
Chromatin features constrain structural variation
across evolutionary timescales
Geoff Fudenberga,1 and Katherine S. Pollarda,b,c,d,e,f,1

aGladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158; bDepartment of Epidemiology & Biostatistics, University of California, San
Francisco, CA 94158; cInstitute for Human Genetics, University of California, San Francisco, CA 94158; dQuantitative Biology Institute, University of California,
San Francisco, CA 94158; eInstitute for Computational Health Sciences, University of California, San Francisco, CA 94158; and fChan-Zuckerberg Biohub, San
Francisco, CA 94158

Edited by Jasper Rine, University of California, Berkeley, CA, and approved December 10, 2018 (received for review May 23, 2018)

The potential impact of structural variants includes not only the
duplication or deletion of coding sequences, but also the pertur-
bation of noncoding DNA regulatory elements and structural
chromatin features, including topological domains (TADs). Struc-
tural variants disrupting TAD boundaries have been implicated
both in cancer and developmental disease; this likely occurs via
“enhancer hijacking,” whereby removal of the TAD boundary ex-
poses enhancers to new target transcription start sites (TSSs). With
this functional role, we hypothesized that boundaries would dis-
play evidence for negative selection. Here we demonstrate that
the chromatin landscape constrains structural variation both
within healthy humans and across primate evolution. In contrast,
in patients with developmental delay, variants occur remarkably
uniformly across genomic features, suggesting a potentially broad
role for enhancer hijacking in human disease.
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Structural variants (1–3) cannot only disrupt coding sequences
through deletion, duplication, or inversion, but can also

perturb noncoding DNA regulatory elements, including en-
hancers and structural features of chromatin, with consequences
in development and disease (4, 5). Chromatin boundaries at the
borders of topologically associating domains [TADs (6, 7)] have
recently garnered substantial interest for their structural and
potential functional roles. Rather than specifying an intrinsically
active or inactive state, TAD boundaries appear to both insulate
physical contacts in 3D and block ectopic transcriptional acti-
vation between genomic elements on either side (7–10).
An emerging line of research implicates structural variants that

alter TAD boundaries as functionally relevant in cancer (11–14).
Given the functional insulation displayed by TAD boundaries, a
likely mechanism is enhancer hijacking (15, 16), also previously
termed “enhancer adoption” (17), whereby a structural variant
removes or moves a TAD boundary to expose transcription start
sites (TSSs) to regulatory enhancers from which they would nor-
mally be insulated. While there have been intriguing examples of
TAD boundary disruptions in developmental diseases (18–21), the
effect of structural variants on chromatin features like TAD
boundaries has received relatively little systematic attention out-
side of cancer (22), until the past year (23–28).
To systematically test if TAD boundary disruptions are under

purifying selection and compare their evolutionary constraint to that
of other regulatory elements, we examined patterns of structural
variation across evolutionary timescales from fixed differences be-
tween ape genomes to rare variants in human populations (Fig. 1).
As the ability of negative selection to purge a given variant from the
population depends on how deleterious it is and how much time
selection has had to act on it (29), we can infer relative levels of
evolutionary constraint on TAD boundaries by comparing the fre-
quency with which they are altered by structural variants to that of
other genomic elements and chromatin states. We find that dele-
tions are strongly depleted at active chromatin states and TAD
boundaries. This signature of negative selection is absent in patients

with autism and developmental delay, where deletions occur re-
markably uniformly across the genome, and in cancer, where dele-
tions in fact show a slight enrichment for disrupting otherwise
important features. Together our analyses uncover a genome-
wide pattern of negative selection against deletions that could po-
tentially alter chromatin structure and lead to enhancer hijacking.

