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The human face is the most studied object category in visual neuroscience. In a quest for
markers of face processing, event-related potential (ERP) studies have debated whether
two peaks of activity – P1 and N170 – are category-selective.Whilst most studies have used
photographs of unaltered images of faces, others have used cropped faces in an attempt
to reduce the influence of features surrounding the “face–object” sensu stricto. However,
results from studies comparing cropped faces with unaltered objects from other categories
are inconsistent with results from studies comparing whole faces and objects. Here, we
recorded ERPs elicited by full front views of faces and cars, either unaltered or cropped.
We found that cropping artificially enhanced the N170 whereas it did not significantly mod-
ulate P1. In a second experiment, we compared faces and butterflies, either unaltered or
cropped, matched for size and luminance across conditions, and within a narrow contrast
bracket. Results of Experiment 2 replicated the main findings of Experiment 1. We then
used face–car morphs in a third experiment to manipulate the perceived face-likeness of
stimuli (100% face, 70% face and 30% car, 30% face and 70% car, or 100% car) and the
N170 failed to differentiate between faces and cars. Critically, in all three experiments, P1
amplitude was modulated in a face-sensitive fashion independent of cropping or morphing.
Therefore, P1 is a reliable event sensitive to face processing as early as 100 ms after picture
onset.
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INTRODUCTION
The human face is probably the most biologically significant
stimulus encountered by humans in the environment because it
provides critical information about other individuals (e.g., iden-
tity, age, sex, mood, direction of attention, intention, etc.). One
fundamental question in visual neuroscience is whether or not
the human ability to process face information relies on spe-
cific neural mechanisms qualitatively distinct from those involved
in the perception of other classes of visual stimuli. A number
of event-related potential (ERP) and magnetoencephalography
(MEG) studies have been carried out to determine the time-course
of category-selective1 effects during visual object perception and
recognition. A particular peak of ERPs, the N170, which has a
latency of ∼170 ms after stimulus onset and is characterized by a
vertex positive and bilateral temporal negative deflection (Bentin
et al., 1996; Linkenkaer-Hansen et al., 1998), and its magnetic
equivalent, the M170 (Liu et al., 2002; Xu et al., 2005), have been
frequently reported as face-selective in the literature. In particular,
it has been claimed that no stimulus category other than the

1Here, we refer to a response as category-selective when it is significantly larger
in amplitude to a specific category than to every other object category. Category-
sensitivity, on the other hand, refers to significant modulations of the response
between any two given categories and is therefore not necessarily selective.

human face elicits negativities as pronounced as faces in the 140-
to 180-ms time-range after stimulus presentation (Itier and Taylor,
2004).

On the other hand, the P1, a peak with a latency of 100 ms,
has also been suggested as a category-sensitive peak, albeit by
a minority of authors (Herrmann et al., 2005; Thierry et al.,
2007). Despite the fact that P1 category-sensitivity has been
repeatedly challenged (Bentin et al., 2007b; Rossion and Jacques,
2008; Kuefner et al., 2010, but see also Thierry et al., 2007b;
Dering et al., 2009), converging evidence from MEG, ERP,
and transcranial magnetic stimulation (TMS) have highlighted
face-sensitive processes occurring around 100 ms post-stimulus
onset (Liu et al., 2002; Herrmann et al., 2005; Pitcher et al.,
2007). In particular, double TMS pulses have been shown to
disrupt visual processing selectively for faces when stimula-
tion is delivered over the occipital face area (OFA) 60 and
100 ms after picture presentation but no measurable disruption
is observed for double TMS pulses applied at later latencies
(Pitcher et al., 2007), nor when applied to nearby extrastriate
areas.

Studies of intracranial recordings in patients with implanted
electrodes have also yielded inconsistent results. Whilst face-
selective responses from the inferior temporal lobe have been
recorded within 200 ms of stimulus onset (Allison et al., 1994,
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1999),other studies have suggested face-sensitive responses as early
as 50 ms after stimulus onset (Seeck et al., 1997, 2001), similar to
some ERP studies (Braeutigam et al., 2001; Mouchetant-Rostaing
and Giard, 2003). However, cortical activity in pharmacoresis-
tant epileptic individuals can be affected by cognitive impairment
after repeated seizures, anticonvulsant medication consumption,
or functional reorganization subsequent to the presence of epilep-
tic foci, making comparisons of intracranial recordings to ERPs
only tentative (Bennett, 1992; Allison et al., 1999; Liu et al., 2002;
Krolak-Salmon et al., 2004).

A number of ERP studies have measured the sensitivity of
the N170 peak to various stimulus manipulations in an attempt
to determine which stage(s) of visual structural encoding are
functionally reflected by the modulation of its amplitude. For
instance, the N170 is sensitive to vertical orientation (Bentin
et al., 1996), isolation of internal features (Bentin et al., 1996),
scrambled facial features (George et al., 1996) as well as con-
trast (Itier and Taylor, 2002), spatial frequency (Goffaux et al.,
2003), and gaussian noise (Jemel et al., 2003). Since the N170
component is affected by the lack of internal (eyes, nose, mouth)
and external (hair, ears, neck) features, it is likely to reflect – at
least in part – configurational analysis of visual objects (Eimer,
2000b). Surprisingly, the sensitivity of the N170 to the external
integrity of faces has rarely been investigated. Moreover, many
studies of visual object categorization have compared face and
object perception using cropped faces (i.e., faces without hair,
ears, or neck) and “intact” objects (Goffaux et al., 2003; Ros-
sion et al., 2003; Kovacs et al., 2006; Jacques and Rossion, 2007;
Righart and de Gelder, 2007; Rousselet et al., 2007; Vuilleumier
and Pourtois, 2007). Therefore, it is unclear whether differences
between experimental conditions found earlier are indeed dri-
ven by categorical differences or artificially influenced by dif-
ferences between experimental conditions in terms of stimulus
integrity.

