qiagen, Hilden, Germany), and the resulting cpDNA was sequenced using an Illu-

mina HiSeq-2000 platform (San Diego, CA, USA) at Macrogen (Seoul, Korea). The P. taeda cp

genome was then assembled de novo using a bioinformatics pipeline (http://www.phyzen.

com). Specifically, a 400-bp paired-end library was produced according to the Illumina stan-

dard method, which generated 28,110,596 bp of sequence data with a 100-bp average read

length. Raw reads with Phred scores of�20 were removed from the total PE reads using the

CLC-quality trim tool, and de novo assembly of trimmed reads was accomplished using CLC

Genomics Workbench v7.0 (CLC Bio, Aarhus, Denmark) with a minimum overlap of 200–600

bp. The resulting contigs were compared against the P. thunbergii and P. contorta plastomes

using BLASTN with an E-value cutoff of 1e-5, and five contigs were identified and temporarily

arranged based on their mapping positions on the reference genome. After initial assembly,

primers were designed (S1 Table) based on the terminal sequences of adjacent contigs, and

PCR amplification and subsequent DNA sequencing were conducted to fill in the gaps. PCR

amplification was performed in 20-μL reactions containing 1× reaction buffer, 0.4 μL dNTPs

(10 mM), 0.1 μL Taq (Solg h-Taq DNA Polymerase), 1 μL (10 pm/μL) primers, and 1 μL (10

ng/μL) DNA, using the following conditions: initial denaturation at 95˚C for 5 min; 32 cycles

of 95˚C for 30 s, 60˚C for 20 s, and 72˚C for 30 s; and a final extension step of 72˚C for 5 min.

After incorporating the additional sequencing results, the complete cp genome was used as a

reference to map the remaining unmapped short reads to improve the sequence coverage of

the assembled genome.

Analysis of gene content and sequence architecture

The P. taeda cp genome was annotated using DOGMA [52], checked manually, and the codon

positions were adjusted by comparison with homologs in the cp genome of P. taeda and P. con-
torta. Transfer RNA sequences of the P. taeda cp genome were verified using tRNAscan-SE

version 1.21 [53] with default settings, and the structural features were illustrated using

OGDRAW [54]. To examine deviations in synonymous codon usage by avoiding the influence

of amino acid composition, the relative synonymous codon usage was determined using

MEGA 6 software [55], and finally the divergence of the P. taeda cp genome from six other

Pinus species (five from subgenus Pinus and one from subgenus Strobus) cp genomes was

assessed using mVISTA [56] in Shuffle-LAGAN mode and using the P. taeda genome as a

reference.
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Elucidation of repeat sequences and simple sequence repeat (SSRs)

Repeat sequences, including direct, reverse, and palindromic repeats, were identified within

the cp genome using REPuter [57] with the following settings: Hamming distance of 3,�90%

sequence identity, and minimum repeat size of 30 bp. Furthermore, SSRs were detected using

Phobos version 3.3.12 [58] with the search parameters set to�10 repeat units for mononucleo-

tide repeats,�8 repeat units for dinucleotide repeats,�4 repeat units for trinucleotide and tet-

ranucleotide repeats, and�3 repeat units for pentanucleotide and hexanucleotide repeats.

Tandem repeats were identified using Tandem Repeats Finder version 4.07 b [59] with default

settings.

Sequence divergence and phylogenetic analyses

The average pairwise sequence divergence of 60 shared genes and complete plastomes of 15

Pinus species was analyzed, using data from P. taeda, P. koraiensis, P. sibirica, P. armandii, P.

lambertiana, P. krempfii, P. bungeana, P. gerardiana, P. monophylla, P. nelsonii, P. contorta, P.

massoniana, P. tabuliformis, P. taiwanensis, P. strobus, and P. thunbergii. In cases of missed

and unclear genes, annotation was confirmed by comparison with the reference sequence after

assembling a multiple sequence alignment tool. The complete genome data set was aligned

using MAFFT version 7.222 [60] with default parameters. For pairwise sequence divergence, a

Kimura’s model was used [61]. Indel polymorphisms among the complete genomes were iden-

tified using DnaSP 5.10.01 [62], and a custom Python script (https://www.biostars.org/p/

119214/) was used to identify SNPs. To resolve the phylogenetic position of P. taeda within the

genus Pinus, 14 published Pinus species plastomes were downloaded from the NCBI database

for phylogenetic analysis. Multiple alignments of the complete plastomes were constructed

based on the conserved structure and gene order of the plastid genomes [63], and four meth-

ods were employed to construct phylogenetic trees, including Bayesian inference (BI), which

was implemented using MrBayes 3.1.2 [64], maximum parsimony (MP), which was imple-

mented using PAUP 4.0 [65], and maximum likelihood (ML) and neighbor-joining (NJ),

which were implemented using MEGA 6 [55] using previously described settings [66, 67]. In a

second phylogenetic analysis, 60 shared cp genes from 15 Pinus species, including P. taeda,

and one outgroup species (Juniperus bermudiana) were aligned using ClustalX with default set-

tings, followed by manual adjustment to preserve the reading frames. Finally, the same four

phylogenetic inference methods were used to infer trees from the 60 concatenated genes using

the same settings [66, 67].

