
RESEARCH ARTICLE

Applying machine learning to identify autistic

adults using imitation: An exploratory study

Baihua Li1*, Arjun Sharma2, James Meng3, Senthil Purushwalkam2, Emma Gowen4

1 Department of Computer Science, Loughborough University, Loughborough, United Kingdom, 2 Robotics

Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America, 3 School of Clinical

Medicine, University of Cambridge, Cambridge, United Kingdom, 4 Faculty of Biology, Medicine and Health,

University of Manchester, Manchester, United Kingdom

* b.li@lboro.ac.uk

Abstract

Autism spectrum condition (ASC) is primarily diagnosed by behavioural symptoms including

social, sensory and motor aspects. Although stereotyped, repetitive motor movements are

considered during diagnosis, quantitative measures that identify kinematic characteristics in

the movement patterns of autistic individuals are poorly studied, preventing advances in

understanding the aetiology of motor impairment, or whether a wider range of motor charac-

teristics could be used for diagnosis. The aim of this study was to investigate whether data-

driven machine learning based methods could be used to address some fundamental prob-

lems with regard to identifying discriminative test conditions and kinematic parameters to

classify between ASC and neurotypical controls. Data was based on a previous task where

16 ASC participants and 14 age, IQ matched controls observed then imitated a series of

hand movements. 40 kinematic parameters extracted from eight imitation conditions were

analysed using machine learning based methods. Two optimal imitation conditions and nine

most significant kinematic parameters were identified and compared with some standard

attribute evaluators. To our knowledge, this is the first attempt to apply machine learning to

kinematic movement parameters measured during imitation of hand movements to investi-

gate the identification of ASC. Although based on a small sample, the work demonstrates

the feasibility of applying machine learning methods to analyse high-dimensional data and

suggest the potential of machine learning for identifying kinematic biomarkers that could

contribute to the diagnostic classification of autism.

1 Introduction

Autism spectrum condition (ASC) is a lifelong neurodevelopmental condition characterized

by deficits in social communication and social interaction as well as repetitive and restricted

behaviour (American Psychiatric Association, 2013) [1]. Although ASC is primarily diagnosed

by these behavioural and social characteristics, autistic individuals often present with altered

motor ability such as poorer eye-hand coordination, unstable balance and unusual gait pat-

terns [2–4].
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Motor impairments have received increasing interest from the autism research community

in recent years [5, 6]. Untreated motor problems can result in long-term physical, psychologi-

cal, and behavioural issues in autism. For example, motor impairments cause practical difficul-

ties with daily living skills (e.g. walking/running/dressing/writing) [7, 8], which can lead to low

self-esteem and anxiety [9]. Of relevance to the current work, there is also interest in under-

standing whether movement characteristics can be used as diagnostic biomarkers [10].

However, motor impairments are largely under-studied and poorly characterized, since

current assessment techniques such as the Movement ABC [11] do not provide quantitative

analysis on the spatial and temporal nature of movements. This problem prevents advances in

understanding the aetiology of motor impairment, or whether motor characteristics could be

used for diagnosis. The application of advanced techniques for data analysis to the field of

autistic motor control is critical for forwarding both basic and translational knowledge in this

area.

In this article, we explored whether movement characteristics measured during imitation

can be used to differentiate people with ASC from neurotypical controls using machine learn-

ing (ML) methods. Instead of using subjective scores obtained from behavioural exams and

questionnaires, we were interested in the feasibility of using non-invasive quantitative mea-

sures to objectively quantify differences and classify autism from neurotypical controls. We

introduce a data-driven approach and machine learning based methods to address some fun-

damental problems with regard to identifying descriptive test conditions and features from

high-dimensional data and often when only a small size of samples are available.

2 Related work

There are a number of aspects about autistic motor control that make it a promising area to

explore when looking for diagnostic biomarkers. Although the exact prevalence of motor

impairments is unknown, a number of studies have shown that 70–100% of the children tested

with a standard motor test battery demonstrated motor ability that was outside typical limits

[12]. Furthermore, motor deficits are present from birth and persist into adulthood and evi-

dence from a recent metanalysis comparing individuals with ASC and non-ASC groups

reported a large effect size of 1.067 [3]. Therefore, motor deficits appear a common, long-

lasting and reproducible finding. Many of these previous studies have used standard motor

test batteries such as the Movement ABC [11], which are useful to identify children with

motor difficulties, but do not provide quantitative measure on the spatial and temporal nature

of the movements.

By using techniques such as motion tracking, movements can be decomposed into a vast

array of rich movement parameters such as kinematics (e.g. velocity and amplitude), joint

angles and limb coordination patterns. By using these large quantitative data sets it could be

possible to identify movement features that are characteristic of autism and consequently form

a diagnostic biomarker. For example, Guha et al. [13] used motion capture data to quantify

atypicality difference in facial expressions of children with and without ASC. Six basic facial

emotions were analysed using methods from information theory, statistical analysis and time-

series modelling. Results indicated less complex expression producing capabilities and lower

symmetry between left and right regions in the ASC compared to neurotypical group.

Data analysis of autistic motor control has been largely restricted to statistics based mean

group comparisons. For instance, conventionally data analysis relies on averaging a large

amount of artifact-free trials. In behavioral science studies, on the one hand we may not be

able to obtain enough trials per condition; on the other hand, a large proportion of data may

need to be excluded from analysis since they are outliers for a stable average [14]. Furthermore,
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averaging assumes the consistency of response to the stimulus which can be invalid due to

habituation of individuals and in-class variability among trials and participants [15]. Finally,

the standard procedure of mean group averaging can cause multi-testing problems, resulting

in failure on statistic power.