Why should stimulus integrity modulate N170 amplitude?
Since eyes presented in isolation have been shown to elicit N170
as large as those elicited by pictures of complete faces, it may be
that N170 is not sensitive to stimulus integrity. In fact, this result
has led to the hypothesis that N170 may index the activity of an
eye-detection system (Eimer, 1998). However, other studies have
shown even greater N170 amplitude to isolated eyes (Bentin et al.,
1996), which suggests that N170 may be increased in amplitude
when stimulus integration is more demanding. Furthermore, the
N170 is highly sensitive to stimulus interpretability. That is, the
same object can elicit larger N170 amplitudes when interpreted as
part of a face (e.g., two dots interpreted as dots or as eyes; Bentin
and Golland, 2002).

Overall, because cropped faces and unaltered faces have often
been used without distinction (Bentin et al., 2007b; Rossion, 2008;
Rossion and Jacques, 2008; Zhao and Bentin, 2008; Anaki and
Bentin, 2009), it is unknown whether differences between faces
and other object categories may be affected by spurious differ-
ences in stimulus integrity. More specifically, a review paper by
Rossion and Jacques (2008) has reported unpublished data as evi-
dence against the findings of Thierry et al. (2007a). These results
were based on faces and cars presented full front and repeated six
times. Critically, the pictures of faces used were cropped but the

pictures of cars were unaltered. Here, we investigated the effect of
stimulus cropping and repetition to account for the discrepancies
between the results obtained by Rossion and Jacques (2008) and
those of Thierry et al. (2007a).

We presented participants with a stream of pictures featuring
faces and cars (full front, symmetrical, centered, and of similar
size within each condition). In the first block, all the stimuli were
presented once complete and once cropped, i.e., faces without
hair, ears, or neck and cars without rooftop, rear-view mirrors,
or wheels (Figure 1A). In a second block, all stimuli used were
repeated six times in order to test for potential repetition effects,
since repetition is a factor inherent to previous studies on face
categorization (e.g., Rossion and Jacques, 2008). This resulted
in a within-participants 2 × 2 × 2 factorial design (face/car vs.
cropped/unaltered vs. repetition/no repetition). Participants per-
formed a forced binary choice categorization task. We predicted
(a) an effect of cropping on N170 amplitude for faces, which would
account for the discrepancy between results obtained by Rossion
and Jacques (2008) and Thierry et al. (2007a), without a category
effect for the comparison of unaltered faces and cars; (b) a signif-
icant category effect on P1 amplitude replicating previous results
(Thierry et al., 2007a; Dering et al., 2009; Boehm et al., 2011);
and (c) an increase in P1 amplitude, and/or delayed P1 latency,
by cropping, since categorization is arguably more difficult when
peripheral information is missing, and given that we previously
observed P1 amplitude increase with task difficulty (Dering et al.,
2009).

In a second experiment, we sought to discard the hypothe-
sis that effects of cropping on P1 or N170 amplitude could be
due to residual differences in stimulus size, luminance, or con-
trast between experimental conditions by matching pictures with
regard to all of these characteristics. We took this opportunity to
compare the processing of faces to that of a third category, but-
terflies, which have been investigated previously (Schweinberger
et al., 2004; Thierry et al., 2007a). The second experiment there-
fore had a 2 (faces/butterflies) × 2 (cropped/unaltered) design
and featured no significant difference in size, luminance, between
experimental conditions while keeping contrast variance within a
narrow bracket2 (Figure 1B). The predictions for Experiment 2
were exactly the same as that for Experiment 1.

In a third experiment, we manipulated stimulus interpretabil-
ity. Full front views of faces and cars were morphed to produce
images that contained face and car information in various pro-
portions: 100% face, 70% face–30% car, 50% face–50% car, 30%
face–70% car, and 100% car (Figure 1C). The ambiguous 50%
face–50% car condition was highlighted by a frame, required par-
ticipant’s responses, and was discarded at the analysis stage. This
resulted in a 2 (face vs. car) × 2 (morphed vs. unaltered) design.
Any component that is presumed to be face-sensitive was pre-
dicted to be significantly larger for face-like stimuli as compared
to car-like stimuli.

2Due to cropping eliminating high contrast parts of the face–object (e.g., hair), it was
not possible to fully control for contrast across experimental conditions. However,
significant effects of cropping – where they existed – always were in the opposite
direction as that that would be expected from a contrast manipulation.
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FIGURE 1 | Examples of stimuli used in all experiments. (A) Example of a
cropped face stimulus of the kind often used in experiments testing object
categorization presented next to the unaltered source face and a similar
example comparison for a car stimulus. (B) Examples of cropped and

unaltered faces and butterflies after matching for luminance, contrast, and
size. (C) Examples of progressive morphing between a face and a car
stimulus. Note that 50% face–50% car morphs were used as target stimuli
and not analyzed.

MATERIALS AND METHODS
EXPERIMENT 1
Participants
Twenty-two participants (mean age = 24.5, SD = 5.5, 15 females,
1 left-handed) with normal or corrected-to-normal vision gave
written informed consent to participate in the experiment that
was approved by the ethics committee of Bangor University.