Results and discussion

The P. taeda cp genome was assembled by mapping all Illumina sequence reads into a draft cp

genome. Approximately 2,5131,617 reads with 100-bp average lengths were retrieved to obtain

1619.4X coverage of the cp genome. The complete cp genome of P. taeda was 121,131 bp, with

38.5% GC content and only one bp less than the previously sequenced P. taeda cp genome

(Table 1). The cp genome size of P. taeda was within the expected range (116–121 Kb) of other

sequenced cp genomes of Pinaceae members [41, 68, 69]. The P. taeda cp genome was circular

and contained two short-inverted repeats (IRa and IRb) of 830 bp, divided into SSC (42,258

bp) and LSC (77,614 bp) (Fig 1). The P. taeda cp genome encodes 120 genes, including 81 pro-

tein-coding genes, four ribosomal RNA (rRNA) genes, and 35 tRNA genes (Table 2). Of these

genes, 11 genes (atpF, petB, petD, rpoC1, rpl2, rpl16, trnI-GAU, trnG-UCC, trnA-UGC, trnV-
UAC, and trnL-UAA) contained one intron and two genes (rps12 and ycf3) harbored two

introns (Table 3). Furthermore, trnK-UUUwas identified as the gene containing the longest

intron (3,307 bp), which included matK (Table 3); similarly, rps12was recognized as a trans-
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Fig 1. Gene map of the Pinus taeda plastid genome. Thick lines in the red area indicate the extent of the inverted repeat regions (IRa and IRb; 850 bp),

which separate the genome into small (SSC; 42,258 bp) and large (LSC; 77,614 bp) single copy regions. Genes drawn inside the circle are transcribed

clockwise, and those outside are transcribed counter clockwise. Genes belonging to different functional groups are color-coded. The dark grey in the

inner circle corresponds to the GC content and the light grey corresponds to the AT content.

https://doi.org/10.1371/journal.pone.0192966.g001
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Table 2. Genes in the sequenced P. taeda chloroplast genome.

Category Group of genes Name of genes

Self-

replication

Large subunit of

ribosomal proteins

rpl2, 14, 16, 20, 22, 23, 32, 33, 36

Small subunit of

ribosomal proteins

rps2, 3, 4, 7, 8, 11, 12, 14, 15, 18, 19

DNA-dependent RNA

polymerase

rpoA, B, C1, C2

rRNA genes RNA
tRNA genes trnA-UGC, trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnfM-CAU,

trnG-UCC, trnH-GUG, trnI-CAU, trnI-GAU, trnK-UUU, trnL-CAA,

trnL-UAA, trnL-UAG, trnM-CAU, trnN-GUU, trnP-GGG, trnP-UGG,

trnQ-UUG, trnR-ACG, trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA,

trnT-GGU, trnT-UGU, trnV-GAC, trnV-UAC, trnW-CCA, trnY-GUA
Photosynthesis Photosystem I psaA, B, C, I, J, M

Photosystem II psbA, B, C, D, E, F, H, I, J, K, L, M, N, T, Z
Cytochrome b6/f

complex

petA, B, D, G, L, N

ATP synthase atpA, B, E, F, H, I
Rubisco rbcL
Chlorophyll biosynthesis chlB, L, N

Other genes Maturase matK
Protease clpP
Envelop membrane

protein

cemA

Subunit acetyl-CoA-

carboxylate

accD

c-Type cytochrome

synthesis gene

ccsA

Unknown Conserved open reading

frames

ycf1, 2, 3, 4, 12, 68

https://doi.org/10.1371/journal.pone.0192966.t002

Table 3. Genes with introns in the Pinus taeda chloroplast genome and length of exons and introns.

Gene Location Exon I (bp) Intron 1 (bp) Exon II (bp) Intron II (bp) Exon III (bp)

atpF LSC 159 740 408

petB LSC 6 799 648

petD LSC 8 698 667

rpl2 IR 402 668 429

rpl16 LSC 9 835 396

rpoC1 LSC 432 674 1665

rps12 114 - 232 540 26

ycf3 LSC 124 726 230 709 156

trnA-UGC IR 38 770 35

trnI-GAU IR 42 974 35

trnL-UAA LSC 50 488 35

trnK-UUU LSC 35 3307 37

trnV-UAC LSC 39 541 37

https://doi.org/10.1371/journal.pone.0192966.t003
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spliced gene, with the N-terminal exon-I located at 92 Kb from C-terminal exons-II and III as

reported previously for various gymnosperms [70].

The protein coding regions containing 81 genes were 61,691 bp and accounted for 50.76%

of the P. taeda cp genome. In the P. taeda cp genome, the gene proportion for tRNA was

2.18% and for rRNA it was 3.71%. A total of 43.35% of the non-coding region was composed

of introns and intergenic spacers. The total protein-coding sequences encoded 20,563 codons

(Table 4). The codon-usage frequency was calculated based on protein-coding and tRNA gene

sequences (Table 5). Leucine was the most coded (2,067, 10.1%) and cysteine was the least

coded (244, 1.2%) amino acid (Fig 2). Similar ratios for amino acids were found in previously

reported cp genomes [71, 72]. The maximum GAA (835; 4.06%) and minimum TGC (65;

0.316%) codons used coded for glutamic acid and encoding cysteine, respectively. The A-T

content was 50.6%, 59.99%, and 69.97% at the three consecutive codon positions (Table 4).

The preference for the high A-T content at the 3rd codon position is similar to the A and T

concentrations reported in various terrestrial plant cp genomes [72–74].