Results
Data and Methods.To study structural variants subject to selection
for different periods of time, we obtained sets representing di-
vergence with great apes (30), variation within the human pop-
ulation (31), and those detected in patients with developmental
delay and autism (31). For each dataset, we summarized overlap
of structural variants with a given genomic feature two ways:
breakpoint frequency (starts or ends in feature) and coverage
(base pairs in feature) (Fig. 1). While related, these could in
principle capture different factors; for example, a key genomic
feature could be adjacent to a region prone to frequent breaks,
yet be locally depleted for deletions that remove it. We focus on
deletions, as duplications can either be in tandem, adjacent to
the original copy, or elsewhere in the genome, adding additional
complexity to their interpretation (22).
To characterize the chromatin landscape, we curated the fol-

lowing genomic features: chromHMM chromatin states from
Roadmap (32), cross-tissue gene expression for TSSs from GTEx
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(33), TAD boundaries from high-resolution Hi-C data, called
using an arrowhead score (34), and binding clusters for the in-
sulator protein CTCF from ENCODE (35). CTCF frequently
demarcates TAD boundaries (6, 7) and CTCF ChIP-seq data are
currently available for a broader set of cell types than is high-
resolution Hi-C data. We quantified the strength of a TSS in
GTEx as the sum of its expression across human tissues, because
consequences of a genetic variant on organismal fitness could
arise from its impact on expression in any tissue. We considered
two alternative ways to integrate expression data across tissues,
depending on the primary impact on organismal fitness: the max,
if fitness primarily depends on the tissue where a TSS is most
highly expressed, and the Gini index, if fitness primarily depends
on how stably TSSs are expressed across tissues. We found that
both max (Spearman R = 0.94, P < 1 × 10−10) and Gini index
(R = −0.74, P < 1 × 10−10) were highly correlated with the sum
and gave qualitatively similar results. Similarly, we quantified the
strength of a CTCF cluster as its aggregate binding across cell lines.
TSSs and the midpoints of CTCF clusters were extended ±5 kb to
enable consistent comparisons with TAD boundaries.
To quantitatively evaluate relative levels of purifying selection on

different genomic features, it is critical to normalize deletion rates
by their expected levels. We quantified this expectation as a uni-
form distribution across the genome, given the proportion of the
genome covered by that genomic feature (Methods). We refer to a
genomic feature with fewer variants than expected as “depleted.”
Since we are unaware of detailed position-specific mutational
models for germline structural variants, we emphasize that our
approach assumes the mutation rate is fairly similar across genomic
regions and features for a particular set of structural variants. Our

analyses should be fairly robust to this simplifying assumption for
two reasons. First, when comparing across different parts of the
genome, we do not focus on absolute levels of depletion but rather
difference in relative depletion between boundaries and other
features. Second, we compare relative depletion of rare and com-
mon variants at boundaries, which controls for differences in mu-
tation rates across genomic regions. This approach could be
extended as it becomes feasible to model differences in structural
variant mutation rates and patterns genomewide.

Ape Deletions Are Strongly Depleted at Active Chromatin States. We
first investigated the relationship between great ape deletions
and human chromatin states. We considered 2,565 deletions
relative to the human genome that were fixed in at least one ape
species [(Bornean and Sumatran orangutans, any of four chim-
panzee subspecies, bonobos, and Eastern and Western gorillas
(30)] and were also parsimonious (i.e., not better explained by
duplication in the human lineage). We found that both deletion
breakpoints and coverage were depleted in active chromatin
states (Fig. 2A), consistent with purifying selection acting to
purge deletions affecting transcriptionally important portions of
the genome. Indeed, only quiescent chromatin and heterochromatin
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Fig. 1. Approach to detect purifying selection against deleterious structural
variants. (A) To study sets of structural variants subject to purifying selection
for varying amounts of time, we obtained structural variants representing
divergence with great apes (30), variation within the human population (31),
and detected in patients (shown with red crosses) with developmental delay
and autism (31). (B) To characterize the chromatin landscape, we curated:
chromatin states, TSSs, CTCF binding clusters, and TAD boundaries. (C) We
summarize each set of variants by their breakpoint frequency and coverage
across the genome. (D) We then determine whether genomic features are
relatively enriched or depleted for variant breakpoints and coverage. As
structural variants subject to purifying selection are gradually removed from
the population over time, we expect features under purifying selection to be
depleted for breakpoint frequency and coverage.
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Fig. 2. Ape deletions show patterns of purifying selection at active chro-
matin states, CTCF clusters, and TAD boundaries. (A) Deletions observed in
apes (30) have relatively low coverage and breakpoint frequency in active
genomic features and at TAD boundaries. Circles represent the average across
127 Roadmap cell types; see SI Appendix, Fig. S1A for variability of these es-
timates across cell types. Log10(observed/expected) represents deviations
from a uniform distribution across the genome, accounting for the proportion
of the genome covered by a given genomic feature (Methods). State 3 had no
observed breakpoints or coverage and is shown with a black center at the
minimal plotted x–y value, for display. (B) Ape deletion coverage at TSSs (Left)
and CTCF clusters (Right) scales with the strength of these genomic features.
Curves show average expected coverage as a function of feature strength in a
sliding window (±5 percentiles); shaded areas represent 5th and 95th per-
centiles calculated over 1,000 bootstrap samples.
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were not consistently depleted for either coverage or deletion
breakpoints across cell types (SI Appendix, Fig. S1A). TAD
boundaries were also avoided by deletions, and avoided slightly
more on average than TSSs. Confirming these observations, we
found similar patterns for a more recently characterized set of
gorilla deletions (36) (SI Appendix, Fig. S1).
We next examined if the strength of negative selection at TSSs

