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Abstract

Motivation: Large multiple sequence alignments (MSAs), consisting of thousands of sequences,

are becoming more and more common, due to advances in sequencing technologies. The MAFFT

MSA program has several options for building large MSAs, but their performances have not been

sufficiently assessed yet, because realistic benchmarking of large MSAs has been difficult.

Recently, such assessments have been made possible through the HomFam and ContTest bench-

mark protein datasets. Along with the development of these datasets, an interesting theory was

proposed: chained guide trees increase the accuracy of MSAs of structurally conserved regions.

This theory challenges the basis of progressive alignment methods and needs to be examined by

being compared with other known methods including computationally intensive ones.

Results: We used HomFam, ContTest and OXFam (an extended version of OXBench) to evaluate

several methods enabled in MAFFT: (1) a progressive method with approximate guide trees, (2) a

progressive method with chained guide trees, (3) a combination of an iterative refinement method

and a progressive method and (4) a less approximate progressive method that uses a rigorous guide

tree and consistency score. Other programs, Clustal Omega and UPP, available for large MSAs, were

also included into the comparison. The effect of method 2 (chained guide trees) was positive in

ContTest but negative in HomFam and OXFam. Methods 3 and 4 increased the benchmark scores

more consistently than method 2 for the three datasets, suggesting that they are safer to use.

Availability and Implementation: http://mafft.cbrc.jp/alignment/software/

Contact: katoh@ifrec.osaka-u.ac.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A large number of biological sequences have rapidly accumulated

due to advances in sequencing technology. A multiple sequence

alignment (MSA) consisting of thousands of sequences is frequently

needed (e.g. Kamisetty et al., 2013), but the calculation of such large

MSAs is a challenging problem. MAFFT is one of the most popular

MSA programs and has several options for this scale data input.

However, it is unclear which option should be used in such situ-

ations. To answer this question, solid benchmarks based on empir-

ical data are critical. Recently, a new benchmark based on real

protein data, ContTest, was proposed by Fox et al. (2016). A

remarkable advantage of ContTest is that it is directly linked to a
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specific downstream analysis, contact prediction. Meanwhile, con-

ventional benchmark datasets, such as BAliBASE (Thompson et al.,

1999) and HomFam (Sievers et al., 2011), are useful in assessing

general accuracy of MSA methods based on structurally conserved

residues. Using these two types of benchmarks, we assessed the per-

formance of several different options, including newly enabled ones,

of MAFFT for a large MSA consisting of several to tens of thousands

of sequences. Such tests also provide developers of related tools with

general information about which techniques are useful for improv-

ing the quality of large MSAs.

In particular, we closely examined a surprising and controversial

finding (Boyce et al., 2014; Fox et al., 2016; Tan et al., 2015) on the

effect of guide trees in MSA calculation; do random chained guide

trees perform better than conventional guide trees? This issue was

first raised by Boyce et al. (2014), reporting that chained guide trees

give better MSAs than the default ones, especially in MAFFT (Katoh

et al., 2002) and MUSCLE (Edgar, 2004a, b). Tan et al. (2015) re-

ported opposite observations that chained guide trees give poorer

MSAs, using simulation and phylogeny-based evaluations. Sievers

et al. (2014) systematically examined the effects of chained guide

trees and balanced ones for small MSAs. Fox et al. (2016) presented

additional evidence to support the advantage of chained guide trees

using the ContTest dataset and confirmed the utility of chained

guide trees for large MSAs of structurally conserved regions. It is

known that the accuracy of MSA can depend on the evaluation cri-

teria or the purpose of downstream analyses, as mentioned in Tan

et al. (2015) and Fox et al. (2016). Therefore, it is important for our

reexamination to use the evaluation criteria based on structural con-

servation, as in Boyce et al. (2014) and Fox et al. (2016).

2 Materials and methods

2.1 Algorithms
We compared several different methods implemented in MAFFT for

large MSAs.