Stimuli
Ninety-six images of full front faces were modified digitally so as
to remove features considered peripheral to the face–object sensu
stricto, i.e., hair, ears, and neck. Ninety-six images of full front cars
were modified in a similar way by removing roof top, wing mir-
rors, and wheels. After cropping, all images were transposed onto a
gray background (Figure 1). All images in each of the four groups
generated (cars and faces, unaltered and cropped) were centered
on the screen, scaled to fit a standard size template, and had the
same orientation (thus reducing stimulus variability as much as
possible (Thierry et al., 2007a). Cropping images resulted in slight
variations in luminance (cropped faces 42.1 cd/m2; cropped cars
40.1 cd/m2; unaltered faces 34.9 cd/m2; unaltered cars 39.8 cd/m2)
and contrast (cropped faces 0.7 cd/m2; cropped cars 1.5 cd/m2;

unaltered faces 3.6 cd/m2; unaltered cars 3.5 cd/m2) between con-
ditions. Luminance on the screen was measured using a Minolta
CS-100 colorimeter and contrast values corresponded to the root
mean square contrast over the whole image including background.

Procedure
In the first part of the experiment, stimuli were presented in a
randomized order in four blocks of 96 trials such that each block
featured 24 pictures from each of the four experimental condi-
tions. In the second part of Experiment 1, conducted with the
same participants, a selection of 16 images repeated six times
each was presented in the same randomized fashion to test for
a potential effect of repetition. All stimuli were presented for
200 ms within 8.6˚ of vertical and 8.7˚ of horizontal visual angle
on a Viewsonic G90FB 19′ calibrated CRT monitor with a reso-
lution of 1024 × 768, at a refresh rate of 100 Hz. Participants sat
100 cm from the monitor. Inter-stimulus interval was 1300 ms,
and participants categorized each of the stimuli as face or car by
pressing keys on a keyboard, a task shown to elicit similar ERP
patterns as a one-back task (Dering et al., 2009). Response sides
were counterbalanced between participants.
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EXPERIMENT 2
Participants
Twenty participants (mean age = 22.1, SD = 3.7, 11 females, 1
left-handed) with normal or corrected-to-normal vision gave writ-
ten informed consent to participate in the experiment that was
approved by the ethics committee of Bangor University.

Stimuli
Eighty images of full front faces were modified as in Experiment
1, by removing features considered peripheral to the face–object.
Eighty images of full front butterflies were modified in a similar
way by cropping the wings to approximately half of their length
using a circular mask. After cropping, the images were enlarged
without distortion to fit the maximum x and y dimensions of
their counterpart unaltered image, and then transposed onto a
gray background (Figure 1). All images in each of the four groups
generated (butterflies and faces, unaltered or cropped) were cen-
tered on the screen, matched for size, and had the same orientation
(thus reducing stimulus variability as much as possible (Thierry
et al., 2007a). Luminance was set at 42 cd/m2, and contrast was
17.8 cd/m2 ±2.2. Luminance on the screen was measured using
a Minolta CS-100 colorimeter and contrast values corresponded
to the root mean square contrast over the whole image including
background.

Procedure
All stimuli were presented for 200 ms within 8.6˚ of vertical and
8.7˚ of horizontal visual angle on a Viewsonic G90FB 19′ cali-
brated CRT monitor with a resolution of 1024 × 768, at a refresh
rate of 100 Hz. Participants sat 100 cm from the monitor. Inter-
stimulus interval was 1300 ms, and participants categorized each
of the stimuli as a face or butterfly by pressing keys on a stimu-
lus response box. Response sides were counterbalanced between
participants. Stimuli were presented in a randomized order in 4
blocks of 160 trials such that all images in the experiment were
presented twice.

EXPERIMENT 3
Participants
Eighteen participants (mean age = 19.8, SD = 1.99, 13 females, 0
left-handed) with normal or corrected-to-normal vision gave writ-
ten consent to participate in the experiment that was approved by
the ethics committee of Bangor University.

Stimuli
Forty images of full front neutral faces aged between 18 and
30 years old were obtained from the Productive Aging lab’s face
database (Minear and Park, 2004). These images, centered on the
screen, scaled to fit a standard size template, and with the same ori-
entation were transposed onto a uniform gray background. Forty
pictures of full front faces were paired with 40 pictures of full front
cars and transformed using a morphing algorithm (Sqirlz Morph
2.0) to produce a series of face–car morphs varying in the percent-
age of face information embedded in each image (Figure 1): 100%
face, 70% face–30% car, 50% face–50% car, 30% face–70% car,
and 100% car. The morphing procedure produced slight variations
in luminance such that across all conditions average luminance

was 37.2 cd/m2, ±1 cd/m2 (contrast 1.5 cd/m2). Luminance on
the screen was measured using a Minolta CS-100 colorimeter and
contrast values corresponded to the root mean square contrast
over the whole image including background.

Procedure
Stimuli were presented, in a randomized order, for 500 ms within
8.8˚ of vertical and 8.5˚ of horizontal visual angle on a View-
sonic G90FB 19′ calibrated CRT monitor with a resolution of
1024 × 768, at a refresh rate of 100 Hz. Participants sat 100 cm
from the monitor. Inter-stimulus interval was 1500 ms, allow-
ing for the participant response. Each picture was presented six
times throughout the experiment. Participants only responded to
ambiguous target stimuli (50% face–50% car), which were pre-
sented in a distinctive black frame, by indicating whether the
picture was perceived rather as a face or as a car. The task was a
forced-choice binary task and response sides were counterbalanced
between participants.

