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Abstract: Adenovirus (AdV) infection elicits a strong immune response with the production of
neutralizing antibodies and opsonization by complement and coagulation factors. One anti-hexon
neutralizing antibody, called 9C12, is known to activate the complement cascade, resulting in the
deposition of complement component C4b on the capsid, and the neutralization of the virus. The
mechanism of AdV neutralization by C4b is independent of downstream complement proteins
and involves the blockage of the release of protein VI, which is required for viral escape from the
endosome. To investigate the structural basis underlying how C4b blocks the uncoating of AdV,
we built a model for the complex of human adenovirus type-5 (HAdV5) with 9C12, together with
complement components C1 and C4b. This model positions C4b near the Arg-Gly-Asp (RGD) loops
of the penton base. There are multiple amino acids in the RGD loop that might serve as covalent
binding sites for the reactive thioester of C4b. Molecular dynamics simulations with a multimeric
penton base and C4b indicated that stabilizing interactions may form between C4b and multiple
RGD loops. We propose that C4b deposition on one RGD loop leads to the entanglement of C4b
with additional RGD loops on the same penton base multimer and that this entanglement blocks
AdV uncoating.

Keywords: adenovirus; neutralization; neutralizing antibody; complement C1; complement C4;
molecular dynamics

1. Introduction

There are multiple parallel pathways for neutralizing pathogens such as adenovirus
(AdV). While neutralization pathways are beneficial in the case of natural infections, they
represent roadblocks in the development of virus-based therapeutics, such as oncolytic
viruses [1], and gene therapy vectors [2,3]. Both pre-clinical and clinical data showed that
anti-AdV-specific neutralizing immunity reduce efficacy of AdV-based vaccines, including
against HIV-1 [4], and SARS-CoV-2 [5]. Therefore, a better understanding of the molecular
mechanisms underlying host neutralization pathways, specifically involving neutralizing
antibodies and complement, would be beneficial for engineering AdV-based therapeutics
with improved safety and efficacy.

Following AdV infection, both the innate and adaptive arms of the immune system are
involved in the clearance of the virus. When human species C HAdV-C5 is injected into the
bloodstream, the innate immune system responds with natural immunoglobulin M (IgM)
antibodies [6–8], and coagulation factor X (FX) [9,10], to opsonize the virus and target it for
clearance. For HAdV-C5, natural IgM binds to the hypervariable region 1 (HVR1) of hexon,
the major capsid protein, which forms a repetitive, negatively charged pattern on the capsid
surface [11]. IgM binding to AdV activates the complement cascade, leading to the covalent
binding of first complement component C4b and then C3b to the virus [12]. The blood
coagulation factor, FX, binds species C HAdV-C2 and HAdV-C5 with high affinity via the
major capsid protein, hexon, and helps to target the virus to the liver for clearance [9,10].
Effectively, the FX-decorated surface of AdV becomes a pathogen-associated molecular
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pattern (PAMP), which, after internalization into a macrophage cell, serves to activate
innate immunity via the TLF/NF-κB pathway [13]. The binding of IgM and FX to AdV
represent parallel host–virus neutralization pathways, as FX binding to AdV protects the
virus from complement-mediated inactivation [12].

During the initial exposure to a particular virus, innate immune responses activate and
stimulate adaptive immune responses, which are ultimately responsible for complete viral
clearance [14]. Adaptive immunity includes both a humoral immune response, involving B
cells and CD4 helper T cells, and a cell-mediated immune response, involving CD8+ T cells.
B cells produce virus-specific antibodies that can neutralize and inactivate virions. Virus-
specific immunoglobulin G (IgG) antibodies, similar to IgM, can activate the complement
system after binding to a virus particle [15]. Complement proteins serve to opsonize
pathogens and induce inflammatory responses that help fight infection. The complement
system is an integral effector part of both the innate and adaptive immune response to viral
infections.

The classical pathway of complement activation begins with the binding of the C1
complex (C1q, C1r2, C1s2) to antigen-bound IgM or IgG [15]. IgM exists in circulation as
planar pentameric and hexameric assemblies with its C1q binding site hidden [16]. After
antigen binding, a conformational change occurs in IgM to convert it into a staple-like
conformation with exposed C1q binding sites [17–19]. Only one antigen-bound IgM is
needed to activate complement, whereas several IgG molecules bound to the antigen in
close proximity are required for activation [16]. Several studies have shown that IgG
antibodies oligomerize and form platforms with their FC domains to present appropriately
spaced C1q binding sites [20–22]. C1q is a hexamer formed by heterotrimeric chains A,
B and C, assembled into a bundle of six collagen helices and six globular recognition
domains that bind immunoglobins [23]. C1r and C1s are both serine proteases. After the
C1q globular domains interact with antigen-bound IgM or IgG, C1r is activated, which in
turn activates C1s [16]. Activated C1s cleaves complement component C4 into C4a, which
is released, and C4b, which has a highly reactive thioester that can react with hydroxyl
or amino groups near the antibody binding site on the pathogen. The classical pathway
continues with an enzyme cascade involving complement components C2 and C3. Like
C4b, C3b has a reactive thioester that can opsonize the pathogen and C3b opsonization is
involved in complement signal amplification [15].

Recently, Bottermann et al. have shown that, after an anti-hexon neutralizing IgG,
called 9C12, binds HAdV-C5, complement components C1 and C4 mediate the potent
neutralization of HAdV-C5 and that this antiviral activity is independent of downstream
complement components [24]. The binding of C4b to HAdV-C5 does not block cell entry,
but rather blocks the release of the virally encapsidated membrane lytic factor, protein VI,
which is essential for escape from the endosome [25,26]. The antiviral mechanism of C4 is
reminiscent of AdV neutralization by α-defensins, which are proteins of the innate immune
system that suppress viral and bacterial infections [27]. Human α-defensin 5 (HD5) has
potent antiviral activities against many but not all human AdV types [28]. HD5 binds at
the interface between the AdV penton base and the fiber capsid proteins, stabilizes the
vertex region of sensitive AdV types, and prevents the release of protein VI [28,29].