1. A progressive method (Feng and Doolittle, 1987; Higgins and

Sharp, 1988; Hogeweg and Hesper, 1984) with approximate

guide trees. The default option of MAFFT, FFT-NS-2, uses a

variant of this approach. An approximate guide tree is first built

based on the number of shared 6mers, on which the initial align-

ment is progressively built. Then, the second guide tree is com-

puted on the first alignment. The final MSA is progressively built

on the second guide tree.

2. A progressive method with random chained guide trees. This

strategy was recently re-proposed by Boyce et al. (2014).

3. A combination of an iterative refinement method and a progres-

sive method. It is known that the iterative refinement technique

(Barton and Sternberg, 1987; Berger and Munson, 1991; Gotoh,

1993) improves the accuracy of an MSA in comparison with the

progressive method. However, it is difficult to directly apply the

iterative refinement method to large alignment problems. We

partially use the iterative refinement technique in this progressive

alignment calculation. That is, a relatively accurate core align-

ment is first built with an iterative refinement option, G-INS-i,

and then the remaining sequences are added into the core align-

ment as discussed in Katoh and Frith (2012).

4. A progressive method with a relatively rigorous guide tree, G-

INS-1 (Note that G-INS-1 differs from G-INS-i; the former is a

progressive method, and the latter iteratively refines the G-INS-1

alignment). All-to-all pairwise DP calculation is performed to

build a guide tree, which is generally more accurate than that in

method 1. This method requires unpractical computational re-

source when applied to large alignment problems consisting of

tens of thousands of sequences. The aim of this test is to clarify

the effects of the approximations in the practical methods (1–3).

5. For methods 1 and 2, two types of position-specific gap costs

were tested: (i) An obsolete one (Katoh et al., 2002) that was

used in versions <7.1 of MAFFT. (ii) The current default (Katoh

and Standley, 2016) that is used in versions �7.1 since 2013.

For methods 3 and 4, only the current default (ii) was used.

The comparison between methods 1 and 2 was already reported

in Boyce et al. (2014) and Fox et al. (2016), which consistently con-

cluded that random chained guide trees (method 2) outperformed

normal guide trees (method 1) for large alignments using various

programs including MAFFT. The authors used MAFFT version

7.029, but the accuracy for large MSAs has been improved after this

version. Using a newer version (7.294), we reexamined the differ-

ence between normal guide trees and random chains, using two dif-

ferent benchmark criteria. For reference, other methods designed for

large data, Clustal Omega version 1.2.1 (Sievers et al., 2011) and

UPP version 2.0 (Nguyen et al., 2015) with several different options

were included into the comparison.

The programs ran on Intel(R) Xeon(R) CPU E5-2680 v2 @

2.80 GHz with 64 GB RAM using a single thread, except for G-INS-

1 (method 4), for which heterogeneous computing nodes were used

to finish the calculation in a practical amount of time.

2.2 Data
We used three real protein-based datasets, HomFam (Sievers et al.,

2011), OXBench (Raghava et al., 2003) and ContTest (Fox et al.,

2016), to assess how accurately structurally conserved regions are

aligned. Each problem contains a single domain only, which is the

most basic type of MSA. In HomFam, we identified reliably aligned

regions based on the HOMSTRAD data (Mizuguchi et al., 1998)

with structural information and used only these regions for assess-

ment. We also filtered out some entries with repetitive sequences

that have multiple solutions (see Supplementary data for details of

these modifications). To avoid HOMSTRAD-specific evaluations,

we prepared another dataset based on OXBench, by applying the

same procedure as HomFam to extend the number of sequences in

each entry. The extended version of OXBench is called OXFam

hereafter. Each dataset was divided into three subsets, Small

(0 < N � 3000), Medium (3000 < N � 10 000) and Large

(10 000 < N), where N is the number of sequences in an MSA, fol-

lowing Sievers et al. (2011). For HomFam and OXFam, we used the

SP and TC criteria to evaluate the accuracy of an estimated MSA,

assuming that the reference is correct. SP is the number of correctly

aligned pairs in the estimated MSA divided by the number of aligned

pairs in the reference, and TC is the number of correctly aligned col-

umns in the estimated MSA divided by the number of aligned col-

umns in the reference. The SP and TC scores were calculated using

the FastSP program (Mirarab and Warnow, 2011). The HomFam

and OXFam datasets we used here are available at https://mafft.sb.

ecei.tohoku.ac.jp/.