and CTCF clusters relates to the strength of these features.
Coverage was more depleted at more highly expressed TSSs (Fig.
2B), consistent with stronger purifying selection at more broadly
important genes. Similarly, we found that both breakpoints and
coverage were more depleted for stronger CTCF clusters (Fig.
2B and SI Appendix, Fig. S2). Collectively these findings argue
that purifying selection acts to remove deleterious variants
that would perturb functionally important chromatin fea-
tures, including TAD boundaries, at the timescale of great
ape evolution.

Human Deletions Reveal Details of Selective Constraint Across
Chromatin Features. We next investigated the connection be-
tween deletions found in healthy humans (31) and chromatin
features (Fig. 3). These 20,089 deletions are segregating in the
human population and generally have not been under selection
for as long as deletions that are fixed differences between apes.
Nevertheless, deleterious structural variants should be depleted
in healthy adults. As observed for apes, human deletions were
depleted in active chromatin states and at TAD boundaries (Fig.
3A), again arguing that purifying selection acts to purge deletions
that would perturb TADs. We found similar, although less pro-
nounced, patterns (SI Appendix, Fig. S1) in an independent set of
human deletions from a smaller set of individuals (37), and note
a similar depletion at TAD boundaries was reported for In-
ternational Cancer Genome Consortium germline deletions (11).
As for ape deletions, more highly expressed TSSs and stronger
CTCF clusters were more depleted (Fig. 3B), arguing that the
strength of purifying selection directly relates to the importance
of a chromatin feature. As CTCF clusters were more avoided
than TSS up to the ∼60th percentile of aggregate GTEx ex-
pression, these noncoding features could be as important as
many coding features. Interestingly, CTCF motifs alone were not
particularly depleted (SI Appendix, Fig. S3A), even after strati-
fying by motif quality (38), consistent with only a fraction being
sufficiently occupied to enact structural and functional roles
(39). These findings collectively argue that within the human
population, purifying selection acts to remove deleterious vari-
ants that would perturb important chromatin features.
Leveraging the larger number of deletions in this dataset, we next

investigated the coverage of deletions not only at TAD boundaries,
but in the surrounding region as well (Fig. 3 C–F). This revealed
that deletions are broadly depleted around TAD boundaries, and
most depleted right at boundary sites. We additionally find that (i)
boundaries called in multiple cell types are more depleted (∼1.4-
fold for two versus only one cell type, Fig. 3C); (ii) boundaries with
higher average basewise conservation are more depleted [∼2.2-fold
more for the top versus bottom quintile of phyloP (40), Fig. 3D];
and (iii) deletions present in multiple people are more depleted at
boundaries (∼1.7-fold, Fig. 3E), consistent with shared variants
having spent more time under purifying selection.
Surprisingly, we found depletion at TAD boundaries showed