A cryo-electron microscopy (cryo-EM) study of antigen-bound IgG in complex with
C1 revealed that bound IgG’s adopt a bent conformation and form a hexameric FC platform,
which binds four, five or six C1q globular domains [22]. The moderate resolution cryo-EM
structure of the complex, combined with atomic resolution structures of the C1q globular
domain [30], and IgG FC domains [31], facilitated the generation of a structural model
for C1q-IgG interaction. A cryo-electron tomography (cryo-ET) study of IgM, C1, and
C4b complexes formed on antigen-bearing lipid membranes revealed pentameric and
hexameric IgM complexes in dome-shape conformations with bound C1 and C4 [19]. These
IgG-C1 and IgM-C1 complex structures reveal similarly spaced C1q binding sites of the
periphery of their respective FC platforms. The structure of the IgM complex also revealed
additional density for C4b oriented next to the IgM-Fab arms. The thioester-containing
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domain of C4b is positioned such that the reactive thioester points toward the antigenic
surface.

In this study, we used structural information on the binding of the IgG 9C12 to
HAdV-C5 [32,33], together with cryo-EM and cryo-ET structures of IgG-C1 and IgM-C1-C4
complexes [19,22], to build a composite model for HAdV-C5 with bound IgG, C1, and
C4b. The goals of this study were to evaluate likely C4b binding sites on the HAdV-C5
capsid and investigate the structural mechanisms underlying the C4b neutralization of
HAdV-C5. A prior cryo-EM structure of HAdV-C5 with 9C12 IgG molecules indicated
strong density for 9C12 bound to the peripentonal hexons, which are the five hexons
surrounding the penton base capsid protein at the vertices of the AdV capsid [33]. The
pentameric penton base has five intrinsically disordered Arg-Gly-Asp (RGD)-containing
loops that protrude from penton base and interact with αv integrins on host cells triggering
internalization of the virus [29,34,35]. The composite model we built for HAdV-C5 with
IgG 9C12, C1 and C4b indicated that C4b might bind to various solvent accessible hydroxyl
and amino groups within the penton base RGD loop. We performed molecular dynamics
simulations with C4b covalently bound to two possible sites within the RGD loop. The
results of these simulations indicate that C4b binding to one RGD loop of a HAdV-C5
penton base will likely result in additional stabilizing interactions between C4b and another
RGD loop of penton base. In addition, since the highly reactive thioester of C4b can react
with a water molecule before reaching the pathogen [15], we also performed a molecular
dynamics simulation with C4b positioned near, but not covalently bound to, the penton
base RGD loops. This simulation indicates that, when C4b is positioned near one RGD
loop, even without being covalently bound to the penton base, C4b may form additional
stabilizing interactions with nearby RGD loops. This work revealed alternate mechanisms
of how C4b might block AdV uncoating by entangling the RGD loops of the penton base
with or without covalent binding to the virus and suggests strategies that might be used
to modulate the interaction of AdV with the complement system. Our computational
modeling-based analyses may prove useful in designing future biological experiments to
evaluate complement-AdV interactions through the introduction of targeted mutations
in the AdV capsid to reduce virus sensitivity to complement and, thus, aid in designing
therapeutic vectors resistant to complement-mediated neutralization.

2. Methods
2.1. Model Building

For the penton base, Rosetta-based models for the RGD loop aa 297–376 [29] were
added to the cryo-EM HAdV-C5 penton base coordinates (PDB: 6B1T) [36]. Five different
RGD loop models were used, one for each subunit of the penton base pentamer (chains A–
E). One icosahedral facet of hexons (12 trimers), plus two edge hexons from each of the three
adjacent facets (6 additional trimers), were selected from the cryo-EM HAdV-C5 structure
(PDB: 6B1T) with UCSF ChimeraX v1.1 [37]. Three penton base pentamers with modeled
RGD loops were added to the adjacent vertex sites to form a model of the HAdV-C5 facet.
Coordinates for 9C12 Fab fragments were positioned above hexon epitopes by aligning the
crystal structure of the hexon in complex with the 9C12 Fab (PDB: 5LDN) with each hexon
subunit in the HAdV-C5 facet [32]. The UCSF Chimera v1.15 MatchMaker tool was used
for alignment [38]. The partially occupied facet/Fab model, with two thirds of possible
hexon epitopes occupied with 9C12 Fab, was generated by removing Fab fragments from
the fully occupied facet/Fab model with UCSF Chimera v1.15. Fab fragments were selected
for removal to minimize steric clashes between Fab fragments and to approximate the Fab
density observed in the cryo-EM structure of HAdV-C5 with 9C12 IgG [33].

To build a model of an HAdV-C5 facet with a hexameric IgG FC platform, the FC
platform coordinates from a cryo-EM structure of an IgG-C1 complex (PDB: 6FCZ) were
used [22]. The hinge region of one FC was positioned near the exposed CL, CH1 domains
of a 9C12 Fab fragment positioned on a peripentonal hexon. The additional five hinge
regions of the hexameric FC platform were positioned more approximately over other



Viruses 2021, 13, 111 4 of 19

Fab fragments in the partially occupied facet/Fab model. The hexameric FC platform
positioned over the HAdV-C5 facet was used as a guide to add in coordinates for six C1q
globular domains (PDB: 6FCZ) and the cryo-EM density for IgG-C1 (EMD-4232) [22].