Researchers have more recently focused on improving data analytic methods, particularly

within the context of complex data and experimental conditions. As a powerful computational

tool, machine learning has shown the potential for classification and recognition tasks in a

variety of fields [16, 17]. This is because its capability of modelling complex dependence and

dealing with high-dimensionality noisy data accompanied by small numbers of observations.

Consequently, a number of studies have begun applying machine learning methods to investi-

gate which neural (Chanel et. al. Stahl et al. [18, 19]) or behavioural markers [20, 21] are able

to differentiate individuals with and without ASC.

Stahl et al. [18] analysed event-related potential data of eye gaze performance to discrimi-

nate infant groups at high- or low-risk for later diagnosis of autism. Computational methods

using regularized discriminant functions analysis (DFA), linear discrimination analysis (LDA)

and SVM were explored. The accuracy was around 64% for SVM, 61% for regularized DFA,

and 56% for LDA. They highlighted the need for eliminating irrelevant variables and finding

the most discriminative features prior to classification in order to increase predictive accuracy.

In Wilson et al. 2014 [22], twelve cognitive scores obtained from two subcomponents of an

IQ test and ten neuropsychological experimental tasks were used to study how cognitive abili-

ties could be useful in characterizing individuals with ASC. Significant differences between 89

ASC and 89 male controls were found on five cognitive tasks using statistical t-tests. Interest-

ingly, one of these tasks was motor performance. Although it was recognized that not every

variable showed a remarkable impact on each group, a SVM model was still trained using all

variables so as to achieve the overall identification accuracy of 81%. It was recognized that

quantitative methods to determine the most significant variables could improve the accuracy

by removing outlier factors.

Using data from the Autism Diagnostic Interview-Revised and The Social Responsiveness

Scale, Bone et al. [23] applied a machine learning classifier to a large group of verbal individu-

als with ASC and those with non-ASC disorders. A novel multiple-level SVM model was pro-

posed, and promising classification results were reported. This work proved that ML was

useful for creating robust algorithms to improve ASD screening and diagnostic methods.

Grossi et al. reported the use of specialized artificial neural networks (ANNs) to build up a

predictive model based on 27 potential pregnancy risk factors in autism development [24].

The artificial neural network approach achieved 80% global accuracy selecting 16 out of 27 var-

iables. Their work demonstrates that ANNs are able to build up a predictive model, which

could represent the basis for a diagnostic screening tool. Narzisi et al. [6] proposed an artificial

neural network approach to study the effects of treatment in autism spectrum disorders. The

developed Auto Contractive Map is a semantic connectivity map for discovering trends and

associations among variables. The proposed ANN map achieved 85% of global accuracy on

finding a good correlation between some variables and treatment outcome.

To date, there have been few studies that have applied machine learning to autistic motor

data. Crippa et al. [25] reported a proof-of-concept study to explore whether low-functioning

children with ASC could be identified by means of kinematic analysis of a simple motor task.

Fifteen ASC and 15 non-autistic children were asked to pick up a ball and drop it into a hole

while their movements were recorded using a motion tracker. Seventeen kinematic parameters

were extracted from the upper-limb movement and seven of these were found significant for

discrimination by using Fisher discrimination ratio based technology. A maximum classifica-

tion accuracy of 96.7% using SVM was reported.

Machine learning for identifying autistic adults

PLOS ONE | https://doi.org/10.1371/journal.pone.0182652 August 16, 2017 3 / 19

https://doi.org/10.1371/journal.pone.0182652


Although some machine learning based methods have been applied to autism, the suitabil-

ity of machine learning and the principle of choosing different algorithms need to be investi-

gated with regard to the specific behaviour examined, as well as quality and quantity of the

data obtained from individual studies [26]. In the current work, we tested the feasibility for the

first time of whether kinematic characteristics recorded during imitation of a human move-

ment could be used to differentiate ASC and neurotypical adults. Here, we use the term “imita-

tion” to mean “voluntary imitation” whereby a person is asked to observe an action then to

voluntarily copy that action. We chose to examine imitation as studies consistently report

poorer imitation for both children and adults with ASC which is particularly apparent for imi-

tation in the absence of any visual goals [27–29]. For example, in our previous work we asked

ASC and neurotypical adults to observe then imitate a sequence of hand movements, while

their movements were recorded with a motion tracker [29]. The observed hand movements

could occur at two different speeds (fast, slow) and two different trajectories (low, elevated)

and were either directed towards visible targets (Target condition) or to no apparent targets

(No Target condition). We found that the neurotypical group more closely imitated the

observed kinematics of the movement (such as duration, peak velocity, vertical amplitude)

than the ASC group, but principally for the No Target conditions. However, analysis was lim-

ited to mean based statistical comparison of only five kinematic parameters, which is not pos-

sible to apply to a large set of kinematic parameters.

In this paper, we returned to this dataset and extracted a larger number of 40 kinematic

parameters from eight imitation conditions. By using this large quantitative kinematic dataset,

we aimed to: (1) investigate whether it is possible to use kinematic data recorded during imita-

tion to differentiate ASC and neurotypical adults; (2) determine which kinematic parameters

might be more important for differentiating groups. Statistical methods were initially

attempted (Section 4.1), but failed on dealing with high-dimensional data. Machine learning

based methods (e.g. Naive Bayes, principal component analysis and support vector machine)

were then introduced to establish the relevance of individual parameters that characterize

autism from neurotypical controls. Two optimal settings from the eight imitation conditions

and nine most significant kinematic parameters from the 40 features were identified that best

describe variance of participant groups. Although based on a small sample, this preliminary

work resulted in a good classification accuracy of 93% (Section 4.2).

