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Simple Summary: Researchers increasingly appreciate the tumor microenvironment (TME) for its
role in the development and therapy resistance of cancers like esophageal adenocarcinoma. A better
understanding of the TME fueling carcinogenesis is necessary for tailored prevention and therapies.
Here, we highlight recent insights into tumor initiation, interactions with the immune system and
possible novel preventative measures.

Abstract: Despite therapeutical advancements, and in contrast to other malignancies, esophageal
adenocarcinoma (EAC) prognosis remains dismal while the incidence has markedly increased world-
wide over the past decades. EAC is a malignancy of the distal esophageal squamous epithelium at
the squamocolumnar junction with gastric cells expanding into the esophagus. Most EAC patients
have a history of Barret’s esophagus (BE), a metaplastic adaption to chronic reflux, initially causing
an inflammatory microenvironment. Thus, the immune system is highly involved early on in disease
development and progression. Normally, anti-tumor immunity could prevent carcinogenesis but
in rare cases BE still progresses over a dysplastic intermediate state to EAC. The inflammatory
milieu during the initial esophagitis phase changes to a tolerogenic immune environment in BE,
and back to pro-inflammatory conditions in dysplasia and finally to an immune-suppressive tumor
microenvironment in EAC. Consequently, there is a huge interest in understanding the underpinnings
that lead to the inflammation driven stepwise progression of the disease. Since knowledge about
the constellations of the various involved cells and signaling molecules is currently fragmentary,
a comprehensive description of these changes is needed, allowing better preventative measures,
diagnosis, and novel therapeutic targets.

Keywords: esophageal adenocarcinoma; prevention; carcinogenesis; tumor microenvironment;
Barret’s esophagus

1. Introduction

Most of the research and clinical focus in gastrointestinal cancer has been on cell
autonomous mechanisms in the epithelial compartment. However, accumulating evidence
demonstrated that epithelial cells, and specifically stem cells, are strongly influenced by
the host microenvironment [1]. Cancers originating in the context of chronic inflammation
are likely driven by environmental mediators and cells, which together establish an aber-
rant tumor microenvironment that predisposes to cancer initiation and promotes tumor
progression [2]. Moreover, it has been suggested that the lifetime risk of cancers is strongly
correlated with the total number of stem cell divisions, suggesting that only a third of the
variation in cancer risk is attributable to external factors or inherited predispositions and
therefore likely more to the host microenvironment [3].

In Esophageal Adenocarcinoma (EAC), the tumor progressively evolves in an inflam-
matory process from the precursor lesion Barrett’s Esophagus (BE), which is primarily
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caused by chronic reflux (gastroesophageal reflux disease, GERD). This disease is fre-
quent in obese people which may explain why EAC is most common in industrialized
countries [4]. The stepwise progression from BE over dysplasia to EAC is observed in
roughly 0.1–0.3% of BE patients per year, for which tobacco smoking was identified as
a risk factor [5,6]. BE and EAC have been associated with similar risk factors, including
GERD, Caucasian race, male sex, increasing age, and obesity. The prevalence of BE has
also increased greatly over the last decades, resulting in many individuals “at risk” for
this fatal malignancy. However, most EAC patients were not previously diagnosed with
BE, suggesting that incidences are greatly underreported [7]. EAC poses a major global
health burden because it has a relatively high mortality rate of ≥80%, ranking as the 6th
deadliest malignancy in 2015 [8,9]. Despite the inflammation during development, cancer
immunotherapies show a low response rate [10]. To design better preventive and therapeu-
tic strategies for BE and EAC, it will be of immense importance to understand the function
and contribution of the tumor microenvironment (TME). Recent research increasingly
focuses on the characterization of the TME, and this review aims to summarize the current
knowledge thereof in EAC with a focus on immunologic aspects.

2. Pathophysiology and Carcinogenesis of EAC

The incidence of gastroesophageal junction cancer, comprising both esophageal (EAC)
and junctional gastric adenocarcinomas, has increased dramatically in Western countries
with a 5-year overall survival rate of 15%. The rapid increase is associated with obesity
and gastro-esophageal reflux disease (GERD), which are thought to promote Barrett’s
esophagus (BE). Better understanding of the pathogenesis of this lethal disease would
allow improved cancer prevention, early (endoscopic) detection and therapeutic options.
BE begins at the very distal esophagus, contiguous with the gastric cardia and is described
as an archetypal metaplastic condition comprising a mosaic of gastric and intestinal cell
types. Metaplastic changes of the squamous epithelium to a columnar phenotype are
followed by a stepwise progression from non-dysplasia (NDBE) over low-grade dysplasia
(LGD), high-grade dysplasia (HGD) and the carcinoma. The development of EAC is
associated with inflammation causing an infiltration by immune cells. For a long time it
has been assumed that such metaplasia was originating from squamous epithelial cells and
was associated with an increased risk of malignancy.