Given the strong similarity between the cryo-EM structure of an IgG-C1 complex and
the cryo-ET structure of an IgM-C1-C4 complex [19,22], we used the position of C4b in
the later structure to guide the positioning of C4b relative to the C1 complex modeled
with HAdV-C5. Coordinates from the crystal structure of C4b (PDB: 4XAM) were used to
complete the HAdV-C5/9C12/C1/C4b model [39]. All graphic figures were prepared with
UCSF Chimera v1.15 [38].

2.2. Molecular Dynamics Simulations

A molecular dynamics simulation was performed to assess the solvent accessibility of
possible C4b opsonization sites within the penton base RGD loop. A simulation for the
penton base pentamer with Rosetta-based RGD loop models was performed with NAMD
v2.12 on the Case Western Reserve University (CWRU) high-performance computing
(HPC) cluster [40]. The molecular system was minimized for 50 ps, followed by slow
heating to 300 K. A molecular dynamics simulation was run for 5 ns using the Chemistry at
Harvard Molecular Mechanics (CHARMM) force field [41], with Generalized Born implicit
solvent (GBIS). The solvent accessibility of the atoms in the hydroxyl groups of serines and
threonines, and the amino groups of lysines and arginines, within the five RGD loops was
assessed for the starting and ending coordinates with the UCSF ChimeraX v1.1 “measure
sasa” command and a probe radius of 1.4 Å [37].

Molecular dynamics simulations were performed to assess the possibility that C4b
would interact with multiple RGD loops on one penton base pentamer. The coordinates
used for C4b were from the crystal structure (PDB: 4XAM) [39]. Six different starting
models for C4b relative to a penton base pentamer were prepared for molecular dynamics
simulations. Four of the starting models (models 1, 2, 4, and 5) were generated with a
covalent bond between Cys1010 of C4b and a residue within one penton base RGD loop
(Thr343, chain C; Arg347, chain C; Thr346, chain C; or Lys297, chain E, respectively). We
used UCSF Chimera v1.13 to prepare the chosen RGD loop residue, position the sulfur
atom of the reactive thioester on C4b near the appropriate atom of the RGD loop residue,
form a covalent bond with the “bond sel” command, and change the chain IDs to be the
same for the two covalently linked polypeptides [38]. Two starting models (models 3
and 6) were generated without a covalent bond between C4b and the penton base. For
these models, the Cys1010 of C4b was positioned ~10 Å from one RGD loop of the penton
base (chain C or chain E, respectively). Molecular dynamics simulations were performed
with NAMD v2.12 on the Case Western Reserve University (CWRU) high-performance
computing (HPC) cluster [40]. The molecular systems were minimized for 50 ps followed
by slow heating to 300 K. Molecular dynamics simulations were run for 12 ns using the
Chemistry at Harvard Molecular Mechanics (CHARMM) force field [41] with generalized
born implicit solvent (GBIS).

2.3. Calculation of Non-Bonded Interaction Energies

Non-bonded interaction energies, including van der Waals and electrostatic compo-
nents, were calculated between C4b and each chain of the penton base individually, as
well as between C4b and the penton base multimer (chains A–E) as a whole. The energy
calculations were performed for both starting and ending coordinates of the molecular
dynamics simulations of models 1–6. NAMD v.2.14 [40] and the NAMD Energy plu-
gin of VMD v1.9.3 [42], both running on a Windows 10 PC, were used to calculate the
interaction energies.
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3. Results
3.1. Modeling of HAdV-C5 with Antihexon Neutralizing Antibody

Previous work has shown that a particular anti-hexon neutralizing IgG, called 9C12,
stimulates binding of complement component C4b to the capsid and mediates potent
neutralization of HAdV-C5 [24]. Although there is both cryo-EM and crystallographic
structural information on the binding of 9C12 to HAdV-C5 [32,33], there are still open
questions about how this particular IgG interacts with the full virion. It has been shown that
the minimum ratio of 9C12 to HAdV-C5 for neutralization is 240 antibody molecules per
virus particle, which is equivalent to an average of two Fab fragments per hexon trimer [33].
In other words, assuming IgG binds bivalently, only two thirds of the available epitopes
need to be occupied to achieve neutralization. The crystal structure of the isolated HAdV-
C5 hexon with 9C12 Fab fragments revealed that the epitope includes hexon hypervariable
regions (HVRs) 2 and 8, which form the outer corner of each of the three towers of a hexon
trimer [32]. The cryo-EM structure of HAdV-C5 with intact 9C12 indicated bivalent binding
for the IgG [33]. Strong density was observed for Fab fragments on the peripentonal hexons,
hexons adjacent to penton base (Figure 1A), as well as a meshwork of Fab density covering
the rest of the hexon capsid surface. The cryo-EM density was interpreted as indicating
100% occupancy of Fab at the peripentonal hexon sites and a spatial average of many
alternate bivalent binding combinations for 9C12 on the rest of the capsid.

We built a model for the interaction of 9C12 Fabs with one facet of HAdV-C5 based on
the available cryo-EM and crystallographic structural information. Initially we positioned
three Fab fragments on each hexon trimer in the facet, as indicated by the crystal structure
(Figure 1B). This resulted in a fully occupied model with multiple clashes between Fab
fragments (Figure 1C). Clashes between Fab fragments, as well as the consideration of
expected steric hindrance between IgG FC fragments, led us to conclude that the fully
occupied model is unrealistic. Therefore, we reduced the number of Fab fragments bound
to one facet so that two thirds of the possible epitopes were occupied with a 9C12 Fab
(Figure 1D). This partially occupied model displays fewer steric hindrances between
neighboring IgG Fab and FC fragments and better resembles the cryo-EM structure of the
HAdV-C5/9C12 complex [33]. There is undoubtedly variation in how the 9C12 antibody
binds to hexons in each icosahedral facet and in each virus particle. Therefore, the model
shown in Figure 1D is meant only to be a representative approximation. In building the
partially occupied model, we left all three epitopes on each peripentonal hexon occupied
with Fabs in accordance with the strong cryo-EM density observed at these sites.