3 Data collection and kinematics

3.1 Data collection

Brief methods are presented below, but for full details please see [29]. Sixteen ASC adults and

16 age-sex-IQ matched healthy controls volunteered for the experiment. All participants

received written information about the study at least 48 hours before participating and all were

given the opportunity to ask questions prior to written consent being taken. The study, con-

sent procedure and the use of data were approved by both the University of Manchester, and

the NHS research ethics committees. Data used in this paper are available in S1 File for other

researchers.

Data from two ASC participants was excluded due to data capture issues, leaving 14 in the

ASC group. Mean age (±SD) of the ASC and control participants was 32±7.69 and 29.31 ± 8.38

respectively. Mean IQ (±SD) measured using the Wechsler Abbreviated Scale of Intelligence

(WASI) was 118.5 ± 12.02 for the ASC group and 119.8 ± 11 for the control group. Age and IQ

did not differ significantly between the two groups (age t(28) = 0.7, p = 0.49, IQ t(28) = -0.31,

p = 0.76).
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The participants were asked to observe then imitate a sequence of hand movements, con-

taining two movements as shown in Fig 1. The hand sequences were presented via video clips

and showed a demonstrator’s hand either pointing to visible targets (T = Target) or to no

apparent targets (NT = No Target). In addition, the hand movement could occur at two differ-

ent speeds (F = fast, N = normal), or two different trajectories (S = short, E = elevated) as listed

in Table 1. Participant movements were sampled at 120 Hz, and tracked in X, Y and Z coordi-

nates via a motion sensor (Polhemus Liberty) attached to the index finger of the dominant

hand.

For each participant, the experiment was split into four blocks, 2 containing the T stimuli

trials and 2 containing NT stimuli trials. Trials containing the different speeds and trajectories

were randomly varied in each block. Therefore, eight different movement conditions (TF, TN,

TE, TS, and NTF, NTN, NTE and NTS) were examined. The same, single movement for all

conditions was extracted for analysis, which occurred 8 times for each condition (64 trials per

Fig 1. Time-lapse diagram of experiment. Each trial began with a fixation cross, followed by a still image of a hand and a video

clip of a hand sequence. Participants imitated when the exclamation mark appeared.

https://doi.org/10.1371/journal.pone.0182652.g001
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participant). To reduce predictability and prevent the participant’s behaviour becoming repeti-

tive and stereotyped, 32 additional trial sequences were included.

3.2 Kinematic parameters

Recorded data was analysed using Matlab. Trajectories of hand movements were filtered with

a 120Hz Butterworth filter. Movement onset and offset times were determined when move-

ment velocity rose above or fell below 10% of the peak velocity for six consecutive samples (48

ms). As listed in Table 2, twenty kinematic parameters were extracted from each trial. The

mean and standard deviation (SD) of the 8 trials for each kinematic feature were calculated for

each participant and for each condition. Fig 2 illustrates the meaning of position, velocity, and

acceleration traces for a rightward pointing hand movement.

Error trials due to recording errors (e.g. the tracker failed to record) or imitation errors

(incorrect sequence) led to the exclusion of 6% of trials in the ASC group and 2% of trials in

Table 1. Four movement conditions that occurred for both the Target (T) and No Target (NT) imitation: Two different speeds (F = fast, N = normal)

and two different trajectories (S = short, E = elevated).

Movement condition Speed (beats per min) Amplitude (cm) Trajectory

Normal (N) 48 15 Flat

Fast (F) 58 15 Flat

Short (S) 48 10 Flat

Elevated (E) 48 15 Curved

https://doi.org/10.1371/journal.pone.0182652.t001

Table 2. Description of each of the 20 kinematic parameters. Roman numerals following the parameter

name in the brackets indicate where referenced in Fig 2.

Kinematic parameter Description

1.Duration (i) Duration of movement between onset and offset (secs)

2.Peak velocity (ii) Highest velocity (mm/sec)

3.Time to peak velocity (iii) Time from start of movement to reach peak velocity (sec)

4.Percent peak acceleration % of horizontal movement at which peak velocity occurs

5.Percent time before peak velocity % of time before peak velocity

6.Percent time after peak velocity % of time after peak velocity

7.Peak acceleration (iv) Point of fastest acceleration (mm/sec)

8. Time to peak acceleration (v) Time to reach peak acceleration (sec)

9.Percent time to peak acceleration % of time to reach peak acceleration

10.Percent peak acceleration location % of horizontal movement at which peak acceleration occurs

11.Peak deceleration (vi) Point of fastest deceleration (mm/sec)

12.Time to peak deceleration (vii) Time to reach peak deceleration (sec)

13.Percent time to peak deceleration % of time to reach peak deceleration

14.Percent peak deceleration location % of horizontal movement at which peak deceleration occurs

15.Jerk Dimensionless jerk

16.Horizontal Max amplitude (viii) Maximum amplitude (mm) of movement in horizontal axis

17.Vertical amplitude (ix) Maximum height (mm) of movement in vertical axis

18.Time to peak vertical amplitude (x) Time to reach peak vertical amplitude

19.Percent time of peak vertical amplitude % of time to reach peak vertical amplitude

20.Percent location of peak vertical

amplitude

% of horizontal movement at which peak vertical amplitude

occurs

https://doi.org/10.1371/journal.pone.0182652.t002
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the neurotypical group. Imitation errors led to the exclusion of 2% of trials in the ASC group

and 1% or trials in the neurotypical group.