3 Results and discussion

The results are shown in Tables 1 and 2.
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3.1 Effect of chained guide trees
The effect of random chained guide trees was clearly negative in the

HomFam and OXFam tests. A decrease of 1–7% in benchmark

scores due to the use of random chained guide trees was observed in

all subsets of both datasets, as shown at the first two lines

(“Normaltree” and “Randomchain”) in the TC and SP blocks in

Table 1. For their overall difference, the P-values were estimated to

be 0.016 for HomFam-TC and <0.01 for HomFam-SP, OXFam-SP

and OXFam-TC by the Wilcoxon signed-rank test. Because this re-

sult is sharply inconsistent with the previous report (Boyce et al.,

Table 1. Performance of various options of MAFFT and other methods on HomFam and OXFam

HomFam OXFam

Small Medium Large All Small Medium Large All

Number of sequences in an entry <3000 3000–10 000 >10 000 <3000 3000–10 000 >10 000

Number of entries 38 32 19 89 74 59 32 165

Mean SP score

MAFFT—Normaltreea 0.9074 0.8957 0.7795 0.8759 0.9300 0.8853 0.8207 0.8928

MAFFT—Randomchainb 0.8699 0.8671 0.7106 0.8349 0.9010 0.8571 0.7674 0.8594

MAFFT—Iterative (p¼100)c 0.9105 0.9004 0.7945 0.8821 0.9438 0.9058 0.8364 0.9094

MAFFT—Iterative (p¼500)d 0.9267 0.9167 0.8045 0.8970 0.9441 0.9228 0.8391 0.9161

MAFFT—Iterative (p¼1000)e 0.9405 0.9228 0.8159 0.9075 0.9533 0.9257 0.8427 0.9220

Clustal Omegaf 0.9148 0.8693 0.6871 0.8498 0.9257 0.8735 0.7409 0.8712

Clustal Omega–Fullg 0.9088 0.8806 0.6692 0.8475 0.9244 0.8595 0.7440 0.8662

Clustal Omega—Randomchainh 0.8798 0.8309 – – 0.8905 0.8477 – –

UPP—Fasti 0.8616 0.8407 0.7700 0.8345 0.9327 0.8940 0.7878 0.8908

UPP—Defaultj 0.8678 0.8708 0.7956 0.8535 0.9415 0.9068 0.8211 0.9057

MAFFT— G-INS-1k 0.9358 0.9520 0.8844 0.9306 0.9572 0.9485 0.8749 0.9381

Mean TC score

MAFFT—Normaltreea 0.7806 0.7298 0.5646 0.7162 0.9016 0.8253 0.7404 0.8430

MAFFT—Randomchainb 0.7315 0.6967 0.4932 0.6681 0.8622 0.7989 0.6827 0.8048

MAFFT—Iterative (p¼100)c 0.7939 0.7275 0.5943 0.7274 0.9143 0.8546 0.7613 0.8633

MAFFT—Iterative (p¼500)d 0.8315 0.7573 0.6148 0.7586 0.9155 0.8807 0.7645 0.8738

MAFFT—Iterative (p¼1000)e 0.8628 0.7746 0.6283 0.7810 0.9319 0.8897 0.7707 0.8855

Clustal Omegaf 0.8057 0.7152 0.4449 0.6961 0.8842 0.8118 0.6408 0.8111

Clustal Omega–Fullg 0.8086 0.7365 0.4386 0.7037 0.8886 0.7839 0.6688 0.8085

Clustal Omega–Randomchainh 0.7580 0.6918 – – 0.8452 0.7888 – –

UPP—Fasti 0.7466 0.7087 0.5853 0.6985 0.9028 0.8535 0.7196 0.8496

UPP—Defaultj 0.7492 0.7570 0.6330 0.7272 0.9138 0.8676 0.7601 0.8675

MAFFT—G-INS-1k 0.8549 0.8480 0.7441 0.8288 0.9358 0.9147 0.8212 0.9060

Total CPU time (min)