Difference in gene contents of P. taeda
We selected 16 cp genomes in the Pinus genus (P. taeda (old), P. koraiensis, P. sibirica, P.

armandii, P. lambertiana, P. krempfii, P. bungeana, P. gerardiana, P. monophylla, P. nelsonii,
P. contorta, P. massoniana, P. tabuliformis, P. taiwanensis, P. strobus, and P. thunbergii) for

comparison with P. taeda (new) (121,531 bp). Pinus taeda had the largest genome. The differ-

entiation can be ascribed to the variation in size of LSC (Table 1). Analysis of known genes

functions revealed that P. taeda shared 60 different protein-coding genes with 15 other Pinus
species. Furthermore, pairwise alignment between the cp genome of P. taeda and six related cp

genomes showed the highest synteny. Annotation of the P. taeda cp genome was used for plot-

ting the total sequence identity of the six cp genomes of Pinus species in mVISTA (Fig 3). The

results revealed high sequence identity with five species from the subgenus Pinus (P. contorta,

P. massoniana, P. tabuliformis, P. taiwanensis, and P. thunbergii) compared to P. armandii
from the subgenus Strobus. However, for all species, relatively lower identity was observed in

various comparable genomic regions, particularly the trnK-UUU,matK, atpI, rpl16, petB, petD,

ycf1, and ycf2 regions (Fig 3). Similarly, non-coding regions exhibited greater bifurcation than

the coding-regions. Among the diverging regions, psbA-chlB, psbM- clpP, ycf4-accD, ycf3-
psaA, psaC-ccsA, ndhH- psaC, ycf3-psaA, trnG-UUU- chlL, and petL- psbFwere significant. The

current findings agree with the results previously reported for these genes in angiosperm cp

genomes [43, 72]. Our results confirmed similar variations among the coding-regions of the

Table 4. Base compositions in the Pinus taeda chloroplast (cp) genome.

T/U C A G Length (bp)

Genome 30.8 19.3 30.7 19.3 121,531

LSC 30.7 19.0 30.3 20.0 77,614

SSC 31.3 19.5 31.0 18.3 42,258

IR 31.1 20.2 31.1 17.6 830

tRNA 23.7 24.9 22.4 29.0 2661

rRNA 18.8 23.6 26.4 31.1 4517

Protein coding genes 30.5 18.1 30.5 20.9 61,691

1st position 20.4 16.03 30.26 28.3 20,563

2nd position 31.5 20.7 28.49 18.2 20,563

3rd position 38.18 13.94 31.79 16.07 20,563

https://doi.org/10.1371/journal.pone.0192966.t004
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investigated species. This was also suggested by Kumar et al. [75]. Furthermore, comparison of

the P. taeda whole cp genome with those of related species revealed lower SNP and indel sub-

stitutions for the subgenus Pinus cp genomes, which ranged from 809 in P. taeda (old) to 2,636

in P. thunbergii. However, the results revealed higher SNP and indel substitutions within the

subgenus Strobus cp genomes, which ranged from 9,211 in P. gerardiana to 19,196 in P. mono-
phylla (S2 Table). These results indicate the presence of interspecific mutations in the highly

conservative cp genome that may be useful for analyzing genetic diversity and evolution. Simi-

larly, we evaluated pairwise-sequence differentiation among the 16 pine species (S3 Table).

The results showed that the P. taeda genome had 0.0274 average sequence divergences, high

divergence was detected for P. nelsonii (0.0402), and P. taeda (old) had the lowest average

sequence divergence (0.00321) followed by P. contorta (0.00807).

The gene organization and gene contents of the cp genomes are generally conserved com-

pared with those in the mitochondrial and nuclear genomes [76]. The cp genome organization

and structure are extremely conserved in angiosperms, i.e. there is a distinctive quadripartite

structure containing an SSC region and LSC region separated by a pair of inverted repeats

Table 5. Codon–anticodon recognition pattern and codon usage for the Pinus taeda chloroplast genome.

Amino acid Codon No RSCU tRNA Amino acid Codon No RSCU tRNA

Phe UUU 1394 1.11 Tyr UAC 562 0.66 trnY-GUA
Phe UUC 1108 0.89 trnF-GAA Tyr UAU 1137 1.34

Leu UUA 841 1.23 trnL-UAA Stop UAA 776 1.05

Leu UUG 815 1.19 trnL-CAA Stop UGA 781 1.06

Leu CUU 818 1.2 Stop UAG 662 0.89

Leu CUC 533 0.78 Cyc UGC 378 0.9 trnC-GCA
Leu CUA 642 0.94 trnL-UAG Trp UGG 677 1 trnW-CCA
Leu CUG 444 0.65 His CAU 839 1.43

Ile AUU 1233 1.09 His CAC 337 0.57 trnH-GUG
Ile AUC 963 0.85 trnI-GAU Gln CAA 842 1.27 trnQ-UUG
Ile AUA 1194 1.06 trnI-CAU Gln CAG 481 0.73

Met AUG 807 1 trn(f)M-CAU Asn AAU 1318 1.34

Val GUU 652 1.29 Asn AAC 644 0.66 trnN-GUU
Val GUC 365 0.72 trnV-GAC Lys AAA 1444 1.3 trnK-UUU
Val GUA 606 1.2 trnV-UAC Lys AAG 770 0.7