4 Methods

Using this quantitative collection of 40 kinematic parameters (means and standard deviations)

under 8 imitation conditions, three questions were addressed with regard to differentiating

ASC and neurotypical individuals: 1) which imitation conditions are suitable for differentiation;

2) what kinematic parameters are optimal to characterize ASC performance; 3) what computa-
tional methods can be used to determine such kinematic variables and achieve effective

classification.

4.1 Statistical histogram analysis

We first performed a preliminary analysis using statistical histograms. The histogram is a plot

to show the underlying frequency distribution (occurrence shape) of a set of continuous data.

To construct a histogram from a continuous variable, we first split the data of a parameter into

intervals, called bins. The number (or scores) of occurrences in the data set within each bin is

presented using vertical bars. This method helps to describe the dataset in terms of its underly-

ing distribution, outliers, skewness, etc.

The aim was to identify any obvious differences and patterns in the kinematic data between

the ASC and neurotypical group across the 8 imitation conditions. To this end, histograms for

each kinematic parameters at each experimental condition were generated for both ASC and

control groups, and a number of statistics based comparisons (e.g. shape, density, mean, simi-

larity distance) were conducted. Results showed that it was difficult to identify obvious pat-

terns, sufficient agreement or large differences that could distinguish between the two groups.

This can be observed in Fig 3, even for the most important parameters based on our previous

work (NTF, NTE; [29]). Statistical analysis on individual parameters is not powerful enough to

provide reasonable confidence on classification, especially when the dataset is relatively small.

For high-dimensional features and complex conditions, methods which can effectively retrieve

complicated inter/intra- relationships and dependencies from the kinematics are required.

Fig 2. Position, velocity and acceleration traces for a rightward pointing hand movement. a) position in horizontal (blue) and vertical

(red) directions. b) velocity in horizontal direction. c) acceleration in horizontal direction. Roman numerals refer to kinematic parameters in

Table 2

https://doi.org/10.1371/journal.pone.0182652.g002
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4.2 Machine learning and supervised classification

Machine learning is the study of computer algorithms which can learn complex relationships

or patterns from empirical data and make accurate decisions. It does not need to strictly hard

code static instructions which can be difficult to obtain for complex relationships and condi-

tions [16, 30]. Supervised learning methods are a subset of this field. The main goal of super-

vised classification is to learn rules from examples in different groups and use these rules to

predict unseen cases into prospective classes as accurately as possible. Predictive models are

built based on observed characteristics from examples in each class. The model is first trained

using labelled samples. A set of input feature variables are used as input and a desired class

value is used as output. The obtained classifier model is then used to recognize new samples

and make a decision of their class. The reliability of the classification typically depends on the

learning algorithm used by the classifier, the size and quality of the training data [17].

Fig 3. Histograms of kinematic parameters of NTF (Non-Targeted Fast, left column) and NTE (Non-

Targeted Elevated, right column) experimental conditions.

https://doi.org/10.1371/journal.pone.0182652.g003
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To expose complex relationships and dependencies among high-dimensional kinematic

features, we experimented with supervised machine learning classification of varying capaci-

ties. While the limited amount of data constrains the complexity of learning models that can

be used, we demonstrate that the effective use of fundamental machine learning methods can

yield desirable results, for example Naive Bayes, Support Vector Machine and PCA.

Using methods explained in the following sections, models were trained to identify optimal

imitation conditions, to select discriminative kinematic data, and to classify individuals as

ASC or non-autistic controls. Hand kinematic data under the eight imitation conditions were

examined. The accuracy of the model was evaluated by identifying unseen samples and com-

paring estimated labels with true memberships using cross-validation.

4.2.1 Determine the best imitation conditions using Naive Bayes. We first used a Naive

Bayes classifier to determine which of the 8 different imitation conditions were most suitable

for discriminating ASC and neurotypical participants.

Naive Bayes model is based on probabilistic Bayes’ theorem. It is a relatively simple classi-

fier, as it makes an assumption about the independency that each of the features are indepen-

dent of the rest. While this assumption is very strong, experimentally it has been shown to

achieve reasonably good results. Naive Bayes classifiers are highly scalable and fast. They take

linear time rather than expensive iterative approximation as used by many other classifiers.

The simplicity of the Naive Bayes allows the model to be trained with a relatively small dataset

when large amounts of data samples are not available. Using Naive Bayes to identify suitable

imitation conditions and significant groups of features from 40 variables with only 30 data

samples prevents the overfitting problem caused by SVMs as discussed from later results.

For each imitation condition, Naive Bayes models were trained using three types of kine-

matic parameters as listed below. This aims not only to identify the most suitable imitation

movements, but also find out the most discriminative kinematic data for autism identification.

(I) means of the 20 kinematic parameters as shown in Table 2.

(II) standard deviations of the 20 kinematic parameters

(III) both means and standard deviations of the 20 kinematic parameters

Table 3 summarizes the results from the above experiments using Naive Bayes classification

models under 8 different conditions using three types of kinematic parameters. We observed

that the NTE (Non-Targeted Elevated) and NTF (Non-Targeted Fast) achieved the highest

average accuracies of 64.5% and 56.7%, proving to be most favorable in identifying ASC class.

Meanwhile, using standard deviations for model training achieved overall better performance

Table 3. A comparison of classification performance under eight imitation conditions and three groups of feature inputs. Accuracies I, II, III corre-

spond to using means of 20 kinematic parameters, means of 20 standard deviations and both groups of means respectively.