As a result of leaving all peripentonal hexon epitopes occupied with a Fab in the
partially occupied model, major steric clashes are observed between the CL and CH1
domains of two Fabs (Figure 2). However, it was noted in the cryo-EM structure of the
HAdV-C5/9C12 complex that the IgG density at this site had one well-shaped Fab arm and
one somewhat distorted Fab arm [33]. The cryo-EM structure indicated that the binding of
9C12 to these two peripentonal epitopes resulted in an unusually acute angle between the
long axes of the Fab fragments. Varghese et al. concluded that bivalent binding of 9C12 to
this site was likely facilitated by the inherent segmental flexibility of IgG molecules [33].
In addition, we note that the crystal structure of the isolated hexon with the 9C12 Fab
reveals the epitope to be composed mainly of two HVR regions [32]. We suspect that the
conformational flexibility of the epitope region might contribute to the bivalent binding of
9C12 to this apparently strained IgG binding site. Indeed, Bottermann et al. note that 9C12
does not display a particularly fast on-rate with hexon and that this observation might be
explained by an entropic cost associated with engaging a structurally variable epitope [32].
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HAdV-C5 with 9C12 IgG [33].
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as in Figure 1D. A severe steric clash is modeled between Fab fragments (blue and red) bound to neighboring peripentonal
hexons. (B) Perpendicular view of panel A. The clashing domains (CL, CH1) of each Fab are indicated.

3.2. Modeling of HAdV-C5 with IgG and Complement Components C1 and C4b

The cryo-EM structure of the HAdV-C5/9C12 complex did not reveal defined density
for the FC regions, indicating variability in the FC positions relative to the HAdV-C5 cap-
sid [33]. The lack of observed FC density in the cryo-EM structure of the HAdV-C5/IgG
complex is not surprising given the known flexibility of IgG molecules [43]. The antihexon
antibody 9C12 is of the IgG1 subclass of antibodies. Extensive structural flexibility has
been observed for IgG1 molecules by individual-particle electron tomography 3D recon-
struction [44]. The partially occupied Fab model shown in Figure 1D does not include
modeled FC regions for the bound 9C12 IgG molecules. However, modeling the locations
of the 9C12 IgG FC regions is important for adding complement components C1 and C4b
to the HAdV-C5/9C12 model, since the FC regions contain binding sites for the globular
recognition domains of C1q [43]. The C1q binding site is near the IgG hinge region and
is thought to be partially or completed shielded by the Fab arms when IgG is not bound
to an antigen [43]. It has been suggested that the FC regions of multiple IgG molecules
form hexamers when opsonized on target surfaces [21]. Mutations can be introduced in
IgG that drive the formation of IgG hexamers in solution [20,21,45]. The cryo-EM structure
of a soluble C1-IgG complex was formed with hexamer-promoting IgG molecules [22].
The docking of the cryo-EM density for the soluble C1–IgG complex with known atomic
resolution structures of the component domains resulted in the identification of the C1q
binding residues within the two FC CH2 domains of an IgG. These C1q binding residues
were corroborated with mutagenesis studies. The cryo-EM and cryo-ET structures of
IgG-C1 and IgM–C1–C4 complexes indicate that the Fab arms of an IgG hexamer and IgM
fold so that they are nearly perpendicular to their respective FC region when C1 is bound
to the complex [19,22].

In the HAdV-C5/9C12 model, we added a hexamer of FC domains with one IgG hinge
region near the Fabs bound to the peripentonal hexons. A preference for 9C12 binding
to the peripentonal hexons was noted in the cryo-EM structure of the HAdV-C5/9C12
complex [33]. The other IgG hinge regions of the FC hexamer were positioned roughly
near other Fabs bound to hexons in the facet (Figure 3A,B). It was not possible to align the
additional five hinge regions of the FC hexamer with particular Fab fragments without
distorting the underlying hexon epitopes, bound Fab fragments, or the hexameric FC
platform coordinates. Therefore, the FC portion of the HAdV-C5/9C12 IgG model shown
in Figure 3 is likely more hexameric than can exist in reality. This is in accord with the lack of
a clear hexameric pattern of Fab arms in the partially occupied model of Fabs bound to one
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facet (Figure 1D). Additionally, we noted that the cryo-EM structure of the HAdV-C5/9C12
complex indicates heterogeneity of occupied Fab binding sites in the middle of the facet [33].
Therefore, we suspect that, in reality, perhaps only four or five FC domains assemble over
each HAdV-C5 facet to form imperfect FC hexamers. Nevertheless, the imperfect FC
hexamers may still attract the binding of the complement C1 complex if the IgG molecules
are bent and if the spacing of C1q binding sites is appropriate. Ugurlar found, in their
cryo-EM analysis of soluble C1-IgG complexes, that classification results in separate classes
with four, five or six globular C1q domains in contact with FC platforms [22]. Their soluble
C1-IgG complexes were formed with IgG molecules mutated to induce hexamer formation,
which was undoubtedly useful for structural analysis but which may not represent all FC
assemblies that can bind C1. We propose that, with native IgG molecules, such as 9C12,
perhaps FC aggregation does not need to form perfect hexamers to induce C1 binding.