Val GUG 391 0.78 Asp GAU 917 1.43

Ser UCC 752 1.22 trnS-GGA Asp GAC 368 0.57 trnD-GUC
Ser UCA 767 1.25 trnS-UGA Glu GAA 1043 1.33 trnE-UUC
Ser UCG 431 0.7 Glu GAG 529 0.67

Pro CCU 516 1.11 Arg CGU 278 0.67 trnR-ACG
Pro CCC 400 0.86 trnP-GGG Arg CGC 163 0.39

Pro CCA 624 1.35 trnP-UGG Arg CGA 439 1.06

Pro CCG 313 0.68 Arg CGG 284 0.68

Thr ACU 448 1.05 Ser AGU 499 0.81

Thr ACC 497 1.17 Ser AGC 387 0.63 trnS-GCU
Thr ACA 441 1.03 trnT-UGU Arg AGA 821 1.97 trnR-UCU
Thr ACG 320 0.75 Arg AGG 511 1.23

Ala GCU 397 1.38 Gly GGU 456 0.99

Ala GCC 233 0.81 Gly GGC 214 0.46 trnG-GCC
Ala GCA 347 1.21 trnA-UGC Gly GGA 728 1.57 trnG-UCC
Ala GCG 172 0.6 Gly GGG 451 0.98

https://doi.org/10.1371/journal.pone.0192966.t005
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[77]. In contrast, various genome rearrangements have been detected in various gymnosperms

cp genomes [78, 79]. While the P. taeda cp genome shared some similar characteristics with

other plants, we detected noticeable differentiation in numerous genes among gymnosperms.

For example, significant divergence was noted in the gene content between P. taeda and other

gymnosperms. For instance, in Cryptomeria japonica, eleven intact NADH dehydrogenase

genes were identified, which were correlated to 5 other plant species [37], but were not present

Fig 2. Amino acid frequencies of the Pinus taeda chloroplast (cp) protein coding sequences. The frequencies of amino acids were calculated for all

81 protein-coding genes from the start to the stop codon.

https://doi.org/10.1371/journal.pone.0192966.g002
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Fig 3. Visual alignment of plastid genomes from Pinus taeda and six other Pinus species (five from the subgenus

Pinus and one from the subgenus Strobus). VISTA-based identity plot showing sequence identity among seven

species, using P. taeda as a reference.

https://doi.org/10.1371/journal.pone.0192966.g003
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in the P. taeda and P. thunbergii cp genomes [37]. Previously, it was reported that the loss of

NADH dehydrogenases was caused by specific mutations in the cp genome of Pinus [79].

In contrast, an essential gene, rps16, was completely absent from the P. taeda cp genome.

Similar results were reported for the P. thunbergii and Marchantia polymorpha [36, 80] cp

genomes, in addition to various terrestrial plants species, including Eucommia, Epifagus,
Fugus, Malpighia, Krameria, Passiflora, Connarus, Linum, Turnera, Securidaca, Medicago,

Selaginella, Viola, and Adonis [81–86]. In contrast, rps16 is present in the angiosperms Oryza
sativa and E. globulus, in the fern Adiantum capillus, and in the gymnosperms C. japonica and

C. taitungensis. However, the position of rps16 is different in gymnosperms from that in angio-

sperm cp genomes. The position is intermediate between chlB and trnK-UUU in the gymno-

sperm cp genomes and halfway between trnQ-UUG and trnK-UUU and between chlB and

matK in angiosperms and ferns, respectively. Doyle et al. [83] suggested the functional transfer

of rps16 to the nucleus from chloroplasts and the absence of this gene from various terrestrial

plants. Furthermore, it was reported that the loss of rps16 and its functional transfer to the

nucleus may have occurred autonomously in gymnosperms, particularly in coniferous species.

trnR-CCG and trnP-GGG are also found in P. taeda cp genomes. These genes are reported

as pseudo genes and are likely relics of cp genome evolution in mosses and gymnosperms [29,

87, 88]. trnP-GGG was previously reported in two gymnosperms, C. taitungensis and P. thun-
bergii, as well as in C. japonica, in the fern A. capillus and liverwort M. polymorpha, and but

was absent from the cp genomes of angiosperms. This gene was also identified in Ginkgo and

Gnetum [34], revealing that the gene is common in numerous gymnosperm species. Similarly,

trnR-CCG in P. taeda was previously reported in C. taitungensis, A. capillus, P. thunbergii, and

M. polymorpha. However, the absence of this gene in C. japonica and various cp genomes of

angiosperms suggests that trnR-CCG is not well-maintained in the cp genomes of all gymno-

sperms and may have been lost in various taxa during plant evolution [79].

Furthermore, clpP, which encodes a proteolytic subunit of the ATP-dependent clpP prote-

ase, contains no intron in the P. taeda cp genome. Similar results were previously reported for

P. thunbergii, P. mugo, P. dabeshanensis, and P. taiwanensis [37, 41, 68, 89]. In contrast, clpP is

found in the cp genome of other land plants, such as A. capillus, E. globulus, M. polymorpha,

and C. taitungensis with two or three exons [29]. However, in the P. taeda cp genome, only the

clpP second exon remained, and as such, it occurs as a pseudogene. Similarly, the rpl20 and
clpP order is conserved in the P. taeda cp genome and clpP is co-transcribed with the 5’-end of

rps12 and rpl20, as reported previously for the cp genomes of various gymnosperms [90, 91]

[92]. accD encodes acetyl-CoA-carboxylase and has been found in the P. taeda cp genome. The

reading frame length of accD was similar to that of the cp genomes of other Pinaceae members

and has 321 codons, which is fewer than that in C. japonica (700 codons) and more than the

309 codons of A. capillus and 316 codons of M. polymorpha. Furthermore, in angiosperms,

particularly monocots, the reading-frame size of accD has been reduced from 106 codons in

Oryza sativa to none in Zea mays. This has also been suggested as reason for the loss of accD in

monocot plant species [93]. In contrast, the accD reading-frame in gymnosperms, particularly

in coniferous species and C. japonica, may have diverted in the ascending direction.