MAFFT—Normaltreea 2.9 36 420 460 5.5 81 470 560

MAFFT—Randomchainb 2.0 15 71 88 3.4 30 96 130

MAFFT—Iterative (p¼100)c 7.4 61 580 650 11 130 660 800

MAFFT—Iterative (p¼500)e 160 390 790 1300 190 640 1000 1900

MAFFT—Iterative (p¼1000)d 810 2100 1500 4400 1100 3500 2800 7500

Clustal Omegaf 21 160 300 480 27 220 590 840

Clustal Omega—Fullg 44 570 5400 6000 82 1300 1700 8400

Clustal Omega—Randomchainh 130 18 000 – – 170 4600 – –

UPP—Fasti 53 190 260 500 92 380 540 1000

UPP—Defaultj 360 1600 2400 4400 660 3300 4900 8900

MAFFT—G-INS-1k (370) (5200) (44 000) (49 000) (760) (13 000) (71 000) (86 000)

Commands are: a, mafft input; b, mafft ––randomchain ––randomseed seed input; c–e, mafft-sparsecore.rb -s seed -p p -i input; f, clustalo

-i input; g, clustalo ––full -i input; h, clustalo ––pileup -i input (sequence order randomized); i, run_upp.py -m amino -B 100 -s input; j, run_-

upp.py -m amino -s input; k, mafft ––globalpair ––thread 10 input; The order of input sequences was randomized in every sequence set. The results of

“MAFFT — Randomchain” (b) and “MAFFT — Iterative” (c-e) were averaged for 100 and 10 replications, respectively, with different seeds of random numbers.

The results of “UPP” (i, j) were averaged for 10 different runs. For “Clustal Omega — Randomchain” (h), only the results for the Small and Medium subsets are

shown, because the calculation of the Large subset did not finish while compiling this manuscript. The CPU time of “MAFFT — G-INS-1” (k) is shown in paren-

theses as it ran on different computer systems from the others.
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2014), we carefully inspected the cause of the difference. When

MAFFT version 7.029 was used, as in their report, an improvement

upon use of random chained guide trees was indeed observed. A

major difference between these two versions is in the position-

specific gap cost as noted below (Section 3.2). By using the old

position-specific gap cost, still available as - -leavegappyregion

in the current version, the tendency they reported (random chained

guide trees perform well for the Large subset) was clearly repro-

duced as shown in Supplementary Table S1. MUSCLE also uses a

position-specific gap cost (Edgar, 2004a) similar to old versions of

MAFFT. This might explain the fact that the advantage of random

chained guide trees was especially observed in these two programs

but the tendency was unclear in Clustal Omega (Fig. 5 in Boyce

et al., 2014; the “Clustal Omega—Randomchain” lines in Table 1).

On the other hand, in ContTest, the improvement by the use of

random chained guide tree was observed in both the current version

(0.4998 ! 0.5425 in the overall average; Table 2) and the old ver-

sion (0.3967! 0.5121; Supplementary Table S2), as well as Clustal

Omega (0.4142! 0.5357; Table 2). The P-values for the difference

of these pairs were estimated to be <0.01. Thus, we confirmed

Fox et al.’s (2016) observation that there are cases where chained

guide trees are useful. To satisfy this need, we have implemented the

––pileup option and the ––randomchain option in MAFFT. The

former aligns the sequences according to the input order, and the lat-

ter does in a randomized order.

In addition, we have enabled the - -mixedlinkage s option,

to control the degree of balance of a guide tree using a parameter s.

MAFFT’s guide tree is a mixture of an average linkage tree and a

minimum linkage tree; when merging clusters L and R into a new

cluster P, the distance dPC from P to a third cluster C is:

dPC ¼ s ðdLC þ dRCÞ=2þ ð1� sÞminðdLC;dRCÞ: (1)

An average linkage tree tends to be a balanced tree, while a min-

imum linkage tree tends to be an imbalanced tree. Thus, by changing

the parameter s, an intermediate tree between a balanced tree and

an imbalanced tree can be generated. This tree was also adopted by

MUSCLE. The default s value has been unchanged from 0.1 since

the initial release of MAFFT and MUSCLE. This means that these

programs use a moderately imbalanced guide tree by default. When

the most imbalanced option (- -mixedlinkage 0) was applied,

the result for ContTest was intermediate between the default guide

tree and a random chain (Supplementary Table S3), as expected. For

HomFam and OXFam, the difference between s ¼ 1 and s¼0 was

small (Supplementary Table S4). Using this option, one can select

balanced or imbalanced guide trees if necessary.