With an FC hexamer in the HAdV-C5/9C12 model, it was possible to add in mod-
els for six C1q globular domains and cryo-EM density for the soluble IgG-C1 complex
(Figure 3C,D). In reality, we expect that the assembly of HAdV-C5/9C12/C1 is more
heterogeneous in nature with variations in the FC aggregates. The key factors that the
model shown in Figure 3 revealed are (1) that 9C12 IgG molecules bound bivalently to the
peripentonal hexons may form FC interactions with other 9C12 IgG molecules bound to
the array of hexons in the middle of the HAdV-C5 facet, and (2) that the C1 complex may
bind preferentially to the corners of the HAdV-C5 facets near the penton bases (Figure 3C),
rather than to the middle of a HAdV-C5 facet. Once a model for HAdV-C5/9C12/C1
was built, it was possible to add in a molecule of complement C4b (Figure 4). We show
C4b positioned over a peripentonal hexon, putting C4b in close proximity to a penton
base. This position is based on the location of density for C4b in the cryo-ET structures
of IgM–C1–C4b complexes [19]. In these structures, Sharp et al. detected density for one
or two C4b molecules per complex and found C4b positioned next to Fab arms of IgM
in a bent conformation. We admit that, in building the HAdV-C5/9C12/C1/C4b model
shown in Figure 4B, we chose to position C4b close to the penton base, when in reality
C4b might equally well be located over the middle of the facet. However, as C1 complexes
preferentially bind near peripentonal hexons, our model predicts that at least some of the
bound C1 complexes would present C4b molecules near a penton base.

3.3. Possible Covalent Binding Sites for C4b on HAdV-C5 Penton Base

After recognition of a pathogen by IgG or IgM and recruitment of the C1 complex, the
activated C1s serine protease in the C1 complex cleaves complement protein C4 into a C4a
fragment (9k Da), which is released into the solvent, and C4b (195 kDa), which acts as an
opsonizing factor. C4b has an internal thioester bond that is exposed after conformational
changes induced after its cleavage by C1s [39,46]. The thioester of C4b is highly reactive
and rapidly forms a covalent bond with a nearby hydroxyl or amino group [15,16]. Often
the C4b thioester forms a covalent bond with the surface of the pathogen by interacting
with hydroxyl or amino groups, but it can also react with nearby water molecules. Our
model for HAdV-C5/9C12/C1/C4b indicates that at least some molecules of C4b will be
near the penton base of HAdV-C5 and that the reactive thioester will be oriented toward
the penton base (Figure 4B).

The cryo-EM structure of HAdV-C5 and the crystal structure of HAdV-C2 penton base
both indicate that the integrin-interacting, RGD-containing loops of the penton base are
flexible [36,47]. In the HAdV-C5 penton base structure, over 80aa (aa297–376) are missing
in the RGD loop due to flexibility and predicted intrinsic disorder [29]. Flatt et al. built
Rosetta-based models for the HAdV-C5 RGD loops, which extend ~50 Å above the top
of the ordered portion of penton base (Figure 5A) [29]. Intrinsic disorder within the RGD
loops may provide a functional advantage for interaction with αv integrins, which serve as
internalization receptors for HAdV [35]. The flexible and extended nature of the penton
base RGD loops may also make them likely targets for C4b opsonization. Examination of
the HAdV-C5 penton base RGD loop sequence indicates eight residues with a hydroxyl
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group in their sidechain (serines and threonines) and eight residues an amino group (lysines
and arginines), all of which might serve as binding sites for the reactive thioester of C4b
(Figure 5). A molecular dynamics simulation of the HAdV-C5 penton base pentamer with
modeled RGD loops, combined with a calculation of the solvent accessible surface area for
the hydroxyl and amino groups, indicated that these possible reactive thioester binding
sites are all solvent accessible. The maximum solvent accessible surface area was found
for all of these groups in both the starting and ending coordinates (528 Å2 for hydroxyl
oxygens; 575 Å2 for amino nitrogens).
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fragments, as in Figure 1D, modeled with a hexameric FC platform (green) from a cryo-EM structure of an IgG-C1 complex
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3.4. Molecular Dynamics Simulations with HAdV-C5 Penton Base and C4b

In order to test our hypothesis that C4b deposition on one RGD loop leads to the
entanglement of C4b with additional RGD loops on the same penton base multimer, we
built three starting models for molecular dynamics simulations. In model 1 the thioester of
C4b is covalently bound to the hydroxyl group of Thr343 in one RGD loop (Figure 6A). In
model 2, C4b is covalently bound to the amino group of Arg 347 in an RGD loop (Figure 6B).
In model 3, we presume that the reactive thioester of C4b has reacted with a water molecule
and position C4b near, but not covalently bound to, one RGD loop (Figure 6C). Using these
three starting models we performed molecular dynamics simulations to observe whether
nearby RGD loops would form favorable interactions with C4b. As noted by Flatt et al., the
RGD loops move relatively quickly during molecular dynamics simulations, presumably
because of their flexibility and intrinsic disorder [29]. We found that, within relatively short
simulations (12 ns), stabilizing interactions formed between C4b and a nearby RGD loop
(Figure 6).