Loss of large IR region within the P. taeda cp genome

The large inverted repeat regions, which have been reported in various land plant cp genomes,

were reduced to two very short inverted repeat (IRa and IRb) regions of 830 bp in P. taeda,

and were separated by a SSC region of 42,258 bp and LSC region of 77,614 bp (Fig 1). How-

ever, in the previously sequenced P. taeda cp genome submitted to NCBI, the short inverted

repeat regions were 693 bp (Table 1). Similar results were observed in other Pinaceae
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members, such as P. taiwanensis, P. armandii, and P. dabeshanensis, where the inverted repeat

sizes were reduced to 513, 475, and 473 bp, respectively [68, 69, 89]. The IR of P. taeda con-

tained duplicated psaM and trnS-GCU and partial ycf12, apparently caused by incomplete loss

of the large IR, as reported previously for various gymnosperms [36, 37]. Detailed comparison

of four junctions (JLA, JLB, JSA, and JSB) between the two IRs (IRa and IRb) and two single-copy

regions (LSC and SSC) was performed between Pinus species (P. contorta, P. tabuliformis, P.

massoniana, P. taiwanensis, and P. thunbergii) and P. taeda by carefully analyzing the exact

IR border positions and adjacent genes (Fig 4). Some IR expansion and contraction were

observed in the P. taeda cp genome compared to that of the other five Pinus species, which

ranged from 358 bp (P. contorta) to 845 bp (P. tabuliformis) (Fig 4). The genes marking the

beginning and end of the IRs were only partially duplicated. psbI in P. taeda was located 9 bp

from JLB in the LSC region. In P. contorta, P. tabuliformis, and P. taeda (old), this distance was

6 bp, whereas in P. massoniana and P. taiwanensis the distances were 26 and 338 bp, respec-

tively. However, variation was found in P. thunbergii, and rpl23was 100 bp away from JLB in

the LSC region. Similarly, hypothetical chloroplast ycf12was partially duplicated by 47 bp (P.

taeda) and 35 bp in P. tabuliformis. However, in P. massoniana, ycf12was located in the SSC

Fig 4. Distance between adjacent genes and junctions of the small single-copy (SSC), large single-copy (LSC), and two inverted repeat (IR)

regions among plastid genomes from six Pinus species. Boxes above and below the main line indicate the adjacent border genes. The figure is not to

scale regarding sequence length, and only shows relative changes at or near the IR/SC borders.

https://doi.org/10.1371/journal.pone.0192966.g004
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region, 385 bp away from JSB. In P. taeda and P. tabuliformis, JLA was located between psaM
and psbB and the difference in distance between psaM and JLA was 395 bp. However, in P. con-
torta and P. taiwanensis, psaM was located in the SSC region, whereas in P. massoniana, it was

located at the JSA border (Fig 4). Similarly, in P. taeda, P. contorta, P. tabuliformis, P. massoni-
ana, and P. taiwanensis, psbBwas located in the LSC region at 478, 477, 505, 526, and 843 bp

away from the JLA border, respectively.

Large IRs play a significant role in stabilizing and maintaining the conserved structure of

the cp genomes [94]. Various studies have reported that during the evolutionary process of

angiosperms, a copy of an IR was lost, particularly in the subfamily Papilionoideae [95–97],

and rearrangement in the chloroplast genome was observed because of IR loss in these

genomes as compared to cp genomes with normal IRs [94]. Similarly, in gymnosperms, com-

plete IRs were lost in conifers, particularly in cupressophytes and Pinaceae cp genomes, and

greater rearrangement was observed in these genomes compared to in higher plants [33]. The

remaining IR parts in various Pinaceae member and cupressophyte cp genomes were shown

to differ, suggesting that these two conifer clades lost their large IRs independently during evo-

lution from a common ancestor [78, 98]. Previously, it was reported that specific repeats in

Pinaceae replaced the reduced IRs [99]. Compared to other conifers, a greater number of rear-

rangements occurred in Pseudotsuga menziesii and P. radiate cp genomes because of the lack

of a large IR in these cp genomes [33]. Therefore, variation in the genome structure between P.

taeda and related terrestrial plants, such as C. japonica, suggest that an IR is essential for struc-

tural stability of the cp genome.