In general, metaplasia is defined as replacement of differentiated cells with other
mature differentiated cells that are not normally present in a specific tissue. This is distinct
from trans-differentiation, a process in which a differentiated cell type converts into a
completely different cell type present in the tissue. This has long been searched for but
not detected in esophagus tissue so far. Metaplasia may be induced by some sort of abnor-
mal stimulus (i.e., acid, bile acid, inflammation, cigarette smoke, and alcohol), and with
persistent exposure is thought to progress to dysplasia and occasionally EAC. Given that
the native esophagus is squamous, the glandular phenotype of EAC is likely inextricably
linked to BE metaplasia.

New data supporting a gastric origin of EAC/BE have emerged in recent years from
both deep analysis of human samples and experimental results from human derived cells
and mouse models. The hypothesis that BE originates in the gastric cardia was proposed in
2012, based on findings in lineage tracing studies in a BE (L2-IL-1β) mouse model, which
recapitulates the histologic progression from esophagitis to dysplasia [11]. Lineage tracing
allows for the genetic definition and tracking of stem cells and their progeny and can help
determine the cellular origin of neoplasms. These experiments point to cells such as Lgr5+

intestinal stem cells (ISC) from the cardia as the origin of BE [12]. The L2-IL-1β mouse
model overexpresses IL-1β in the upper gastrointestinal tract [11]. This pleiotropic cytokine
is an upstream mediator for IL-6 and TNFα in GERD-associated esophagitis, which in turn
drive disease progression [13]. This leads to the histologic progression from esophagitis
to dysplasia, similar to human histopathology, allowing the tracing of stem cells and their
progeny in BE. Subsequently, in 2017 The Cancer Genome Atlas Research Network (TCGA)
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demonstrated in comprehensive molecular genomic profiling of both esophageal and
gastric cancers (GC), the distinct features of the two histological subtypes of esophageal
cancer, EAC and esophageal squamous cell carcinoma (ESCC). In contrast to EAC, ESCC
shows much greater similarity to head and neck SCC. Furthermore, joint analysis of EAC
and GC could not identify features clearly distinguishing these two cancers, suggesting
a shared origin [14]. Genetic results from TCGA are consistent with recent epigenetic
studies of BE relative to normal gastric and esophageal tissues, which also demonstrated
evidence for a gastric origin of BE [15]. Another recent study utilized comprehensive
single-cell transcriptomic profiling, in silico lineage tracing, and mutation analyses from
human tissues spanning the proximal stomach to squamous esophagus from healthy and
diseased donors. The results showed that BE originates from gastric cardia progenitors
through distinct transcriptional programs [16]. This study also experimentally determined
that organoid cultures of human gastric tissue have the capacity to differentiate into BE.
The emerging view of BE/EAC as originating from gastric tissue is consistent with key
pathologic findings that BE always begins at the very distal esophagus, contiguous with the
gastric cardia, and that BE comprises a mosaic of gastric and intestinal cell types. Moreover,
this metaplasia is largely indistinguishable from intestinal metaplasia in the stomach. This
new thinking echoes the original descriptions of metaplasia of the distal esophagus by
Norman Barrett, who assumed at the time that BE resulted from proximal migration of
stomach epithelium [17,18].

The metaplasia at the GEJ involves a deviant differentiation of the ISC. The reason for
this is probably the deficient healing of the squamous epithelium as columnar epithelial
progenitors are more resistant to acid/bile injury. Like later stages in the development of
EAC, BE displays a relatively high mutational rate. Clonal complexity is already detectable
before the malignancy or even metaplasia is observable [19]. This demonstrates an ongoing
evolutionary process which is fueled by chronic inflammation caused by GERD. During
reflux, contents of the duodenum can get to the GEJ. Here, bile acids such as deoxycholate
can cause DNA damage [11]. The effect might be aggravated by a high-fructose-diet,
common in obese people, because it reduces the number of goblet cells which produce
protective mucus [20]. Through the genomic evolution, GERD is driving a selection process
for clones with cancer-associated mutations, as described by Vogelstein in his adenoma–
carcinoma sequence model [21–23]. Ultimately, this increases the risk for a tumor formation,
possibly without metaplastic development.

The histological diversity in BE and EAC is accompanied by a complex mutational
landscape with clonality within BE segments but genomic instability in EAC [24,25]. In
fact, chromosomal instability has been demonstrated in dysplastic BE patients while hardly
any instability was detectable in non-dysplastic patients based on single-cell DNA se-
quencing [26]. Similarly, other genomic alternations such as copy-number alterations or
loss of heterozygosity are only found in patients with progression to EAC [24]. Genetic
mutations frequently found in EAC patients include the tumor suppressors p16 (CDKN2A)
or p53 (TP53) and the oncogene NOTCH1 [27,28]. Upregulated genes in EAC include the
proto-oncogene YAP1 of the Hippo pathway as well as one of its targets SOX9 [29]. In a
study of invasive gastric adenocarcinoma, genes associated with cancer stem cell properties
(ALDH3A1, SOX9, EGR3 and HES-1) were upregulated too [30]. Given that this type of
cancer shares etiology, a similar upregulation can be expected in EAC.