Using the NAMD Energy plugin, we evaluated the stabilizing non-bonded interactions
formed between C4b and each penton base RGD loop. In the model 1 simulation, C4b
was covalently bound to a hydroxyl group in the RGD loop of the penton base chain C in
the starting model. By the end of the simulation, favorable interactions had formed with
RGD loops of two neighboring penton base subunits (chains C and D), with an overall
strongly favorable interaction between C4b and penton base of −318 kcal/mol (Table 1).
In the model 2 simulation, C4b was covalently bound to an amino group in the RGD loop
of the penton base chain C in the starting model. Similar to the results of the model 1
simulation, by the end of the model 2 simulation, favorable interactions had formed with
RGD loops of two neighboring penton base subunits (chains C and D). The calculated
non-bonded interaction energy between C4b and penton base at the end of the model 2
simulation was even more favorable, −594 kcal/mol, (Table 2) than found for the model 1
simulation. In the model 3 simulation, C4b was positioned near the RGD loop of penton
base chain C in the starting model. Similar to the results of the model 1 and model 2
simulations, by the end of the model 3 simulation, favorable interactions had formed with
RGD loops of two neighboring penton base subunits (chains C and D). The non-bonded
interaction energy between C4b and penton base at the end of the model 3 simulation,
−315 kcal/mol (Table 3), was similar to that found for model 1. In each model simulation,
the final non-bonded interaction energy was a combination of van der Waals (VdW) and
electrostatic (Elec) components: model 1 (VdW: −132 kcal/mol; Elec: −186 kcal/mol),
model 2 (VdW: −189 kcal/mol; Elec: −406 kcal/mol), and model 3 (VdW: −135 kcal/mol;
Elec: −181 kcal/mol).
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Figure 6. Interaction of C4b with multiple RGD loops of HAdV-C5 penton base. (A) Initial (0 ns)
and final (12 ns) coordinates from the model 1 molecular dynamics simulation with a covalent bond
between Thr343 of penton base chain C (green) and C4b (blue). The covalently linked residues,
Thr343 of penton base and Cys1010 of C4b, are in red. (B) Coordinates from the model 2 simulation
with a covalent bond between Arg347 of penton base chain C (green) and C4b. The covalently linked
residues, Arg347 of penton base and Cys1010 of C4b, are in red. (C) Coordinates from the model 3
simulation with no covalent bond between penton base and C4b. Cys1010 of C4b is in red. Penton
base subunits are colored as in Figure 5. Penton base is shown in a different orientation for each
simulation. The final coordinates from all three simulations show additional favorable interactions
indicated with arrows between C4b and penton base chain D (yellow).
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Table 1. Total non-bonded interaction energy between C4b and penton base for model 1 with covalent
linkage to penton base Thr343.

0 ns (kcal/mol) 12 ns (kcal/mol)

Penton base Chain A (pink) 0 0

Penton base Chain B (blue) 0 0

Penton base Chain C (green) −51 −226

Penton base Chain D (yellow) 6 −91

Penton base Chain E (orange) 0 0

Penton base Chains A–E −45 −318

Table 2. Total non-bonded interaction energy between C4b and penton base for model 2 with covalent
linkage to penton base Arg347.

0 ns (kcal/mol) 12 ns (kcal/mol)

Penton base Chain A (pink) 0 0

Penton base Chain B (blue) 4 −10

Penton base Chain C (green) −121 −517

Penton base Chain D (yellow) 1 −67

Penton base Chain E (orange) 0 0

Penton base Chains A–E −116 −594

Table 3. Total non-bonded interaction energy between C4b and penton base for model 3 with no
covalent linkage to penton base.

0 ns (kcal/mol) 12 ns (kcal/mol)

Penton base Chain A (pink) 0 0

Penton base Chain B (blue) 0 29

Penton base Chain C (green) −61 −158

Penton base Chain D (yellow) 0 −186

Penton base Chain E (orange) 0 0

Penton base Chains A–E −61 −315

All three molecular dynamics simulations, presented in detail (models 1–3), support
the idea that one molecule of C4b may form stabilizing interactions with multiple RGD
loops of a HAdV-C5 penton base multimer. While a covalent bond between C4b and
one RGD loop may promote the entanglement of multiple RGD loops (models 1 and 2),
the model 3 simulation indicates that just positioning C4b near the penton base will
also result in entanglement. We noted that, for all three models, secondary non-bonded
interactions formed between C4b and the most extended RGD loop model of chain D
(Figure 6, Tables 1–3). In contrast, preliminary models that did not have C4b positioned
near the most extended RGD loop model (chain D) did not show the entanglement of
RGD loops by the end of 12 ns simulations, and these models were rejected. Although the
RGD loop is highly flexible, we did not observe the RGD loops of chains A, B, C, or E to
extend as fully as that of chain D during the relatively short (12 ns) simulations. It is likely
that, over longer simulations, all five RGD loops would extend and contract and that all
five chains would be equally likely to interact with C4b. However, within the constraints
of our analysis protocol, it seems that positioning C4b near an extended RGD loop is a
critical factor for the acceptance of a C4b/penton base model. To confirm this idea, we
built two additional starting models with covalent bonds between C4b and the penton
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base (models 4 and 5). These covalent linkages were made with residues within the RGD
loops of chains C or E on either side of the most extended chain D RGD loop. Both models
4 and 5 showed entanglement with the chain D RGD loop by the end of a 12 ns simulation
(Figures S1 and S2; Tables S1 and S2). One additional starting model without a covalent
bond between C4b and penton base was generated (model 6), with C4b positioned over
the chain E RGD loop. By the end of a 12 ns simulation, model 6 showed entanglement
with the chain D RGD loop (Figure S3, Table S3). These additional C4b/penton base
models (models 4–6) support the idea that positioning C4b near an extended RGD loop
is a key factor for model acceptance with our simulation protocol. It seems likely that
an abundant number of acceptable starting models could be generated that would result
in the entanglement of RGD loops. The spacing of RGD loops at the top of the penton
base (35 Å), the dimensions of the C4b thioester domain (~50 Å in diameter), and the
multi-domain nature of C4b, all contribute to the likelihood of RGD loop interactions
with C4b. In addition, longer molecular dynamics simulations would likely result in the
observation of more RGD loop movement and an increase in C4b/RGD loop entanglement.