little dependence on within-cell-type insulation (SI Appendix,
Fig. S3B). This suggests the called set of boundaries all provide
sufficient insulation to regulate genes in their neighborhoods,
and weaker structural features may also play important func-
tional roles. As boundaries might be most important when in-
sulating genes with very different expression levels, we tested if
boundaries over which GTEx expression is discordant show
stronger signatures of deletion avoidance. Aggregating expres-
sion in a window on each side of a boundary for each tissue

type, and taking the maximal difference between the two sides
across tissue types, we found only weak evidence in support of
this hypothesis (SI Appendix, Fig. S3C).
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Fig. 3. Human deletions reveal the spectrum of purifying selection across ge-
nomic features. (A) Deletions observed in healthy humans (31) have lower
coverage and breakpoint frequency in active states and at TAD boundaries.
Circles represent the average across 127 Roadmap cell types. Log10(observed/
expected) represents deviations from a uniform distribution across the genome,
as in Fig. 2 (Methods). (B) Healthy human deletion coverage at TSSs (Left) and
CTCF clusters (Right) scales with the strength of these genomic features, plotted
as in Fig. 2B. (C–F) Coverage in ±500-kb genomic region at 10-kb binned reso-
lution. (C) TAD boundaries shared across cell types are more depleted for human
deletions than those found in only one cell type. (D) TAD boundaries with more
evolutionary conservation at the base-pair level are more depleted for deletions.
(E) Deletions shared across individuals are more depleted at TAD boundaries. (F)
TAD boundaries are more depleted for deletions than Hi-C peak bases. Note
these and other curves approach zero at ∼5–10 Mb (SI Appendix, Fig. S3H).
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Since TSSs of active genes are avoided by deletions, we next
tested if the depletion at TAD boundaries could result from their
genomic proximity to actively expressed genes. When we stratified
boundaries by their distance to the nearest highly expressed TSS,
however, we found that depletion leveled out to genomewide
average levels after ∼100 kb (SI Appendix, Fig. S3D). This ar-
gues that purifying selection can act on variants whose direct
deleterious consequence is to perturb TAD boundaries.
Another notable feature of chromosome folding is focal peaks in

Hi-C maps, associated with strong CTCF binding overlying oriented
motifs in the corresponding cell type (often termed loops, ref. 34).
We found, however, that TAD boundaries are more depleted than
Hi-C peak bases (∼2.2-fold, Fig. 3F). Consistently, we found TAD
boundaries are also more conserved at the single-nucleotide level
than Hi-C peak bases, as measured by either their maximum or
average phyloP score (SI Appendix, Fig. S3E). We note that the
moderate depletion at Hi-C peak bases corresponds to that of the
average cross-cell-type CTCF cluster strength at these peaks (−0.25,
corresponding to the 85th percentile). Together this suggests TADs
have broader, or more important, functional roles than peaks.

Active Chromatin States and Chromatin Boundaries Are Disrupted in
Patients with Developmental Delay or Autism. To investigate when
purifying selection had little time to act, we considered 6,507
deletions in patients with developmental delay or autism (31). In
contrast with deletions from apes and healthy humans, deletions
in affected individuals displayed little avoidance of TSSs or
CTCF clusters, regardless of the strength of these genomic fea-
tures (Fig. 4 A–D). Consistently, active chromatin states and
TAD boundaries showed no depletion in patients (SI Appendix,
Figs. S1 and S3F).
In fact, deletions in patients display a remarkably uniform

distribution across the genome (Fig. 4 E–I), in addition to being
longer (31), as compared with deletions in healthy individuals.
This is observed for deletions in patients both in the more slowly
decreasing autocorrelation (Fig. 4I) and the less-skewed distri-
bution (Fig. 4H) of the coverage profiles. We also note that the
coverage profile of deletions in patients is not particularly cor-
related with that of controls (Fig. 4G).
To gain additional confidence in our observations of uniformity in