Experimental setting Accuracy (I) Accuracy (II) Accuracy (III) Average

Target Fast (TF) 53.33% 50.00% 50.00 51.1%

Target Normal (TN) 43.33% 56.67% 56.67% 52.2%

Target Elevated (TE) 53.33% 60.00% 53.33% 55.6%

Target Short (TS) 40.00% 53.33% 46.67% 46.7%

Non-target Fast (NTF) 40.00% 70.00% 60.00% 56.7%

Non-target Normal (NTN) 50.00% 43.33% 43.33% 45.6%

Non-target Elevated (NTE) 60.00% 66.67% 66.67% 64.5%

Non-target Short (NTS) 50.00% 43.33% 50.00% 47.8%

Average 48.8% 55.4% 53.3%

https://doi.org/10.1371/journal.pone.0182652.t003
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(average accuracy 55.4%) than using the other two types of parameters. As shown in Table 3,

using standard deviations at the NTF and NTE movement conditions achieved the best classi-

fication accuracies—70.0% and 66.67%, respectively.

Based on the above, we attempted to train the Naive Bayes using all standard deviations of

both NTF and NTE (total 40 features) simultaneously. The classification accuracy increased to

83.3%, indicating the improved performance at joint conditions of NTF and NTE. These

results are very much consistent with our previous findings showing that group differences are

larger for the NT conditions which, however, could not provide a quantitative comparison for

the different conditions [29].

4.2.2 Support Vector Machine. Having identified the optimal experimental conditions

(NTF and NTE) and the standard deviations of kinematic parameters as the suitable feature

category from Naive Bayes, a strong classifier Support Vector Machine (SVM) was investigated

in comparison with Naive Bayes for selecting an optimal set of SD variables and achieving the

best classification rate.

SVM is a supervised nonlinear multivariate classification model which possesses the ability

to deal with high-dimensional datasets with complex covariance structures. However, in con-

trast to Naive Bayes, SVM is computationally intensive. A standard SVM attempts to find a

hyperplane that perfectly separates all positive and negative samples into two non-overlapping

classes.

In our experiments, different kernels (e.g. linear and RBF) and hyper-parameter settings

were tested. When using the 40 standard deviations of both NTF and NTE as data features, the

classification accuracy is much lower than the accuracy obtained with the Naive Bayes

(83.3%). This drop in performance can be attributed to the problem of overfitting. Although

the regularization control parameter C in SMV has been fine-tuned to prevent overfitting, it

could still have an impact when a SVM model with a high-dimensional input is trained using a

small dataset, as it learns to “fit” the training data perfectly, but fails on generalization. One

way to deal with overfitting is to reduce input parameters by finding best ones, see Section 4.3.

Our implementation of SVM was based on the LIBSVM library [31]) using Matlab. For a SVM

model, the hyperplane regularization control parameters C and the γ when using RBF kernels

need to be defined. To this end, the grid search method [32] was used to find the optimal com-

bination (C,γ) in our experiments.

4.3 A combined method for the selection of optimal kinematic

parameters

To achieve good classification accuracy, we attempted to select a subset of the most discrimina-

tive kinematic features. To determine the relative importance of the 40 kinematic parameters

at NTF and NTE conditions, three methods SVM weights, leave-one-parameter-out and PCA

analysis were attempted. The effectiveness of these feature selection methods was compared

with three models—Navie Bayes, Linear SVM and RBF SVM. Classification performance was

evaluated based on leave-one-out and using a second-layer cross-validation as described

below.

Classifiers were trained and tested in leave-one-out manner. Due to the size of data is small

(14 ASC and 16 controls), we used a second layer of cross-validation methodology introduced

by [23], which further divided the Training data into a training/development set. At each itera-

tion, out of the remaining 29 Training samples, we divided the set into training and develop-

ment. The classifier was trained on training samples, and evaluated on the development. The

performance of the classification on these development sets was used to select kinematic fea-

tures and classifier parameters. Once features and parameters have been selected within the

Machine learning for identifying autistic adults

PLOS ONE | https://doi.org/10.1371/journal.pone.0182652 August 16, 2017 10 / 19

https://doi.org/10.1371/journal.pone.0182652


Training data, the classifier was re-trained on the entire 29 Training samples and tested on the

1 test sample in each iteration. The classification accuracy is based on the hold-out one test

data of 30 iterations. Therefore we treat the test sample as unknown when selecting features

and parameters. All selections are based on the performance on the Training data, not test

data.

Method 1: SVM weights. Weights of the SVM trained on 40 kinematic standard devia-

tions of both NTF and NTE conditions were analyzed. Fig 4 illustrates the average absolute

weights of trained SVMs from each iteration corresponding to each kinematic feature. The

magnitude of weight indicates the importance of the kinematic parameter in the SVM classi-

fier. We observed that some kinematic parameters contributed more on the SVM and actually

consistently showed higher SVM weights at each iteration than others. Such kinematic param-

eters with high occurrence at each iteration include 16NTF, 37NTE, 2NTF, 29NTE, 3NTF, 19NTF and

28NTE etc.

According to this observation, top eight kinematic features with high contribution to SVM

weights were considered as optimal features at each iteration. Classification performance of

using this feature selection method on three models of RBF/linear SVMs and Naive Bayes, as

shown in Table 4. The Naive Bayes achieved the asme accuracy as when using the complete set

of 40 SD features (accuracy 83.3%).