It has been proposed that integrin binding to the RGD loops of the penton base
may induce a conformational change, or untwisting, of the penton base multimer that
initiates AdV uncoating [34]. Together with the results presented in this study, it seems
reasonable that the structural mechanism underlying the C4b neutralization of HAdV-C5 is
the entanglement of C4b with multiple RGD loops of penton base multimers at each capsid
vertex. This entanglement may lead to the stabilization of penton base multimers, which,
in turn, may block capsid uncoating and prevent the release of the virally encapsidated
endosomal membrane lytic factor, protein VI.

4. Discussion

The complement system has been described as keeping a constant vigil against
viruses [48]. This system has an ancient origin, existing in a primitive form in a “liv-
ing fossil”, the horseshoe crab (Carcinoscorpius rotundicauda) [49]. In humans, a proteolytic
cascade of multiple complement proteins serves to detect and mark viruses and other
pathogens for destruction. The interaction of either multiple IgG molecules or a single IgM
molecule with an AdV virion can initiate the classical complement activation pathway. Bot-
termann et al. have shown that neutralizing antibodies act with complement components
C1 and C4 to effect AdV neutralization by blocking the release of AdV/C4b complexes from
the endosome [24]. They also showed that this complement-based antiviral pathway works
in parallel with the tripartite motif-containing protein 21 (TRIM21) antiviral activity [50].
TRIM21 is an intracellular antibody receptor that triggers the proteosome-dependent
degradation of antibody-virus complexes that enter the cytoplasm [51].

In this computational modeling study, we investigated the possibility that C4b might
neutralize HAdV-C5 by binding and entangling the flexible penton base RGD loops at
the capsid vertices. We reasoned that the entanglement of multiple RGD loops at the
same vertex might stabilize the penton base and block the conformational changes needed
for the release of the penton base and the membrane lytic factor protein VI. We used
available structural information for HAdV-C5 [36], HAdV-C5 anti-hexon antibody 9C12
complexes [32,33], a cryo-EM structure of an IgG-C1 complex [22], and a cryo-ET structure
of an IgM-C1-C4 complex [19], to build a composite HAdV-C5/9C12/C1/C4b model
(Figure 4B). This model positions C4b over the penton base capsomers of the HAdV-C5
capsid with the C4b reactive thioester positioned near the intrinsically disordered RGD
loops of the penton base. Our molecular dynamics simulations with C4b and penton base
indicate that it is possible for C4b to interact with multiple RGD loops at the same vertex
(Figure 6) and that favorable non-bonded interactions may be formed that could stabilize
the penton base (Tables 1–3) and thus block capsid uncoating. The molecular dynamics
results support our hypothesis that C4b neutralizes HAdV-C5 by stabilizing penton base
capsomers via RGD loop entanglement. Thus, the intrinsically disordered RGD loops of
the HAdV-C5 penton base may provide a functional advantage for interacting with αv
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integrins on host cells, while at the same time serving as an Achilles heel of the virus, which
can be exploited by the complement system.

In building a model for 9C12 Fab fragments interacting with the HAdV-C5 capsid
(Figure 1D), we observed a steric clash between Fab arms bound at neighboring peripen-
tonal hexons (Figure 2). We reasoned that this steric clash might be resolved with confor-
mational changes of the hexon epitopes or within the IgG molecule. In fact, the observation
of a steric clash at this position is consistent with past observations. The cryo-EM struc-
ture of the HAdV-C5/9C12 complex indicated that 9C12 binds bivalently to neighboring
peripentonal hexons with a distorted conformation for one of the two Fab arms [33]. Botter-
mann et al. found that 9C12 has a slow on-rate and that binding occurs with a concurrent
cost in entropy [32]. In light of our current structural modeling study, it seems reasonable
to propose that distorted, bivalently bound 9C12 IgGs at the peripentonal hexons might
initiate C1 binding in the vertex region of HAdV-C5. It is known that the C1q binding
sites on IgGs are normally shielded by the Fab arms and are generally only exposed after
the binding of IgG to a pathogen [43]. The antihexon 9C12 IgG may be able to efficiently
neutralize HAdV-C5 via C4b opsonization by virtue of its favorable epitope position and
its distorted binding mode, which likely exposes C1q binding sites near the IgG hinge
region. The C4b mediated neutralization of HAdV-C5 may be enhanced by the preferential
binding of 9C12 to peripentonal hexons versus hexons in the middle of the facet [33]. Our
model of the HAdV-C5/9C12/C1/C4b complex indicates that the preferential binding of
9C12 to peripentonal hexons would ensure that a good percentage of C4b would opsonize
the virus in the vicinity of the penton base.

Interestingly, our structural modeling study may offer a possible explanation for why
the minimum ratio of 9C12 to HAdV-C5 for neutralization is 240 antibody molecules per
virus particle [33]. We propose that the complement-mediated neutralization mechanism
of 9C12 is the recruitment of C1 and C4b to the vertex regions, the entanglement of the
penton base RGD loops by C4b, and the stabilization of the penton base, which leads
to the blockage of capsid uncoating steps, including the release of protein VI. If we are
correct, then it would be important to stabilize all twelve of the penton base capsomers on
a particular virus particle to achieve neutralization by the complement-based pathway. In
other words, the binding of C4b to only a subset of the penton base capsomers would not
be expected to completely block protein VI release and HAdV-C5 would not be neutralized
by this antiviral pathway. Our model of the HAdV-C5/9C12 complex suggests that a
ratio of 240 antibody molecules per virus particle would lead to the bivalent binding of
9C12 at all peripentonal hexons, as well as a sufficient number of IgG molecules bound in
the middle of each facet to promote the formation of FC platforms near the peripentonal
hexons. These well-positioned FC platforms would effectively prime the system for the
recruitment of C1 and C4b to the vicinity of the capsid vertices and heighten the chances
for stabilization of all twelve of the penton base capsomers.