Event-related potentials
Using Cz as a reference, scalp activity was recorded using
SynAmps2™(Neuroscan, Inc., El Paso, TX, USA) amplifiers with
a sampling rate of 1 kHz from 64 Ag/AgCl electrodes (Easycap™,
Brain Products, Germany) distributed across the scalp according
to the extended 10–20 system. Impedances were kept below 5 kΩ.
The electroencephalogram was filtered on-line between 0.01 and
200 Hz and off-line with a low-pass zero phase shift digital filter
set to 30 Hz (48 db/octave slope). Eye-blink artifacts were math-
ematically corrected3 using a model blink artifact computed for
each individual following the procedure recommended by Grat-
ton et al. (1983). Signals exceeding ±75 μV in any given epoch
were automatically discarded. EEG recordings were cut into epochs
ranging from −100 to 500 ms after stimulus onset and averaged
for each individual in all experiments according to the experimen-
tal conditions. Grand-averages were calculated after re-referencing
individual ERPs to the common average reference. Mean ampli-
tudes for each condition were analyzed at eight posterior occipital
electrodes for Experiment 1. Global field power was calculated
to guide classification of ERP components (Koenig and Melie-
Garcia, 2010). Peak latencies were measured at the electrode of
maximal amplitude in each condition and each participant. The
P1 was identified as a positive peak occurring between 80 and
120 ms and analyzed at sites O1, O2, PO7, PO8, PO9, and PO10.
Due to significant differences between latencies for conditions at
the P1, mean amplitude analyses were conducted 20 ms around
the peak of maximal activity for each condition of the experiment
(Table 1). The N170 peaked between 120 and 200 ms at electrode
sites P7, P8, PO7, PO8, PO9, and PO10. Mean amplitude analy-
ses for the N170 were conducted 40 ms around the peak for each
condition of the experiment (Table 1). The data was subjected
to repeated measures analysis of variance (ANOVAs) with three
factors – category (face/car), alteration (unaltered/cropped), and

3To check the efficacy of our eye-blink correction procedure and to establish that
residual noise did not affect our results, we conducted a new analysis excluding
all trials containing eye movement artifacts. The net loss of trials was <1.4% and
statistical results were unchanged in all three experiments.
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Table 1 | Average P1 and N170 peak latencies (in milliseconds) in Experiments 1, 2, and 3.

EXPERIMENT 1

UF CF UC CC

P1 No stimulus repetition 93 101 96 105

N170 136 145 147 155

P1 Stimulus repetition 93 100 93 104

N170 136 147 149 157

EXPERIMENT 2

UF CF UB CB

P1 92 98 86 87

N170 143 146 143 147

EXPERIMENT 3

100% car 70% car 70% face 100% face

P1 109 104 105 102

N170 157 157 154 148

electrode (six levels). A Greenhouse–Geisser correction was used
where applicable. To demonstrate the magnitude of effects, par-
tial Eta squared (ήp2) is reported. In the analyses reported here,
the electrode factor was systematically significant but such effects
are not discussed since the focus of this paper was on mean peak
amplitude differences at electrodes of predicted (and observed)
maximal sensitivity. For a contribution addressing the issue of
topographical comparisons, see Boehm et al. (2011).

For Experiments 2 and 3, P1 and N170 components peaked
within the same time windows used for analysis in Experiment 1,
as indicated by calculation of the global field power. P1 and N170
were examined at the same electrode sites as Experiment 1 respec-
tively, with mean amplitude analyses for P1 run 20 ms around
each peak for each condition and 40 ms around the peaks for
N170 (Table 1). Experiment 2 was analyzed by repeated measures
ANOVAs with three factors of category (face/butterfly), crop-
ping (unaltered/cropped), and electrode (six levels). Experiment
3 had three factors of category (face/car), morphing (morphed
images/normal images), and electrode (six levels). We used a
2 × 2 × 6 ANOVA in Experiment 3 because a one-way ANOVA
would imply a “clean” perceptual continuum between the 0% face
and 100% face conditions. More than a linear relationship between
percentage of face/car information and P1 amplitude modulation,
we expected morphing to add perceptual difficulty and therefore
artificially boost P1 mean amplitude. Effect sizes (ήp2) are also
reported where relevant.

Temporal segmentation
This analysis tracked scalp topographies that remain stable for
periods of time in the order of tens to hundreds of millisec-
onds (Michel et al., 2001). These so-called microstates are thought
to represent specific phases of neural processing (Lehmann and
Skrandies, 1984; Brandeis and Lehmann, 1986; Michel et al., 1999,
2001). We identified the microstates using a hierarchical cluster
analysis technique (Murray et al., 2008) to determine the seg-
mented maps accounting for the greatest amount of variance
in the ERP map series. The optimal number of segment maps
explaining the greatest amount of variance was obtained using
a cross-validation criterion (Pascual-Marqui et al., 1995; Pegna

et al., 1997, 2004; Michel et al., 2001; Thierry et al., 2006, 2007a;
Vuilleumier and Pourtois, 2007; Murray et al., 2008). Then, we
calculated the statistical validity of maps extracted from grand-
averages by determining the amount of variance explained by each
map in the ERPs of each individual in each condition. Repeated
measures ANOVAs were then performed on measures of explained
amounts of variance to compare the statistical probability of each
microstate explaining each experimental condition (Pegna et al.,
1997, 2004; Thierry et al., 2006, 2007a; Murray et al., 2008).

RESULTS
CROPPING FACES ARTIFICIALLY INCREASES N170 AMPLITUDE BUT
DOES NOT AFFECT P1 CATEGORY-SENSITIVITY
In Experiment 1, the mean reaction time was 381 ms ±77 across
all conditions and mean accuracy was 92 ± 6.6%. Neither reaction
times nor accuracy was affected by stimulus category or cropping
(all ps > 0.05).