patients with developmental delay and autism, we analyzed the
380,371 cancer deletions from COSMIC (41) with the same ap-
proach. We were motivated by previous reports linking cancer de-
letion frequency with chromatin state in the Pan-Cancer Analysis of
Whole Genomes dataset (13). We found cancer deletions exhibited
distinct patterns from those in either developmental delay patients
or healthy controls (SI Appendix, Fig. S4). Indeed, as a function of
increasing TSS or CTCF cluster strength, cancer deletions displayed
an increasing enrichment for breakpoints, as well as for coverage of
all but the longest quintile of deletions (SI Appendix, Fig. S4).
As genomewide analyses have been used to implicate specific

boundary deletions in cancer etiology (14), we investigated prop-
erties of the boundaries deleted in the ape, healthy human, and
developmental delay and autism patients. First, these cohorts dif-
fered in the gene ontology (GO) term enrichments of genes asso-
ciated with recurrently deleted TAD boundaries: sensory perception
in apes; immune-related in healthy humans; and chromatin-related
in patients [using GO-rilla (42), Datasets S1 and S2]. Second, autism
and developmental delay cases were moderately enriched for peaks
of deletion coverage overlapping TAD boundaries compared with
controls (SI Appendix, Supplemental Text). We refrained from de-
termining the significance of individual deleted TAD boundaries,
since the genomewide enrichment was low. Nevertheless, by visual
inspection there are intriguing candidates for future analyses (SI
Appendix, Fig. S5). Combined with our observations that disruptions
to TAD boundaries are generally avoided in healthy humans, these
results suggest that disruption of TAD boundaries could be a broad
cause of disease beyond the known examples.

Duplications Display a More Complex Relationship with Chromatin
Features than Deletions. We next considered how functional con-
straint influences the patterns of both duplications and deletions
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Fig. 4. Deletions in human disease show little avoidance of key genomic
features. (A) Average deletion coverage and breakpoint frequency for TSSs
stratified and shaded by strength. Log10(observed/expected) represents de-
viations from a uniform distribution across the genome, as in Figs. 2 and 3
(Methods). Unlike for healthy subjects (blue), deletions from patients with
developmental delay and autism (orange) show no avoidance of strong TSSs,
either for coverage or breakpoint frequency, both cohorts from Coe et al. (31).
(B) Deletion coverage in patients shows little relationship with TSS strength. (C
and D) As for A and B, but for CTCF clusters. (E) Binned deletion coverage at
100 kb from patients (orange) and healthy controls (blue) across the first four
chromosomes illustrate differences in their large-scale distribution across the
genome. (F) Binned deletion coverage at 10 kb above tracks showing inactive
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for patients and healthy subjects. (H) Coverage per 100-kb bin shows more
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across evolutionary timescales. For a given level of average constraint
on a class of genomic features, we expect structural variants to be
most avoided for apes, then healthy humans, followed by humans
with diseases, reflecting decreasing time for selection to have
operated. This is indeed what we observe for deletions of TSSs, as
would be expected if they were generally deleterious and under
purifying selection (SI Appendix, Fig. S6A). Unexpectedly, CTCF
clusters seem to be similarly, or even slightly less, avoided for dele-
tions in apes compared with healthy humans (SI Appendix, Fig. S6B).
For healthy humans, we observed similar, yet less-pronounced, pat-
terns for duplications than for deletions. Interestingly, longer dupli-
cations were the main contributor to the remaining avoidance (SI
Appendix, Fig. S7), which may indicate a greater importance of ge-
nomic context for duplications relative to deletions. Surprisingly, ape
duplications show no clear trend for TSSs or CTCF clusters, which
held after stratifying by length (SI Appendix, Fig. S7), in contrast to
duplications in healthy humans. However, we note that ape dupli-
cations are on average much shorter than those in healthy humans,
and the shortest human duplications also show little avoidance of
TSSs or CTCF clusters. Additionally, few ape duplications remain
after filtering (1,175), making the lack of signal inconclusive. As
synteny breakpoints are avoided within TADs (25, 26), our obser-
vations argue that the details of how a structural variant impacts
genomic organization can determine its effect on fitness.