Method 2: Leave-one-parameter-out. Naive Bayes classifiers were trained by leaving one

kinematic parameter out at a time on training sets. Parameters on being left out which lead to

a decrease in accuracy performance below 83.3% could be more discriminative. Fig 5 shows

the average impact on accuracy when leaving a corresponding kinematic feature out. Some

Fig 4. Average weights of SVMs trained on 40 NTF/NTE standard deviations showing importance of kinematic parameters. The

1st-20 th SD parameters are from NTF and the followings 20 parameters are from NTE. The parameter index are in order as shown in

Table 2.

https://doi.org/10.1371/journal.pone.0182652.g004

Table 4. A comparison of results obtained using three feature selection techniques.

Method RBF SVM Linear SVM Naive Bayes

SVM weights 73.3% 73.3% 83.3%

Leave-one-para-out 73.3% 76.7% 86.7%

PCA weights 63.3% 60.0% 56.7%

average 70.0% 70.0% 75.6%

https://doi.org/10.1371/journal.pone.0182652.t004
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features which on being excluded often led to a decrease in accuracy, such as 37NTE, 34NTE,

26NTE, 8NTF, 7NTF, 16NTF, 3NTF. Among these, the “vertical amplitude” 37NTE presented a

remarkable impact as shown in both Figs 4 and 5. The accuracy performance of using this

selection method is shown in Table 4. The accuracy performance is competitive with the

SVM-weight method as shown in Table 4, however, at each iteration kinematic features found

with this method were not stable comparing to features selected by SVM-weights and PCA-

based analysis.

Method 3: PCA weights. The principal component analysis provides a set of uncorrelated

orthogonal principal components. The first principal component accounts for the largest vari-

ance in the data, and each succeeding component in turn accounts for as much of the remain-

ing variability as possible. The contribution of each kinematic parameter to these principal

components are therefore available to determine important features.

By applying PCA to 40 kinematic parameters in the training set at each iteration, the

obtained average eigenvalues of the first five PCs are 0.577, 0.211, 0.149, 0.061 and 0.001

respectively. Obviously the first PC is more dominant than others, therefore contribution of

each kinematic parameter to the first PC could be used for feature selection. It was found that

the top several kinematic parameters with high contribution to the first PC component were

very consistent at each iteration. These features are (average percentage of weight contribution

to the first PC shown in brackets):

• 27NTE (51.3%); 7NTF (20.1%); 31NTE (15.6%); 11NTF (10.1%); 2NTF (1.27%); 22NTE (0.8%).

Selecting features using PAC-based analysis, however, resulted in a much lower classifica-

tion accuracy than using features selected by the previous two methods in three models, espe-

cially when using Naive Bayes (56.6%). As shown in Table 4, the average performance on

selecting 6 PCA-based features is around 60%, much lower comparing to average accuracy of

76.6% on SVM-based features (Method 1) and 78.9% on leave-one-parameter-out features

(Method 2).

In summary, Table 4 shows classification accuracy performance based on feature sets

selected by using each of the three methods. Features with high occurrence selected by using

the three methods individually at each iteration are listed below:

Fig 5. Average impact on accuracy when dropping one kinematic parameter out. The 1st-20 th SD parameters are from NTF and the

followings 20 parameters are from NTE, in order as shown in Table 2.

https://doi.org/10.1371/journal.pone.0182652.g005
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• SVM weights: 2, 3, 16,19(NTF); 28, 29, 37, 40 (NTE)

• Leave-one-parameter-out: 3,7,8,16 (NTF); 26, 34, 37 (NTE)

• PCA weights: 2,7,11 (NTF); 22,27,31 (NTE)

Method 4: Combined feature selection. Feature sets selected using SVM weights are

more stable and performed generally consistent on three models. Although features selected

by the PCA method and leave-one-parameter-out are not optimal, some common features

were deemed important. Based on above experiments, we then combined the three feature

selection methods. At each test iteration, 8 SVM-weight based features and common features

between top 3 PCA-based and top 10 leave-one-parameter-out features are selected as best fea-

ture set. Fig 6 illustrates the occurrences of kinematic features selected from each iteration

from the training sets. The top nine features with high occurrence are:

• most discriminative kinematic features: 29,16, 37,2,19,28, 3,7,40 (Fig 6).

5 Autism spectrum condition classification and comparison of

feature selection

To evaluate the effectiveness of these nine kinematic parameters selected by the proposed com-

bined method above, we test the classification performance using four common classification

models: Naive Bayes (NB), SVM, Decision Tree c4.5 (DT) and Random Forest (RF), as shown

in Table 5. In this section, we also show comparison of our feature selection method with

some standard ones in Table 6,

Fig 6. Occurrences of kinematic features selected at each iteration. The 1st-20 th parameters are from NTF and the followings 20

parameters are from NTE. The index are in order as shown in Table 2.

https://doi.org/10.1371/journal.pone.0182652.g006

Table 5. Accuracy of five classification models on nine kinematic attributes selected using the proposed feature selection method.

Classifier Sensitivity Specificity Accuracy

Naive Bayes 78.6% 81.3% 80.0%

SVM (RBF) 78.6% 87.5% 83.3%

SVM (Linear) 85.7% 87.5% 86.7%

Decision Tree 57.1% 75.0% 66.7%

Random Forest 71.4% 68.8% 70.0%

Avg. 74.3% 80.0% 77.3%

https://doi.org/10.1371/journal.pone.0182652.t005
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Classification performance was evaluated by means of cross-validation. Accuracy, sensitiv-

ity (True Positive (TP) rate) and specificity (True Negative (TN) rate) of classification using

the proposed combined feature selection method are given in Table 5. Mathematically, they

are computed as follows:

where TP (True Positive) = correctly identified, FP (False Positive) = incorrectly identified,

TN (True Negative) = correctly rejected, FN (False Negative) = incorrectly rejected. Total

number of autism samples (Positive) is P = 14, and total number of neurotypical controls

(Negative) is N = 16. The SVM achieved a relative better result than Naive Bayes when the

kinematic features are reduced from 40 to 9.