A limitation of our study is that the HAdV-C5 fiber protein was not included in our
model of the HAdV-C5/9C12/C1/C4b complex. Multiple studies indicate that fiber is
released during early AdV cell entry steps, which occur at the plasma membrane [52].
Therefore, we reasoned that the neutralization mechanism of C4b was likely not dependent
on the presence of fiber. If, however, the fiber is still present when C4b is opsonizing
the HAdV-C5/9C12/C1 complex, then we would anticipate that the fiber would present
additional possible opsonization sites and further opportunities for C4b to form stabiliz-
ing non-bonded interactions with HAdV-C5 capsid proteins. Indeed, Bottermann et al.
observed that C4b deposition on the viral capsid interferes with fiber and penton base
shedding during in vitro heat treatment assays [24]. The entanglement of both the fiber and
penton base RGD loops by C4b is an alternative and plausible neutralization mechanism.
Nevertheless, the molecular dynamics simulations presented in this study indicate that if
C4b is positioned near a HAdV-C5 vertex, then the entanglement of penton base RGD loops
and stabilization of the multimeric penton base capsomer are likely outcomes (Figure 6).
Previous cryo-EM studies of AdV/integrin complexes suggest that symmetry mismatched
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interactions between integrins and the penton base trigger the untwisting of the penton
base pentamers and the release of the penton base from the capsid [34]. We envision that
the C4b entanglement of the RGD loops would have the opposite effect and serve to lock
penton the base capsomers firmly in the AdV capsid.

This work suggests that introducing mutations into the penton base RGD loops might
be a feasible strategy to modulate the interaction of HAdV-C5 with the complement system.
However, simply mutating the serine, threonine, lysine and arginine residues in the RGD
loops to other residue types might not be sufficient, as our study indicates that C4b can
entangle multiple RGD loops even without being covalently bound to the penton base.
Analysis of the non-bonded interaction energies formed between RGD loops and C4b
during molecular dynamics simulations indicates that both sizable van der Waals and elec-
trostatic interactions are formed (Tables 1–3). Strategies to minimize the C4b entanglement
of the penton base RGD loops might include shortening the RGD loops to diminish van
der Waals interactions, and reducing the number of charged residues in the RGD loops
to minimize possible electrostatic interactions with C4b. These proposed modification
strategies would require experimental testing and verification. It is of interest to note that
the vast majority of HAdV species have very short penton base RGD loops that may point
to an evolutionary complement attack evasion mechanism [48,53]. Whether or not HAdV
species with short penton base RGD loops are more resistant to C4 complement-mediated
neutralization, compared to HAdv species C, also requires experimental verification. In
addition, RGD loop modifications would have to be designed so that either they do not
impair interactions with αv integrins on host cells or so that they provide targeting to
alternative internalization receptors. Atasheva et al. have demonstrated that it is possible
to replace HAdV-C5 RGD loops with sequences derived from human laminin-α1 to retar-
get the virus to use α3β1, α6β1, and α6β4 integrins present on human epithelial tumor
cells [11].

A potential limitation of our study is that our analysis and conclusions are based
exclusively on computational modeling of AdV interactions with antibodies and com-
plement components C1q and C4. As the detrimental effect of neutralizing antibodies
and complement on the safety and efficacy of AdV-based vectors has been extensively
reported, numerous approaches to shield AdV particles from blood factors have been
proposed. Many of these approaches have been tested in pre-clinical models and in human
clinical trials, including shielding AdV with polymers [54] and plasma proteins, such as
albumin [55]. Our study may serve as a foundation for engineering novel AdV vectors that
resist complement-mediated inactivation based on specific targeted mutations in the aden-
ovirus hexon and penton base. While our study is purely theoretical, the analyses we have
done point to the conceptual feasibility of designing AdV vectors resistant to C4 comple-
ment deposition on penton base capsomers. It is certain that the direct visualization of AdV
in complex with complement components, using cryo-EM or cryo-ET approaches, will be
required to provide exhaustive information on the mode of complement-AdV interaction.
It is anticipated that these structural studies would lead to the design and experimental
validation of mutant AdV variants with improved resistance to complement-mediated
neutralization.

Together, our modeling and molecular dynamics results provide a structural hypothe-
sis for complement C4 mediated neutralization of AdV. An enhanced understanding of
the molecular mechanisms underlying the interaction of AdV with host factors, including
complement proteins, should promote the development of AdV-based oncolytic viruses
and gene therapy vectors.

Supplementary Materials: The following are available online at https://www.mdpi.com/1999-491
5/13/1/111/s1, Figure S1: Interaction of C4b with multiple RGD loops of HAdV-C5 penton base
for Model 4; Figure S2: Interaction of C4b with multiple RGD loops of HAdV-C5 penton base for
Model 5; Figure S3: Interaction of C4b with multiple RGD loops of HAdV-C5 penton base for Model 6;
Table S1: Total Non-bonded Interaction Energy between C4b and Penton Base for Model 4; Table S2:
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Total Non-bonded Interaction Energy between C4b and Penton Base for Model 5; Table S3: Total
Non-bonded Interaction Energy between C4b and Penton Base for Model 6.
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