Repeat analysis

Repeat analysis of the P. taeda cp genome revealed six palindromic repeats, 34 forward repeats,

and 22 tandem repeats (S1 Fig and Table 6). Among these, three forward repeats were 45–59

bp in length, with 14 tandem repeats of 15–29 bp in length (S1 Fig). Additionally, two palin-

dromic repeats were 75–89 bp and four repeats were>90 bp (S1 Fig). Overall, 62 repeats were

found in the P. taeda cp genome. Among tandem repeats, 12 repeats were in coding regions,

eight repeats in intergenic regions, one repeat extending from an intergenic region into a cod-

ing region, and one repeat in the petB intron region (Table 7). The length of tandem repeats in

these regions varied between eight and 14, and up to 10 repeat units were present. Various

numbers of repeats have been identified in conifer cp genomes [100, 101] and the mechanisms

implicit in the origin of these tandem repeats remain unclear. Nevertheless, they are known

to be associated with chloroplast DNA rearrangement [102], gene expansion [100, 101], and

gene duplication [103]. Previous reports suggested that repeat sequences, which play a role in

genome rearrangement, are very helpful in phylogenetic studies [74, 104]. Furthermore, analy-

ses of different cp genomes revealed that repeat sequences are important causes of indels and

substitutions [101]. Sequence variation and cp genome re-arrangement occurs because of the

slipped strand mis-pairing and improper recombination of repeat sequences [104–106]. The

presence of such repeats shows that the locus is an important hotspot for cp genome re-config-

uration [74, 107]. In addition, such repeats contain crucial information for developing genetic

markers for phylogenetic and population studies [74].

SSR analysis

SSRs are repeating sequences of typically 1–6 bp that are distributed throughout the genome.

SSRs generally have a high mutation rate compared to neutral DNA regions because of

slipped-strand mispairing. Because these short repeats are uniparentally inherited and haploid,

they can be used as molecular markers in genetic studies analyzing population structures [108,
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109]. In this study, we detected perfect SSRs in the P. taeda cp genome (Fig 5). Specific attri-

butes were set for the analysis because SSRs (10 bp or longer) are exposed to slipped strand

mis-pairing, the main mechanism of SSR polymorphisms [110–112]. A total of 151 perfect

microsatellites were found in the P. taeda cp genome (Fig 5). Most (71) SSRs in this cp genome

possessed a mononucleotide repeat motif. Dinucleotide SSRs were the second most common

repeat motif (Fig 5B). Using our search criterion, four tetranucleotide SSRs and one

Table 6. Repeat sequences in the Pinus taeda chloroplast genome.

Repeat type Repeat size Repeat Position 1 Repeat location 1 Repeat Position 2 Repeat location 2

P 830 8692 psbl-psbM-ycf12 51,779 ycf12-psbM
P 399 66,445 psbA-atpF 121,132 IGS

P 304 50,503 IGS 120,845 IGS

P 277 50,530 IGS 120,845 IGS

P 86 0 psbA 66,359 psbA
P 79 9017 IGS 52,205 psbM-IGS

F 800 175 psbA 1815 IGS

F 376 109,649 ycf2 120,134 ycf2
F 288 50,861 IGS 84,618 IGS

F 284 50,843 IGS 84,600 IGS

F 275 50,825 IGS 84,582 IGS

F 247 51,131 rps4 70,403 rps4
F 185 50,964 IGS 84,721 IGS

F 171 51,207 rps4 70,479 rps4
F 165 100,638 ycf1 100,659 ycf1
F 124 101,059 IGS-ycf1 101,068 IGS-ycf1
F 97 9677 IGS 30,444 IGS

F 97 101,059 IGS-ycf1 101,113 IGS-ycf1
F 85 9737 IGS 30,504 IGS

F 70 100,733 ycf1 100,754 ycf1
F 79 9017 IGS 52,205 psbM

F 73 9701 IGS 30,468 IGS

F 71 100,638 ycf1 100,701 ycf1
F 70 100,712 ycf1 100,754 IGS

F 70 101,059 IGS-ycf1 101,122 ycf1
F 70 101,086 ycf1 101,140 ycf1
F 62 93,524 IGS 93,579 IGS

F 69 115,329 ycf2 115,395 ycf2

F 71 9777 ycf1 30,544 IGS

F 71 101,086 ycf1 101,149 ycf1
F 70 101,077 ycf1 101,140 ycf1
F 69 9714 IGS 30,481 IGS

F 58 71,811 IGS 71,831 IGS

F 67 101,149 ycf1 101,167 ycf1
F 61 101,059 ycf1 101,131 ycf1
F 64 101,057 ycf1 101,138 ycf1
F 63 101,057 ycf1 101,147 ycf1
F 59 101,043 ycf1 101,133 ycf1
F 55 100,895 ycf1 intron 100,976 ycf1 intron

F 61 101,068 ycf1 101,149 ycf1

https://doi.org/10.1371/journal.pone.0192966.t006
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hexanucleotide SSR were detected in the P. taeda cp genome (Fig 5A). In P. taeda, most mono-

nucleotide SSRs were A (92.5%) and C (8.45%) motifs, with most dinucleotide SSRs being A/T

(47.3%) and A/G (52.63%) motifs (Fig 5B and Table 8). Approximately 59.60% of SSRs were in

non-coding regions, approximately 2.64% were present in rRNA sequences, and 1.98% were

in tRNA genes (Fig 5A). These results are similar to those of previous reports showing that

SSRs were unevenly distributed in cp genomes, and these findings may provide more informa-

tion for selecting effective molecular markers for detecting intra- and interspecific polymor-

phisms [113–116]. Furthermore, analysis of various gymnosperm cp genomes revealed that

most mononucleotides and dinucleotides are composed of A and T, which may contribute to

bias in base composition, which is consistent with other cp genomes [117–119]. For SSR iden-

tification, although different criteria and algorithms were used, their distribution and charac-

teristics were similar to the cp genomes of conifers [71, 119], 30 asterid [72], and 14 monocot

[112]. Our findings were comparable to those of previous reports in which SSRs in cp genomes

were found to be largely composed of polythymine (polyT) or polyadenine (polyA) repeats,

and infrequently contained tandem cytosine (C) and guanine (G) repeats [118, 120].