3.2 Effect of position-specific gap costs
The advantage of the current gap cost over the previous one was

observed with a significance level of 0.01 in HomFam, OXFam and

ContTest (Supplementary Tables S5 and S6). The previous position-

specific gap cost, Gð; Þ, used in MAFFT versions < 7:1 was:

Gði; xÞ ¼ Sopfð1� gstartðxÞÞ þ ð1� gendðiÞÞg = 2; (2)

where Sop is a normal gap cost for sequence-sequence alignment,

and gstartðxÞ and gendðiÞ are the frequencies of gaps that start at pos-

ition x and that end at position i, respectively (Katoh et al., 2002).

This was used as default till October 2013. The effect of gap cost

depends on match scores for site pairs across two sequences. The

match score of a site pair usually decreases with the increase of

the gaps that exist in the sites. Relatively to match scores, the gap

cost of Equation (2) effectively increases with the increase of gaps

in the site pair. Accordingly, in already gap-rich regions, additional

gaps are suppressed. This feature is useful when gap-rich re-

gions are out of interest and discarded manually or by a filtering

program. Moreover, the resulting MSAs are compact and easy to

check visually. Thus, this calculation is still selectable with the

––leavegappyregion option.

With the increase of sequences included in an MSA, gaps are

sometimes inserted even in conserved regions because of sequencing

errors or actually exceptional sequences. These gaps make the gap

cost of Equation (2) unnecessarily stronger. To avoid this problem,

in versions �7.1, the gap cost is reduced according to the existence

of gaps in a position as described in Supplementary data in Katoh

and Standley (2016).

Gði; xÞ ¼ Sopfð1� gstartðxÞÞ f ðxÞ þ ð1� gendðiÞÞ f ðiÞg=2; (3)

where f(x) is the frequency of non-gap characters at position x. The

resulting alignments naturally have more gaps and are longer than

those with Equation (2). The difference in the accuracy between

Equations (2) and (3) is indistinguishable in small-scale benchmarks,

but was clearly observed in large-scale benchmarks (Supplementary

Tables S5 and S6).

Table 2. Performance of various options of MAFFT and other meth-

ods on ContTest

Small Medium Large All

Number of sequences in an entry <3000 3000–

10 000

>10 000

Number of entries 15 70 51 136

Mean ContTest score

MAFFT—Normaltreea 0.4081 0.4874 0.5439 0.4998

MAFFT—Randomchainb 0.4406 0.5227 0.5997 0.5425

MAFFT—Iterative (p¼100)c 0.3747 0.5005 0.5771 0.5153

MAFFT—Iterative (p¼500)d 0.3883 0.5180 0.6046 0.5361

MAFFT—Iterative (p¼1000)e 0.3808 0.5237 0.6198 0.5440

Clustal Omegaf 0.3039 0.4291 0.4262 0.4142

Clustal Omega—Fullg 0.3080 0.4585 0.4640 0.4440

Clustal Omega—Randomchainh 0.4328 0.5324 0.5703 0.5357

UPP—Fasti 0.3515 0.5139 0.5744 0.5187

UPP—Defaultj 0.3555 0.5254 0.5936 0.5323

MAFFT—G-INS-1k 0.3853 0.5445 0.6582 0.5696

Total CPU time (min)