Discussion
In summary, we find evidence for purifying selection acting on
structural variants, depending on their local chromatin context. Not
only are deletions depleted in active chromatin states both in apes
and the human population, but also at CTCF sites and TAD
boundaries. Indeed, boundaries are avoided as strongly as in-
termediately expressed TSSs, suggesting parts of the coding and
noncoding genome could be equally important from the point of
view of deletions. In contrast with these sets of variants that had
time to experience purifying selection, we found that variants pre-
sent in patients with autism and developmental delay were surpris-
ingly uniform across chromatin states, and displayed no preferential
avoidance of strongly expressed TSSs or strongly bound CTCF sites.
The relatively indiscriminate disruption of the genome by

deletions in patients with developmental delay and autism was
unexpected. One potential reconciliation comes with our ob-
servation that deletions observed once were much less depleted
at TAD boundaries than shared deletions (Fig. 3E). If de-
velopmental delay and autism deletions are largely de novo, and
reflect the mutation pattern, whereas most control deletions
have survived some negative selection, this could partially explain
the apparent lack of avoidance at otherwise important chromatin
features. Larger cohorts or studies specifically designed to assay
de novo variants in healthy humans will be necessary to better
untangle the allele frequency spectrum and test this hypothesis.
Another point to note is that patients show deletions with sizes
that are never seen in healthy people (31). Two nonexclusive
possibilities are that many of these deletions directly contribute to
developmental disease or that they arise by a different mutational
process. We further note that the pattern for deletions from those
of developmental delay patients differs from the pattern seen for
cancer deletions, which actually display enrichment for break-
points at highly expressed TSSs and CTCF clusters. We speculate
this may either stem from different mutational mechanisms for
somatic alterations in cancers compared with deletions in autism
and developmental delay patients, including transcription-related
mutagenesis for deletions in cancer, or widespread positive se-
lection for deletions in cancer genomes.
While we find evidence for purifying selection acting on

structural variants that would alter chromatin boundaries in apes
as well as in healthy humans, an important caveat to our present
study is that all analyses were conducted relative to the human
genome due to the much greater quantity of human epigenome

and chromatin conformation data (for review, see ref. 43). For
example, our methodology might underestimate the relative de-
pletion of structural variation at boundaries across evolutionary
timescales if the exact positions of TAD boundaries are more
dynamic over evolutionary time relative to other chromatin fea-
tures. As broader characterizations of ape epigenomes and chro-
matin conformation become available, it will be interesting to
revisit these analyses, potentially by inferring the set of structural
features present in an ancestral ape.
Our findings further argue that structural variants with the

potential to alter enhancer–promoter communication are under
purifying selection. Interestingly, the overall distribution of both
deletions and duplications in healthy humans rapidly plummets after
∼2 Mb (31), which is also roughly the furthest distance over which
enhancers are known to act (4), the size of the largest TADs (44),
and the distance over which cohesin enriches contact frequency (45).
Put another way, it appears that deletions or duplications bringing
genomic elements together that would otherwise never communi-
cate are particularly avoided, suggesting it may be imperative to
avoid enhancer hijacking. Supporting this hypothesis, very broadly
expressed genes tend to be closer to very broadly bound CTCF sites
(SI Appendix, Fig. S3G), consistent with a fundamental role of
CTCF in constraining ectopic expression (46, 47) over evolutionary
timescales (48). While mechanistic insights into TAD boundaries
make us favor a role in preventing enhancer hijacking, it is also
possible that TAD boundaries help guide enhancers toward target
promoters, and that such additional roles could also contribute to
negative selection on deletions at TAD boundaries.
Our results are also consistent with emerging mechanistic insights

into enhancer–promoter communication (49). Our finding that Hi-C
peaks are less avoided by deletions than TAD boundaries raises the
possibility that TAD boundaries may generally have either broader,
or more important, functional roles than Hi-C peaks. If enhancer–
promoter contacts are very dynamic (50, 51) and enhancers are
promiscuous (52) it may be relatively more important to keep en-
hancers from ectopically activating genes rather than specifying very
specific enhancer–promoter pairings. Alternately, boundaries may
be more important if they are more stable across cell types, and
orchestrate different sets of peaks in different cell types.
An important caveat for using structural variants to assay