There are other methods and software tools proposed for feature selection, classification

and statistical analysis of their performance [33–36]. Among these, Weka [36] is a popular

software package supporting many standard data mining tasks, such as clustering, classifica-

tion, feature selection and predictive modelling. It not only provides a collection of widely-

used machine learning algorithms, attribute evaluators and classification models, but also

model comparison through statistical cross-validation and tests. To compare our feature selec-

tion method with some standard ones [36], nine attribute evaluators in Weka were tested on

our dataset, as shown in Table 6. The last 4 evaluators (DT, RF, Logistic Regression and Lazy

KStar) are in the category of WrapperSubsetEval which employ a learning scheme. The top 9

features selected by each method were used for comparison based on their accuracy perfor-

mance on four common classifiers. The accuracy of each model in Table 6 is the average of

10-fold cross validation.

We observe there are some similar features (e.g. 16, 29, 37) selected and highly ranked by

these methods which are also similar to our features, while there are different features selected.

The OneR Evaluator achieved the highest average accuracy 75.8% (STD = 8.4%) on the four

models, the selected attributes include 4 significant kinematic parameters (16, 29, 37, 7) which

are the same to ours. The overall accuracy of the nine feature selection methods evaluated by 4

classification models is 70.5%, while average accuracy of nine features selected by our method

achieved 77.3% (STD = 8.6%)(Table 5). Based on the results in Tables 5 and 6 and statistical

tests (e.g. paired T-test, cross validation) provided by Weka Experiment Environment, Naive

Bayes and SVM perform better than Random Forest (RF) on average, while Decision Tree

(c4.5) is almost the worst for most selected feature sets.

Table 6. Nine attribute evaluators in WEKA are used for feature selection comparison, corresponding classification accuracy (%) based on Naive

Bayes (NB), SVM, Decision Tree c4.5 (DT) and Random Forest (RF) of the selected features are listed.

Attribute Evaluators Selected Features NB SVM DT FR Avg. (%)

Correlation Ranking 16,19,29,37,2,20,28,18,30 80 80.0 63.3 73.3 74.2

Information Gain 16,13,12,11,40,15,14,17,10 63.3 63.3 56.7 66.7 62.5

OneR Evaluator 9,20,16,29,30,8,7,37,22 83.3 80.0 66.7 73.3 75.8

ReliefF Ranking 16,37,29,19,40,1, 20,2,28 80 76.7 60.0 76.7 73.4

Symmetrical Uncertainty 16,13,12,11,40,15,14,17,19 63.3 66.7 50.0 66.7 61.7

Decision tree (DT) 29,16,28,2,8,31, 37,22,35 86.7 80.0 53.3 73.3 73.3

RandomForest (RF) 29,28,16,9,8,18,20,25,40 76.7 70.0 63.3 70.0 70.0

Logistic Regression 29, 16,1, 5,7,9,10,13,14 70 70.0 70.0 76.7 71.7

Lazy KStar 16,30, 18,29,40, 38,7,8,13 76.7 66.7 66.7 76.7 71.7

Avg. (%) 76.7 72.7 61.3 72.0 70.5

https://doi.org/10.1371/journal.pone.0182652.t006
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6 Discussion

In this study we investigated whether it is possible to use kinematic data recorded during imi-

tation to discriminate between ASC and neurotypical adults and which of those kinematic fea-

tures might be more important for differentiating groups. We explored an extensive set of

supervised machine learning methods involving Naïve Bayes, principal component analysis

and support vector machines to find the optimal imitation conditions and kinematic features

for differentiating the two participant groups. Based on this preliminary study, as shown in

Fig 6, a total of 9 kinematic parameters from two out of the eight imitation conditions (NTF

and NTE) show significant impact:

• NTF—peak velocity SD (2), time to peak velocity SD (3), Peak acceleration (7), horizontal

Max amplitude SD (16), percent time of vertical amplitude SD (19).

• NTE—time to peak acceleration SD (28), percent time to peak acceleration SD (29), vertical

amplitude SD (37), percent location of peak vertical amplitude SD (40)

Best classification accuracy achieved 86.7% by using combined feature selection method

with linear SVM. These results show for the first time that by using machine learning tech-

niques on movement kinematics measured during imitation it may be possible to discriminate

adults with and without ASC. We began with Naive Bayes because we were expecting overfit-

ting with SVMs due to the nature of high-dimensional kinematic features and a limited num-

ber of data samples. The classification results show that Naive Bayes tends to perform at a

similar level as SVMs even with a reduced feature set of 1/4. This may suggest that the assump-

tion about independence among data features made by Naive Bayes could actually hold true in

our case for kinematic parameters. Further study is needed to support this.

Our study demonstrates that machine learning methods could provide an effective solution

to best describe motor variance of participant groups for classification tasks, while the com-

monly used statistical methods (e.g. mean group comparisons [29] or histogram distribution)

could fail to deal with such complex experimental conditions involving high-dimensional

data. Further, the proposed machine learning based methodology could help to refine experi-

mental conditions to maximise group differences, reduce the number of trials and conse-

quently participant time, and improve the analysis with a focus on significant features.