MAFFT—Normaltreea 1.2 54 440 500

MAFFT—Randomchainb 0.56 16 88 100

MAFFT—Iterative (p¼100)c 2.2 77 650 730

MAFFT—Iterative (p¼500)d 30 250 930 1200

MAFFT—Iterative (p¼1000)e 160 1100 2100 3400

Clustal Omegaf 5.0 130 460 600

Clustal Omega—Fullg 16 830 5600 6400

Clustal Omega—Randomchainh 28 6400 110 000 120 000

UPP—Fasti 17 230 500 750

UPP—Defaultj 130 2000 4600 6700

MAFFT—G-INS-1k (110) (7100) (48 000) (55 000)

a–k, The same commands were used as Table 1. The input sequence order

was not changed from that in the original data, because it seems to be already

randomized.
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3.3 Partial application of iterative refinement
The improvement in the benchmark scores by introduction of itera-

tive refinement (method 3) is shown in the “MAFFT—Iterative”

lines in Tables 1 and 2. Unlike the case of random chained guide

trees, the improvement was stably and consistently observed for

both types of benchmarks. The calculation procedure is: (i) The in-

put sequences are sorted by length. From the upper n% of the sorted

sequences, p sequences are randomly selected as “core” sequences.

The default values of n and p are 50 and 500, respectively. (ii) An

MSA of the p core sequences is constructed by an iterative refine-

ment option, G-INS-i. (iii) The remaining sequences are added to the

core MSA using the ––add option, which employs the progressive

alignment method. This process runs automatically with the

mafft-sparsecore.rb script that is available in MAFFT version

7.294.

This strategy is similar to the construction process of large MSAs

previously provided in Pfam. This is also similar to UPP (Nguyen

et al., 2015) in applying an accurate method to randomly-selected

sequences. UPP uses PASTA (Mirarab et al., 2015), which is a com-

bination of L-INS-i option of MAFFT, OPAL (Wheeler and

Kececioglu, 2007) and FastTree (Price et al., 2010), to align core se-

quences, and then uses HMMalign (Finn et al., 2011) to add the re-

maining sequences to the core alignment. Two settings, “Default”

(1000 core sequences) and “Fast” (100 core sequences), of UPP were

tried. In both UPP and partially iterative options of MAFFT, the ac-

curacy score increased with the number of core sequences. This

results in a tradeoff between computational time and the accuracy,

because the methods for core alignment are relatively slow. At pre-

sent, such two-step strategies are practical ones for constructing

large MSAs with limited computational resources.

We tested whether this method improves the alignment accuracy

of the sequences other than core sequences. For this test, we created

an artificial situation where reference sequences are excluded from

the core MSA, i.e. the reference sequences (used for assessing the ac-

curacy) are not directly aligned by the iterative refinement method.

Even in this situation, the accuracy improvement over the normal

progressive method was observed (compare the “Normaltree” and

“Iterative” lines in Supplementary Tables S7 and S8). In addition,

we tested the effect of the heterogeneity in sequence length by mod-

ifying the three datasets so that each MSA has sequences with simi-

lar lengths (Supplementary Table S9; see the footnote of this table

about the filtering process). The same tendencies were observed as

in the original data; “Iterative” outperformed “Normaltree” in the

all datasets; “Iterative” also outperformed “Randomchain” in

HomFam and OXFam but was comparable to “Randomchain” in

ContTest.

The motivation of the length-based restriction, using parameter

n, is to exclude fragmentary sequences from the core MSA. There is

another requirement that the core sequences should represent the en-

tire data without bias. Because such conditions should differ for dif-

ferent cases, we made parameter n adjustable, setting the default

value to 50%. We tried various n and p values and expectedly

observed a weak tendency that the accuracy was relatively high

when n was a moderate value (from 30 to 70), for HomFam and

OXFam (Supplementary Tables S10 and S11).

In general, an MSA is just one possible solution sampled from a

huge number of equally probable ones. Alternative solutions are

sometimes useful for assessing site-wise or overall reliability of an

MSA, in systematic methods (e.g. Chang et al., 2014; Penn et al.,

2010) or by manual inspection. MSAs computed with random sam-

pling can be used as a source of alternative solutions. For this

purpose, the mafft-sparsecore.rb script has an option, -s

seed, to specify the seed of random numbers.