Event-related potentials for all 22 participants displayed a typi-
cal P1–N1–P2 complex in all experimental conditions (Figure 2).
Analysis of P1 amplitudes revealed a pattern of response sensi-
tive to face information present in the stimulus. Repeated mea-
sures ANOVA over 6 posterior occipital electrodes revealed no
main effect of repetition [F(1,21) = 2.482, p > 0.05] or interac-
tions [p > 0.1] affecting P1 mean amplitude allowing data for
the unrepeated and repeated blocks to be combined for fur-
ther analysis. There was a main effect of object category on P1
mean amplitudes [F(1,21) = 15.87, p < 0.05, ήp2 = 0.43] show-
ing that the P1 elicited by faces was significantly larger than
the P1 elicited by cars but, there was no effect of cropping on
P1 mean amplitude [F(1,21) = 2.507, p > 0.05] and critically, no
interaction between the two factors [F(1,21) = 0.621, p > 0.05].
Conversely, P1 peak latency was significantly delayed by cropping
[F(1,21) = 15.4, p < 0.05, ήp2 = 0.423] but no other experimental
factors (all ps > 0.1).

We found a main effect of repetition on N170 mean ampli-
tude [F(1,21) = 7.13, p < 0.05, ήp2 = 0.253]. Stimulus repetition
increased N170 amplitude and this effect was greater for cars than
faces as indicated by a significant repetition by category interaction
[F(1,21) = 14.04, p < 0.05, ήp2 = 0.401]. The repetition factor did
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FIGURE 2 | Grand averaged event-related brain potentials recorded in the

four conditions of Experiment 1. Waveforms depict a linear derivation of the
electrodes used in the statistical analysis for the P1 and N170, respectively.
(A) From left to right: linear derivation of electrodes O1, O2, PO7, PO8, PO9,
and PO10 regardless of stimulus repetition (factor non-significant),
magnification of the P1, and bar plot of P1 mean amplitudes. (B) From left to

right: linear derivation of electrodes P7, P8, PO7, PO8, PO9, and PO10 in the
experimental block featuring stimulus repetitions, magnification of the N170,
and N170 mean amplitudes. (C) Linear derivation of electrodes P7, P8, PO7,
PO8, PO9, and PO10 in the experimental block without stimulus repetition,
magnification of the N170, and N170 mean amplitudes. Error bars depict
SEM.

not interact with any other factors. As predicted, object cate-
gory failed to modulate N170 mean amplitude [F(1,21) = 0.799,
p > 0.1; Figures 2B,C]. However, there was a main effect of
cropping [F(1,21) = 43.001, p < 0.0001, ήp2 = 0.672], such that

cropped stimuli elicited greater N170 mean amplitudes than
unaltered stimuli. Also, cropping and object category inter-
acted [F(1,21) = 43.37, p < 0.0001, ήp2 = 0.675], showing that the
difference in N170 mean amplitude between the cropped and
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unaltered conditions was greater for faces than cars (Figures 2B,C).
Bonferroni-corrected pair-wise comparisons between cropped
and unaltered objects were significant both in the case of faces
(p < 0.0001) and in that of cars (p < 0.001). It is noteworthy that
the contrast often reported in the literature, i.e., cropped faces vs.
unaltered cars was highly significant (p < 0.0001)4.

There was no main effect of repetition on N170 laten-
cies [F(1,21) = 0.54, p > 0.1]. Repetition interacted with cate-
gory [F(1,21) = 8.401, p < 0.05, ήp2 = 0.286], reducing latencies
for repeated in comparison to unrepeated cars [F(1,21) = 6.53,
p < 0.05, ήp2 = 0.237], however this latency difference was
only 2 ms. Repetition did not interact with any other fac-
tor [Fs(1,21) < = 1.85, p > = 0.188]. N170 latency was signifi-
cantly modulated by both cropping [F(1,21) = 255.72, p < 0.05,
ήp2 = 0.924, delayed for cropped as compared to unaltered
stimuli] and category [F(1,21) = 123.82, p < 0.05, ήp2 = 0.855,
delayed for cars as compared to faces], and these factors interacted
significantly [F(1,21) = 7.5, p < 0.05, ήp2 = 0.263], showing that
cropping had a greater influence on N170 latencies for faces than
cars.

In order to determine the sensitivity of the P1 to object category
and that of the N170 to cropping in Experiment 1, a segmenta-
tion analysis was performed on the map series elicited in each
condition between 0 and 250 ms. This procedure identified two
distinct maps for P1 (P1a and P1b) and two distinct maps for
N170 (N1a and N1b). The statistical validity of the microstates
was tested by evaluating the amount of variance explained by the
maps issued from segmentation in each individual participant
maps in each condition (see Materials and Methods) using a 2
(cropping) × 2 (category) × 2 (maps) repeated measures ANOVA
(Figure 3A).

For unrepeated and repeated blocks separately, category by map
interactions [Fs(1,21) > 15.5, ps < 0.001] and univariate tests for
planned comparisons confirmed that P1a explained a significantly
greater proportion of variance for faces than cars [Fs(1,21) > 11.4,
ps < 0.01]. Conversely, map P1b better explained individual maps
for cars than faces in the unrepeated block only [F(1,21) = 12.0,
p < 0.001]. We found no effect of cropping on P1 microstates
(all ps > 0.05). In sum, as predicted, microstates in the P1 range
patterned with category differences rather than repetition or
cropping.

In the N1 range, in both the case of repeated and unre-
peated blocks,we found significantly different microstates between
cropping conditions [Fs(1,21) > 6.1, ps < 0.05], such that map
N1b better explained variance for cropped than unaltered con-
ditions, whereas map N1a failed to distinguish between any of
the experimental conditions [ps > 0.1] (Figure 3B). Univariate
test for planned comparisons confirmed that cropping × map
interactions were due to map N1b explaining individual maps
for cropped stimuli significantly better than individual maps for

4We found a significant category × electrode interaction, which survived normal-
ization (such as that recommended by McCarthy and Wood, 1985). Category-effects
at electrodes P8 and PO8 drove this interaction, such that N170 was significantly
greater for cars than faces (similar to effects reported by Dering et al., 2009). Note
that N170 amplitude was not significantly greater for faces than cars at any electrode
site.

unaltered stimuli [F(1, 21) = 20.3, p < 0.001], while N1a produced
no difference [F(1, 21) = 0.01, p > 0.05].