Table 7. Tandem repeat sequences in the Pinus taeda chloroplast genome.

Serial

No

Indices Repeat

Length

Size of repeat unit × Copy

number

A C G T Location

1 9274–9310 36 2 × 18 16 16 16 50 PsaM/ycf12
(IGS)

2 15,199–15,235 36 2 × 18 44 8 23 23 atpI (CDS)

3 20,648–20,678 30 2 × 15 50 10 20 20 rpoC2 (CDS)

4 28,466–28,534 68 2 × 34 30 24 12 33 petN/psbM
(IGS)

5 31,275–31,313 38 2 × 19 23 13 36 26 clpP/IGS

6 33,103–33,166 63 3 × 21 29 16 19 33 rps18 (CDS)

7 43,597–43,625 28 2 × 14 46 0 10 43 accD/rbcL (IGS)

8 43,615–43,659 44 2 × 22 40 12 8 38 accD/rbcL (IGS)

9 45,578–45,620 42 2 × 21 31 2 24 41 rbcL/atpB (IGS)

10 51,993–52,029 36 2 × 18 50 16 16 16 ycf12/psbM
(IGS)

11 56,031–56,069 38 2 × 19 18 12 12 57 petB (intron)

12 93,544–93,631 87 3 × 29 37 16 10 35 ycf68/chlL (IGS)

13 93,525–93,635 110 2 × 55 35 15 11 36 ycf68/chlL (IGS)

14 97,002–97,056 54 2 × 27 28 20 24 26 ycf1(CDS)

15 100,583–

100,631

48 2 × 24 54 9 18 16 ycf1(CDS)

16 100,639–

100,828

189 9 × 21 45 9 28 16 ycf1(CDS)

17 100,827–

101,025

198 6 × 33 31 1 43 23 ycf1(CDS)

18 100,866–

101,016

150 10 × 15 30 1 44 23 ycf1(CDS)

19 100,827–

101,953

126 2 × 63 31 1 43 23 ycf1(CDS)

20 100,823–

101,985

162 2 × 81 32 2 42 22 ycf1(CDS)

21 100,939–

101,047

108 2 × 54 34 4 38 22 ycf1(CDS)

22 115,330–

115,452

122 2 × 66 21 22 11 45 ycf2 (CDS)

https://doi.org/10.1371/journal.pone.0192966.t007
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Fig 5. Analysis of simple sequence repeat (SSR) in the Pinus taeda plastid genome. A, Number of SSR types in

complete genome, coding, and non-coding regions; B, Frequency of identified SSR motifs in different repeat class

types.

https://doi.org/10.1371/journal.pone.0192966.g005
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Therefore, these SSRs contributed to the A-T richness of the P. taeda cp genome, which was

also previously observed in the cp genomes of plant species [43, 71, 120]. The SSRs identified

in the cp genome of P. taeda can be evaluated for polymorphisms at the intra-specific levels

and used as markers for evaluating the genetic diversity of wild populations of plants from the

Pinaceae family.

Phylogenetic analysis

In plants, the cp genome is a valuable resource for exploring intra- and interspecific evolution-

ary histories [121–127]. Compared to nuclear genomes in chloroplasts, the uniparental inheri-

tance (for exceptions, see [122, 128]) is systematically striking because a single, independent

Table 8. Simple sequence repeats (SSRs) in the Pinus taeda chloroplast genome.

Unit Length No SSR start

A 15 2 1375, 28,440

14 3 68,741, 72,734, 106,240

12 2 10,316, 110,251

11 4 10,755, 26,980, 109,368, 11,873

10 8 16,119, 22,252, 48,967, 83,427, 86,798, 88,062, 102,308, 111,412

9 15 40,699, 41,827, 45,769, 70,952, 80,498, 80,744, 95,259, 102,053,

108,265, 110,985, 112,374, 113,688, 117,432, 119,716, 120,740

8 31 4819, 10,738, 10,950, 16,110, 17,113, 30,189, 30,427, 30,701, 31,373, 33,345, 38,678,

41,893, 50,753, 51,485, 52622, 55,355, 56,042, 63,021, 64,394, 64,437, 92,458, 94,554,

95,822, 97,307, 103,868, 108,971, 114,282, 117065, 118885, 119,819, 120,893

C 9 4 16,101, 22,497, 71,353, 105,552

8 2 31,381, 120,721

AT 13 1 41,344

10 4 26,392, 96,162, 104,388, 113,787

9 6 19,814, 24,397, 34,072, 42,422, 48,777, 74,253

8 7 19,352, 19,904, 80,532, 83,639, 99,803, 105,218, 110,933

AG 9 10 8774, 22,311, 26,631, 47,568, 51,573, 52,520, 65,195,79,220, 80,699, 106,488,

8 10 14,675, 22,384, 30,793, 42,926, 51,556, 69,139, 75,721, 83,721, 90,777, 91,093