3.4 Application of computationally intensive method
We applied another progressive option, G-INS-1 (method 4), which

uses as little approximation as possible, to the same datasets. G-

INS-1 uses all-pairwise DP-based alignments to build a normal guide

tree and to calculate a COFFEE-like consistency score (Notredame

et al., 1998). Requiring a long computational time and huge RAM

space, this method is not practical for more than 10 000 sequences,

but a clear advantage in accuracy was observed in HomFam and

OXFam; the improvement from “Normaltree” to “G-INS-1” in

Table 1 wasþ8–18% andþ1–7% for the Large and Small subsets,

respectively. The P-values for the overall improvement were esti-

mated to be less than 0.01 by the Wilcoxon signed-rank test. In

ContTest (Table 2), the advantage of “G-INS-1” over “Normaltree”

was observed in the Large (þ11%; P < 0:01) and Medium (þ5%;

P < 0:01) subsets, but not in the Small subset (�2%; P ¼ 0:48).

Their overall difference was aboutþ7% (P < 0:01). These observa-

tions on the two types of benchmarks suggest that the accuracy of

practical methods for large MSAs has not yet reached a plateau.

The inclusion of phylogenetic information for building an MSA

has been assumed to be useful over 30 years, and this assumption is

a basis of the tree-based progressive alignment methods. The sur-

prisingly good performance of chained guide trees (Fox et al., 2016),

reproduced in Table 2 in this report, might be over-interpreted to

conclude that phylogenetic information is in fact useless or some-

times harmful for large MSAs, depending on the purpose of down-

stream analyses. In contrast, the present results suggest that rigorous

guide trees and known techniques, such as iterative refinement and

consistency scores, established for small datasets, are also useful for

large MSAs. This study also encourages steady developments of

computational and technical improvements for applying these tech-

niques to large-scale data.

In many actual analyses using MSAs, individual sequences in an

MSA are not equally important. That is, in downstream analysis or

in the interpretation phase, some sequences are focused on but other

sequences are just used for estimating the degree of conservation or

used as a background. More specifically, in the case of contact pre-

diction, the target sequence is regarded as a sequence to be focused

on, while the other sequences are used only indirectly. If such a dif-

ference in the role among input sequences is taken into account as

early as in the MSA calculation phase, it might improve the accuracy

of downstream analyses. We are also preparing a new feature to sat-

isfy such a necessity; sequences to be focused on can be specified in

the ––focus option, which runs in a combination with the G-INS-i

or G-INS-1 option. The sequences specified by a keyword,

“>_focus_”, in the title line are used for the consistency score calcu-

lation but the other sequences are not. Based on the same idea, the

mafft-sparsecore.rb script has an optional feature, in which

specific sequences (marked with “>_focus_” in the title line) are al-

ways included in the core MSA. We are trying to evaluate their use-

fulness in actual cases.

The quality of MSA is greatly affected by characteristics of input

data, e.g. similarity among input sequences, variation in length,

truncated sequences of a single domain or full-length Eukaryotic

protein sequences, etc. Thus, a careful preparation of input data is

important, in addition to improvements of the calculation method

for a given dataset. Systematic methods to prepare input sequences,

automatically or interactively, would also be useful.
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4 Conclusions

• For constructing large MSAs consisting of several to tens of thou-

sands of sequences, the accuracy of the default option, FFT-NS-

2, of MAFFT significantly improved in versions �7.1.
• To further improve the accuracy, a partial application of the it-

erative refinement technique is useful. This calculation is auto-

mated by the mafft-sparsecore.rb script, available in

MAFFT version 7.294 and higher. For this method, there is a

tradeoff between the accuracy and the computational time; the

speed and accuracy depend on how many sequences were sub-

jected to the iterative refinement calculation.
• The G-INS-1 option gives better results, but it requires unpracti-

cal computational resource. It suggests that there is still room for

improvement in practical methods for building large MSAs.
• A new option, ––randomchain uses a random chained guide

tree, advocated by Boyce et al. (2014). It is fast and sometimes

performs well, but its accuracy is not superior to the other two

techniques tested here, in the protein structure-based tests. We

recommend this option only when phylogenetic consideration is

surely unnecessary.
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