N170 CROPPING EFFECTS ARE NOT DRIVEN BY LOW-LEVEL
DIFFERENCES BETWEEN EXPERIMENTAL CONDITIONS
In Experiment 2, the mean reaction time was 399 ms ±54 across all
conditions and mean accuracy was 95 ± 3.2%. Accuracy was not
affected by either stimulus category or cropping (all ps > 0.05).
Reaction times differed significantly for category [F(1,19) = 5.3,
p < 0.05, ήp2 = 0.22] and cropping [F(1,19) = 11.57, p < 0.05,
ήp2 = 0.38], and these factors interacted [F(1,19) = 13.6, p <

0.05, ήp2 = 0.42]. Overall, reaction times were slower to faces than
butterflies, with unaltered faces producing the largest delay.

Event-related potentials for all 20 participants displayed a typi-
cal P1–N1–P2 complex in all experimental conditions (Figure 4).
We found a main effect of object category on P1 mean ampli-
tudes [F(1,19) = 6.29, p < 0.05, ήp2 = 0.25] such that faces elicited
greater P1s than butterflies. Critically, with stimuli matched for
size and luminance across conditions, there was no effect of crop-
ping on P1 mean amplitude, as in Experiment 1 [F(1,19) = 0,
p > 0.05]. Furthermore, object category and cropping did not
interact [F(1,19) = 0.887, p > 0.05]. P1 peak latency was unaf-
fected by object category but significantly delayed by cropping
[F(1,19) = 8.44, p < 0.05, ήp2 = 0.31] and the two factors inter-
acted [F(1,19) = 4.17, p < 0.05, ήp2 = 0.2] such that cropped faces
delayed P1 latencies more than cropped butterflies (although this
was a 2-ms difference).

In the N170 range, as expected from Experiment 1, cropped
stimuli elicited greater N170 mean amplitudes than unaltered
stimuli [F(1,19) = 21.61, p < 0.0001, ήp2 = 0.53; Figure 4B]. But
unexpectedly, faces elicited significantly greater N170 mean ampli-
tudes overall [F(1,19) = 17.12, p < 0.05, ήp2 = 0.47]. However,
this effect was driven by cropping, as indicated by a significant
category by cropping interaction [F(1,19) = 40.82, p < 0.0001,
ήp2 = 0.68], such that the difference in N170 mean ampli-
tude between cropped and unaltered conditions was greater
for faces than butterflies (Figure 4B). Critically, unaltered faces
and butterflies did not significantly differ in mean amplitude
[F(1,19) = 2.13, p > 0.1]. Finally, cropping increased N170 laten-
cies [F(1,19) = 23.8, p < 0.0001, ήp2 = 0.556] by 3 ms on aver-
age, but no other factor affected N170 latencies [Fs(1,19) < 1.04,
ps > 0.1].

MORPHING PICTURES ACROSS CATEGORIES AFFECTS P1 BUT NOT
N170 AMPLITUDE
In Experiment 3, a repeated measures ANOVA performed over
six posterior occipital electrodes revealed a main effect of cat-
egory [F(1,17) = 18.09, p < 0.005, ήp2 = 0.516] and morphing
[F(1,17) = 6.44, p < 0.05, ήp2 = 0.275] on P1 mean amplitude.
There was no interaction between these factors [F(1,17) = 1.9,
p > 0.1], suggesting that category and morphing independently
increased P1 amplitude (Figure 5). Previous findings of a
categorical difference within the P1 range were confirmed
[F(1,17) = 11.92, p < 0.01, ήp2 = 0.412] with faces eliciting larger
P1 amplitudes than cars. Furthermore, P1 mean amplitude was
significantly greater for 100% face and 70% face (30% car) stim-
uli than 100% car and 70% car (30% face) stimuli, respectively
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FIGURE 3 | (A) Global field power waveforms in the four conditions of Experiment 1 segmented by microstate and associated topographies identified by the
segmentation procedure (see Materials and Methods). Color scale indicates potentials and ranges from −0.17 to +0.17 μV. (B) Proportion of explained variance
by maps P1a and P1b regarding object categories and maps N1a and N1b in relation to cropped and unaltered images.
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FIGURE 4 | Event-related brain potential results in the four conditions of

Experiment 2. Waveforms depict linear derivations of the electrodes used for
analysis of the P1 and N170, respectively. (A) From left to right: linear
derivation of electrodes O1, O2, PO7, PO8, PO9, and PO10, magnification of

the P1, and bar plot of P1 mean amplitudes. (B) From left to right:
linear derivation of electrodes P7, P8, PO7, PO8, PO9, and PO10,
magnification of the N170, and bar plot of N170 mean amplitudes. Error bars
depict SEM.

(all ps < 0.05). In other words, P1 mean amplitude was sys-
tematically greater for face-like than car-like stimuli. Finally, no
differences were found between the 70% face (30% car) and
the 100% face conditions [F(1,17) = 1.27, p > 0.1], but there
was a difference between 100% car and 70% car (30% face)
[F(1,17) = 7.98, p = 0.012, ήp2 = 0.32]. Neither morphing stim-
uli or categorical differences affected P1 latency [Fs(1,17) < 1.244,
ps > 0.1].

We found no significant modulations of amplitude or latency by
either category or morphing in the N170 range [Fs(1,17) < 2.881,
ps > 0.1].