The only previous study combining machine learning with a motor task in autism was

reported in [25]. Their machine learning methods and size of dataset are very similar. However

in [25], a single, well-controlled, more informative and goal-oriented hand “activity” was

examined. In addition, they focussed on selecting the features from only one test condition

which reduces the complexity and computational difficulty of the problem. Although still a lab

based study, our movement task was less constrained and is the first to explore the best test

conditions, providing information on which activities would be most discriminating in future

testing. Furthermore, instead of children, our work involved adults, where one might expect

movement differences between groups to be smaller.

In line with findings from our previous work [29], two No-target conditions (No-target Ele-

vated and No-target Fast) resulted in the highest discrimination accuracy. The results are also

consistent with a large body of evidence indicating that children and adults with ASC show

poorer imitation skills compared to neurotypical groups during goal-less imitation, but these

differences are less apparent for goal directed imitation [27, 29]. The higher discriminative

qualities of the No-target Fast and No-target Elevated conditions compared to the slower No-

target normal condition may have been due to the more challenging nature of the faster and

elevated trials. There is also greater requirement to make a movement that is different to the

usual kinematic pattern in the faster and elevated trials [37] that may be more difficult for the
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participants with ASC. For example, in a recent study, neurotypical adults and those with ASC

were asked to imitate the trajectory of a dot moving on a computer tablet using a hand held

stylus [37]. While in some trials the trajectory was based on a typical human movement (peak

velocity occurring at 50% of the trajectory), for other trials this movement was modified to

produce an atypical profile (peak velocity occurring at 18% of the trajectory). In order to imi-

tate the atypical model, participants would have to create a new sensorimotor plan to represent

the novel movement kinematics, as opposed to imitating the typical model where they could

re-scale an existing plan of a typical aiming movement. While the neurotypical group modified

their movement kinematics to imitate the atypical profile, the ASC group did not. Therefore,

to maximise group differences it is suggested that imitation studies should employ actions that

require the observer to perform a dissimilar action to what might already exist within their

movement repertoire.

The nine most discriminative kinematic features involved standard deviations. Interest-

ingly, the standard deviations of all but one feature were higher in the ASC group for the No-

target Fast features, but were all lower (with one exception) for the ASC group for the No-tar-

get elevated features. Increased variability is a common finding in autistic groups and has been

reported for reaching movements [38], saccadic eye movements [39], and stride length and

head shoulder and trunk position during walking [40]. The increased variability for the ASC

group highlights differences in the ability to plan and control sensorimotor processes that is

particularly apparent when attempting to imitate more challenging faster movements. In con-

trast, the ASC group showed lower standard deviations for the No-target elevated movements.

It has been suggested that variability is more sensitive to the effects of learning [41], so it is pos-

sible that increases in variability might reflect the learning process as participants attempted to

apply different strategies to the imitation task. Therefore, as discussed earlier it is likely that

the neurotypical participants attempt to imitate the unusual elevated movement, increasing

their variability, whereas the autistic group imitate the movement less and retain their usual

style of movement. This is supported by our recent findings showing that when neurotypical

participants are specifically asked to attend to and imitate the elevated movement, variability

of vertical amplitude increases [42].

Overall, our work highlights a promising new approach to understanding autistic motor

behaviour and diagnosing autism. The range of movements needs to be expanded to more

complex, full body motor control functions, but the current results are encouraging as the

analysis was based on simple movements.

This study is limited to a small sample size of participants. In the case of our small dataset,

we proposed feature selection based on three methods: SVM weights, leave-one-parameter-

out and PCA weights (Section 4.3). We found discriminative features detected by combining

three feature selection methods produced more reliable results with reasonable bias than many

standard ones. In particular, we employed a second-layer cross-validation framework for

model training and feature selection ([23]). It facilitates features and model parameters are

selected based on performance in the training data through a second-layer cross-validation

while treats the test sample (in leave-one-out) as unknown.

As ASC is a heterogenous condition, the degree that the classification model is able to gen-

eralize to a wider population who diverge out of the average range of this dataset remains to be

tested. Training the model with larger groups of ASC and controls would be helpful to ulti-

mately improve the generalization of the model to a wide range of ASC. Similarly, we need to

compare imitation in ASC with other groups that are known to have motor deficits such as

Developmental Coordination Disorder and Attention Deficit Hyperactivity Disorder. Here,

machine learning could be valuable in understanding whether these groups have similar

motor profiles or aspects that are distinct for the different conditions as suggested by recent
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work [43]. It could also be useful in understanding whether there are subgroups of motor diffi-

culties with the autistic population and consequently how these might affect different aspects

of daily living with implications for therapy.

7 Conclusion

To our knowledge, this is the first attempt to investigate identification of autism using kine-

matic parameters of imitation and machine learning. We proposed the use of various machine

learning techniques for the classification of autism from neurotypical controls based on move-

ment characteristics during imitation. 40 kinematic measures from 8 different imitation con-

ditions were analysed. It was found the NTF (Non-target Fast) and NTE (Non-target Elevated)

were the most distinctive imitation conditions. Meanwhile 9 kinematic parameters were iden-

tified as the most discriminative features. SVM and Naive Bayes classifiers were implemented

and compared. Although based on a small sample set, this preliminary work resulted in a good

classification accuracy of 86.7% using the SVM classifier.

Given the accuracy and objective nature of feature selection and classification models,

results from this exploratory study may prove valuable in demonstrating the possibility of

using quantitative kinematic measures and machine learning for preliminary diagnosis of

autism. In addition, we introduce methods to quantitatively identify the most significant kine-

matic variables that offer insight into possible motor bio-signatures, which may potentially be

useful in discriminating different motor subgroups of autism.
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