functional importance of different genomic regions is the non-
uniformity of the genome. Indeed, active regulatory elements are
clustered along the genome (35, 53), making it difficult to discern
their independent importance when structural variants can span
multiple genomic features. Nevertheless, this property of struc-
tural variants can be beneficial for characterizing the chromatin
landscape if disruptions of multiple elements, e.g., bound CTCF
sites, are required to alter the boundary activity of TADs, as at
the HoxD locus (54).
Collectively, our findings that TAD boundaries and strong

CTCF sites display stronger purifying selection than many low-
expressed coding sequences argue for rethinking the gene-centric
paradigm of interpreting structural variants.

Methods
Structural Variant Datasets. Great ape deletions (30) were filtered to require
their being fixed in at least one of the assayed ape species (Bornean and
Sumatran orangutans, any of four chimpanzee subspecies, bonobos, and
Eastern and Western gorillas), not present in the hominid lineage (Hde),
and not more parsimoniously explained by alteration in the human lineage.
Deletions from healthy humans and patients with intellectual disability or
developmental delay represent data from 11,256 controls and 29,083 pa-
tients (31). Cancer variants were obtained from COSMIC (ref. 41, release
v84), representing duplication and deletion calls for 14,968 tumors. We used
liftOver to convert ape variants from ref. 30 from hg18 to hg19 coordinates,
and to convert COSMIC variants from hg38 to hg19. All other datasets had
hg19 coordinates available. We also analyzed variants from refs. 36 and 37.
We used unique combinations of start and end points to determine shared
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variants in the population. We limited all analyses to autosomes. For dataset
statistics, see Dataset S3.

Chromatin and Expression Datasets. Chromatin state analyses were performed
using the core 15-state model across 127 cell types from Roadmap (32). For
display in Fig. 4F, Roadmap states were consolidated into inactive (grey,
8_ZNF/Rpts, 9_Het, 13_ReprPC, 14_PeprPCWk, 15_Quies) and active (green,
other states). TSS analyses were performed using GTEx v6 release (33), where
the strength of a TSS in GTEx was quantified as the sum of its expression
across tissues. TAD boundary and Hi-C peak analyses were performed using
published arrowhead domains and hiccups loop lists (34). CTCF binding
clusters were obtained by downloading narrowPeak files from ENCODE (35)
for the Broad center, and then using bedtools cluster on the aggregated set
with a merge distance of 5 kb. We quantified the strength of a CTCF cluster as
its aggregate binding across samples. TSSs and the midpoints of CTCF clusters
were extended ±5 kb to enable consistent comparisons with TAD boundaries.

Relative Abundance of Structural Variants. For breakpoint frequency, the

observed/expected was calculated as

 P
i∈k

Ni

!, 
Ntotal

P
i∈k

Si
Stotal

!
, where i in-

dexes genomic regions within a particular feature class k (e.g., chromatin

state, or quantile of CTCF binding strength), Si is the size of region i, Ni is the
number of variant breakpoints in region i, Stotal is genome size, and Ntotal is the
number of variant breakpoints genomewide. The observed/expected for cov-
erage was calculated similarly, except with Ni and Ntotal counting base pairs
covered by variants. Intersection of variant positions and genomic features was
performed using bedtools (55). The first and last 2 Mb of each chromosome,
and 2Mb adjacent to centromeric regions (defined by UCSC hg19 gap file) were
excluded from analysis, as these may be more prone to variant artifacts (31).

Bootstrap Estimates for Coverage Versus Feature Strength. To generate
bootstrap estimates for the mean coverage as a function of feature strength,
we sampled from the full list of observed (feature strength, coverage) pairs
with replacement. We then computed averages in sliding windows of ±5
percentiles, and displayed the area between the 5th and 95th percentiles of
mean values over 1,000 bootstrap samples.
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