DISCUSSION
N170
Experiment 1 aimed at testing the effect of discarding peripheral
visual information when studying the neurophysiological indices
of face processing. While various lines of evidence have challenged
the face-selectivity of the N170, this component remains widely
regarded as face-selective (Bentin et al., 1996; Carmel and Bentin,
2002; Itier and Taylor, 2002; Blau et al., 2007; Rossion and Jacques,
2008; Sadeh et al., 2008; Mohamed et al., 2009; Eimer et al., 2010).
In all three experiments reported here however, the N170 failed
to behave in a face-selective manner (Thierry et al., 2007a, but see

Bentin et al., 2007b; Thierry et al., 2007b; Rossion and Jacques,
2008).

Full front views of cars were compared to faces in Experiments 1
and 3 because the two categories have properties in common: they
are highly frequent and familiar objects, easy to categorize, sus-
ceptible of being subcategorized (make/ethnic origin), they have
generic internal features, the arrangement of which is critical for
identification. We considered that cars are the ideal contrast cate-
gory for faces precisely because of these shared properties since a
brain response selective to faces should indeed distinguish between
the two categories regardless of their similarities. In previous stud-
ies involving full front views of faces and cars, N170 selectivity
was not measurable (Rossion et al., 2000; Schweinberger et al.,
2004; Thierry et al., 2007a). A common account for the finding
of similar amplitudes to faces and cars is that they are perceptu-
ally highly similar, which could evoke comparable N170 responses
(Hadjikhani et al., 2009) but, ultimately, unless neuropsychologi-
cally impaired, no one could ever claim that a picture of a car can
be confused with that of a face.

A number of studies have resorted to cropping faces from full
head pictures, particularly for behavioral testing of face recog-
nition in patients with prosopagnosia (Gauthier et al., 1999;
Saumier et al., 2001; Behrmann et al., 2005; Herzmann et al., 2008;
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FIGURE 5 | Event-related brain potential results in the four conditions of

Experiment 3. Waveforms depict linear derivations of the electrodes used for
analysis of the P1 and N170, respectively. (A) From left to right: linear
derivation of electrodes O1, O2, PO7, PO8, PO9, and PO10, magnification of

the P1, and bar plot of P1 mean amplitudes. (B) From left to right:
linear derivation of electrodes P7, P8, PO7, PO8, PO9, and PO10,
magnification of the N170, and bar plot of N170 mean amplitudes. Error bars
depict SEM.

Stollhoff et al., 2010). The rationale behind the use of such mod-
ified stimuli in neuropsychological testing is to prevent patients
relying on the analysis of peripheral cues such as hair color
and shape, neck width, or ear size and shape to recognize faces
(Duchaine and Nakayama, 2004). The fact that faces are more dif-
ficult to recognize when peripheral cues are removed implies that
such cues are important in the natural process of face recognition.
Surprisingly, however, experimental psychologists and neurosci-
entists have used such cropped faces as stimuli in experiments
testing visual object categorization without preliminarily testing
whether this alteration would affect the processing of different
object categories in different ways (Horovitz et al., 2004; Schiltz
et al., 2006; Kuefner et al., 2010). Our findings show a dramatic
effect of such stimulus alteration in the case of faces as compared to
the case of non-face stimuli, the N170 being increased in amplitude
by 1.37 μV on average and 1.39 μV at the peak when peripheral
features are deleted. This effect is consistent with modulation of
hemodynamic responses from the fusiform face area (FFA) and
OFA found for external features of faces presented in isolation
(Andrews et al., 2010).

Interestingly, a significant change in N170 mean amplitude was
even found in the case of cars, albeit of smaller amplitude. It is
worth noting here that cropping cars is less straightforward than

cropping faces, since the internal features of a face are easily iden-
tifiable whereas those of a car are uncertain. This is mainly due to
the existence of a neutral, featureless area (e.g., forehead, cheeks,
etc.,) between peripheral and inner parts in the case of faces that
has no equivalent in the case of cars. In addition, spatial relations
of features tend to differ between manufacturer’s models of cars
to a greater extent than between individual faces. Therefore, our
cropped car stimuli were probably less representative of inner part
extraction than cropped face stimuli, which may have accounted
for the relatively smaller amplitude modulation by cropping for
cars. It is noteworthy that the cropped versions of faces and cars
were smaller in size as compared to unaltered images. It has been
shown that ERP amplitudes increase with stimulus size (Busch
et al., 2004; De Cesarei and Codispoti, 2006), therefore differences
in physical size between cropped and unaltered stimuli are unlikely
to account for the increase in amplitude by cropping observed in
the N170 range. In Experiment 2, we addressed this issue directly
by matching the cropped stimuli with the unaltered stimuli in
terms of size (and luminance while keeping to a narrow contrast
range). The effect of cropping on N170 amplitude for faces was
fully replicated. However, we did not find such an effect for but-
terflies. This arguably is not surprising since cropped butterflies
were perceptually similar to unaltered ones (see Figure 1 for an
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example). Since no significant information was lost by cropping
(i.e., only a portion of the wings), there is no reason why visual
processing should have been more difficult in this condition even
though cropping obviously engendered ineluctable differences in
spatial frequency between conditions.

In addition to a significant modulation by cropping in Exper-
iment 1, we found a main effect of stimulus repetition on
N170 mean amplitude. Unexpectedly, the repetition effect was
an increase in amplitude with repetition, which was greater for
faces than cars. This is inconsistent with the previously reported
habituation effect (Campanella et al., 2000; Heisz et al., 2006),
which would be expected to result in an N170 amplitude reduc-
tion triggered by immediate repetition. However, repetitions in
our study were always separated by several intervening trials, pos-
sibly supporting a familiarity account of N170 modulation (e.g.,
Jemel et al., 2010; Leleu et al., 2010; Tacikowski et al., 2011). Indeed,
in studies of repetition priming where long lags between repeated
stimuli have been used, no reduction of N170 amplitude has been
reported (Schweinberger et al., 2002; Boehm et al., 2006). Fur-
thermore, larger amplitudes to repeated stimuli were previously
reported in the N1 range when degraded images were used as
primes (Doniger et al., 2001).