AAT 11 1 78,353

10 1 42,354

9 8 13,934, 49,935, 65,369, 66,308, 71,749, 94,150, 98,727, 109,563

AAG 10 5 3167, 22,135, 106,110, 108,709, 120,693

9 5 28,380, 79,051, 79,226, 81,004, 100,527

ATC 10 1 77,667

9 6 2957, 16,215, 21,127, 75,445, 77,964, 111,780

AAC 9 1 32,982

ACT 9 2 43,692, 94,864

AGC 9 2 43,798, 89,223

ACC 9 2 54,293, 94,538

AGG 9 2 60,538, 80,037

CCG 9 1

ATCC 17 1 48,863

ACCT 14 1 90,739

AGAT 13 1 51,753

AAAT 12 1 42,147

AAGAGG 23 1 117,038

https://doi.org/10.1371/journal.pone.0192966.t008
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genealogical history can be readily obtained for developing hypotheses [129–131]. Moreover,

in some land plants (a few flowering plant lineages and conifers), the chloroplast is paternally

inherited and independent of the nuclear and mitochondrial genome [132].

Recently, cp genomes have shown significant power in phylogenetic, evolution, and molec-

ular systematics studies. During the last decade, various analyses have revealed the phyloge-

netic relationships at deep nodes based on comparisons of multiple protein coding genes,

intergenic spacers [133, 134], and complete genome sequences in chloroplast genomes [135]

that have enhanced our understanding of the evolutionary relationships among angiosperms

and gymnosperms. According to the most recent classification, the genus Pinus is comprised

of approximately 110 species and is shared by two subgenera, Strobus and Pinus, which are

divided into further sections [136]. Furthermore, some evolutionary hypotheses suggest that

the subgenera Strobus and Pinus originated from the Eocene [137, 138], whereas others indi-

cated these subgenera were already present during the Cretaceous [138–140]. The Pinus subge-

nus has undergone significant distributional as well as environmental changes during their

evolution, such as moving multiple times between America and Eurasia [140]. Chloroplast

DNA polymorphisms in P. taeda have been used in numerous studies to assess paternal inheri-

tance lineage and cytoplasmic diversity [141–146]. Continued efforts have expanded our abil-

ity to differentiate and understand the genomic structure and phylogenetic relationships of

Pinus species [147]. The phylogeny and taxonomy of Pinus species have largely relied on chlo-

roplast markers [140, 148, 149]. However, compared to nuclear genes, these markers are linked

and offer independent information on species phylogeny. Previously, the phylogenetic study

of pine based on multiple nuclear genes was reported by Syring et al. [150], where four low-

copy nuclear loci were analyzed in 12 pine species and combined with internal transcribed

spacers and chloroplast data. Various studies revealed that the addition of more genes

increased the chance for improving the phylogenetic tree [151–153]. However, this does not

resolve all phylogenetic problems [154, 155].

Complete genome sequencing provides detailed insight into an organism [43, 66, 156]. In

this study, the phylogenetic position of P. taeda within the Pinus genus was established by

employing the complete cp genome and 60 shared genes of 16 species. Phylogenetic analyses

using Bayesian inference, maximum parsimony, maximum likelihood, and neighbor-joining

methods were performed. The phylogenetic analysis revealed that the complete dataset and

60 shared genes of P. taeda contained the same phylogenetic signals. In the datasets for the

genome and 60 shared genes, P. taeda formed a single clade with P. contorta with high Bayes-

ian interference and bootstrap support using the four different methods (Fig 6 and S2 Fig).

Moreover, tree topology confirmed the relationship inferred from the phylogenetic work pre-

viously conducted based on cp genomes [89, 141, 157], in which P. taeda was genetically simi-

lar to P. contorta. These results revealed good agreement with classical taxonomy, where

similar concordance was observed in the cp genome and mitochondrial genome-based recon-

structions of Pinus phylogeny [136, 140]. Furthermore, these results are in broad agreement

with previous results reported by Niu et al., where P. taeda formed a single clade with P. con-
torta based on pairwise non-synonymous substitution rates of orthologous transcripts [158].

Additionally, the results suggest that there is no conflict between the entire genome dataset

and 60 shared genes in these cp genomes.

Conclusion

The current study determined the complete genome sequence of the chloroplast from P. taeda
(121,531 bp). The gene order and genome structure of P. taeda was similar to that of cp

genomes of other Pinus species. Furthermore, the distribution and location of repeat sequences
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Fig 6. Phylogenetic trees of 15 Pinus species. The entire genome dataset was analyzed using four different methods: Bayesian inference (BI),

maximum parsimony (MP), maximum likelihood (ML), and neighbor-joining (NJ). Numbers above the branches represent bootstrap values in

the MP, ML, and NJ trees and posterior probabilities in the BI trees, whereas the number below the branches represents branch length. The red

dot represents the position of P. taeda (KY964286).

https://doi.org/10.1371/journal.pone.0192966.g006
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were determined, and average pairwise sequence divergences among cp genomes of related

species were identified. SSR, SNP, and phylogenetic analyses were performed on 16 Pinus
species cp genomes. No major structural rearrangement of Pinus species cp genomes was

observed. Phylogenetic analyses revealed that the dataset based on 60 shared genes and that of

the entire genome generated trees with the same topologies regarding the placement of P.

taeda. Such investigations are an essential source of important information on the complete cp

genome of P. taeda and related species, which can be used to facilitate biological study, identify

species, and clarify taxonomic questions.
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