We can draw two conclusions from the N170 findings: (a)
Although the N170 was not category-selective when we compared
complete faces, cars, and butterflies, it is strongly amplified when
features important for face recognition are deleted,and we contend
that N170 is likely to index mechanisms beyond object categoriza-
tion such as the processing of familiarity, identity, ethnic origin,
emotional expression, etc.; (b) the comparison of N170 amplitude
elicited by cropped faces and other object categories presented
without alteration should not be used to make claims regarding
category-selectivity in visual cognition.

P1
We found events compatible with object categorization in the P1
range when comparing faces and cars (Experiment 1) or faces and
butterflies (Experiment 2), and sensitivity to stimulus category
was independent of other manipulations, e.g., stimulus variabil-
ity (Thierry et al., 2007a), cropping (Experiments 1 and 2), and
morphing (Experiment 3).

The P1, a peak generally regarded as an index of low-level per-
ceptual processing (Picton et al., 2000; Tarkiainen et al., 2002;
Cornelissen et al., 2003; Rossion et al., 2003) and repeatedly sug-
gested as being sensitive to differences in contrast, color, lumi-
nance, etc. (Nakashima et al., 2008; Thierry et al., 2009), was
only sensitive to object category (i.e., to global image features)
regardless of stimulus integrity. In Experiment 1, there were resid-
ual differences between cropped and unaltered stimuli in terms
of luminance and contrast because peripheral features of faces,
in particular, tend to have high contrast and low luminance and
thus cannot be dismissed without affecting low-level properties of
stimuli. Nevertheless, the small difference in luminance between
cropped and unaltered stimuli in Experiment 1 should have pro-
duced a P1 modulation in the opposite direction to the trend
observed (e.g., Thierry et al., 2009; and in any case the effect of
cropping on P1 amplitude was not significant). Furthermore, in
Experiment 2 in which stimuli were matched for luminance and

narrowly controlled in terms of contrast, the effect of category on
P1 amplitude was fully replicated.

Overall, category-sensitivity in the P1 range held across all three
experiments and was consistent with findings of a critical phase
of visual object categorization at around 100 ms post-stimulus
presentation in MEG, ERP, and TMS studies (Liu et al., 2002; Her-
rmann et al., 2005; Pitcher et al., 2007). In Experiment 3, the P1
was not only increased for faces relative to cars but also for stim-
uli affected by morphing as compared to unaltered stimuli. This
result is consistent with the view that P1 amplitude is increased
by visual ambiguity (Schupp et al., 2008) and, more generally, task
difficulty (Dering et al., 2009) because categorization of morphed
stimuli – which contain information from the other category– is
more challenging than that of unaltered images.

CONCLUSION
To our knowledge, the effect of cropping inner parts of faces and
objects on visual categorization has never been studied directly
using ERPs and the potential effects of this manipulation have
not been discussed (Eimer, 2000b; Duchaine and Nakayama,
2004). This leads to the possibility that category-effects previ-
ously reported in the N170 range may have been due not only
to uncontrolled perceptual variance between conditions (Thierry
et al., 2007a) but also reduction in the amount of information
afforded by artificially impoverished stimuli. Furthermore, the
sensitivity of the N170 to stimulus integrity (Bentin and Golland,
2002; Bentin et al., 2002) is consistent with hypotheses that the
N170 is involved in higher level integration such as identification
(Liu et al., 2002; Itier et al., 2006), a process not exclusive to faces.

Overall, our results stand in contrast to a large number of stud-
ies in the literature that have consistently reported face-selective
N170 modulations. For instance, the N170 is increased in ampli-
tude for inverted faces as compared to upright faces, indepen-
dently of stimulus variability (Rossion et al., 2000; Boehm et al.,
2011). However, it remains unexplained why the N170 should
be increased in amplitude rather than reduced by inversion. It is
intriguing that cropping, like inversion, increases N170 ampli-
tude, perhaps because in both cases identification difficulty is
increased. Visual expertise also has been repeatedly shown to mod-
ulate the N170 elicited by non-face–objects (Tanaka and Curran,
2001) or faces (Rossion et al., 2004) independent of cropping.
However, effects of cropping on their own cannot explain all
modulations found in the N170 range, just like inter-stimulus vari-
ance, symmetry, or other individual manipulations. Furthermore,
since cropped faces arguably require being interpreted as faces, our
results are not incompatible with conceptual priming effects such
as those reported by Bentin et al. (2002) and Bentin and Golland
(2002). Finally, we note that some studies have shown a lack of
face-selectivity in the N170 range in congenitally prosopagnosic
patients (Bentin et al., 2007a). However, Harris et al. (2005) have
shown that the association between prosopagnosia and the absence
of N170 face-selectivity is not straightforward, notwithstanding
the fact that most experiments with prosopagnosic patients have
systematically used cropped faces.

In sum, we establish that the N170 peak of visual event-related
brain potentials is highly sensitive to stimulus integrity, i.e., it
is increased in amplitude when stimuli are missing peripheral
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information, but fails to display category-selectivity with regard to
the two contrast categories used here (cars and butterflies). Future
studies will characterize the properties of the N170 that are poten-
tially specific to face processing beyond the level of categorization
(Eimer, 2000a; Itier and Taylor, 2002). More importantly, robust
category-sensitivity regardless of low-level perceptual differences
between conditions is consistently found in the P1 range, within
100 ms after picture presentation.
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