Accumulating evidence indicates that BE and EAC pathogenesis involves the aberrant
differentiation of stem or progenitor cells at the squamocolumnar junction (SCJ). Again,
the mouse model suggests that a combination of risk factors such as high fat diet, GERD,
bile acid, microbiome or host driven distinct inflammation control stem cell homeostasis at
the SCJ. This can lead to malignant transformation and tumor growth in combination with
characteristic genetic alterations. The high mutation rate and clonal complexity of BE is
evidence of the ongoing evolutionary process that begins long before the development of a
detectable malignancy or even metaplasia. A stem cell niche, within the BE segment but
also in the relative stomach, represents a clonal mosaic, where genetically distinct (stem cell)
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clones compete, leading to a dynamic equilibrium of subclone expansion and retraction.
The inflammatory reflux-induced microenvironment fuels evolution, selecting for clones
harboring cancer-associated mutations and increasing the chance of cancer development
with or without metaplastic development. Environmentally driven inflammation is likely
affecting stem cell proliferation or differentiation and should be considered as the most
important risk factor. This calls the well-established theory of a metaplasia to dysplasia
sequence of gastric or esophageal tumor development into question with significant impact
on other tumor diseases (i.e., colon, breast, pancreas) and cancer prevention. Metaplasia
itself might thus not be a typical precursor lesion. Given the stable nature of BE, carcino-
genesis probably reflects the expansion of an altered stem cell population due to changes in
stromal niche factors.

In the clinic, risk prediction models that consider such microenvironment and epi-
demiological risk factors will need more implementation and validation. BE patients are
frequently enrolled into surveillance programs aiming to detect dysplasia or EAC at an
early stage to improve patient outcomes. When performed correctly, such programs should
result in increased dysplasia detection and reduced EAC mortality, yet most BE patients
undergo long-term invasive surveillance efforts to avoid EAC that will never arise [31].
Thus, as a malignant precursor, BE metaplasia may only represent the tip of the iceberg,
and inflammation at the GEJ may be the underwater bulk that has not been sufficiently
recognized to combat cancer development.

3. The Tumor Microenvironment Fuels Esophageal Carcinogenesis

With the emerging field of cancer immunotherapy it has become clear that a better
understanding of the tumor microenvironment (TME) is necessary to understand cancer
progression and therapy resistance [32]. Growing evidence from the mouse model points
to an important role of the microenvironment in triggering many of the earliest events
of tumor initiation. Stem cells likely reside in a niche that maintains them in a stem-like
state, and tumor-initiating cells require a dedicated microenvironment to control self-
renewal and maintenance of an undifferentiated state. In esophageal carcinogenesis, chronic
inflammation promotes the proliferation and survival of malignant cells by subverting
innate and adaptive immune responses

3.1. The Mesenchymal Contribution

The TME comprises the extracellular matrix (ECM) and a cellular compartment. The
ECM in a tissue influences the interactions of the stromal cells with the TME and the
immune system which is important for anti-tumor immunity. It consists of many adhesion
molecules and a scaffolding structure. In addition, fibroblasts are a major stromal cell type
that provides structure molecules for the ECM and produces cytokines [10].

Apart from cancer cells and infiltrating immune cells, the stromal microenvironment
of tumors includes a mixture of mesenchymal cells, comprised mostly of cancer-associated
fibroblasts (CAFs). CAFs have been linked to poor prognosis in solid malignancies and
resistance of EAC to immunotherapy [10]. Activated fibroblasts contribute to tumorige-
nesis by enhancing proliferation and tumor-initiating capacities, and by recruiting and
polarizing cells of the adaptive and innate immune system towards a tumor-promoting
phenotype [33]. They express vimentin and α-smooth muscle actin (α-SMA), resembling
normal myofibroblasts that are present in the gastrointestinal mucosa and develop partially
from bone marrow mesenchymal stem cells. Here, they contribute to the physiologic BM
niche and mesenchymal stem cell self-renewal [34,35]. They are recruited to the tumor site
via TGF-β and CXCR4/CXCL12 signaling [34]. Other reported CAF origins include local
fibroblast and carcinoma cells, which underwent mesenchymal transition [36].

It is well known that in solid cancers like EAC, CAFs substantially contribute to
tumorigenesis and metastasis [10,34]. Their tumor-supportive characteristic stems from a
multitude of actions, for instance by remodeling the ECM. The expression of lysyl oxidase
(LOX) family enzymes results in a crosslinking and thereby maturation of the collagenous
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structure [37]. In addition, CAFs can excessively produce collagen while altering the
compositions of the present types of collagen [38]. Together, these mechanisms are thought
to make the ECM stiffer and harder for potentially cytotoxic immune cells to penetrate, as
these express limited amounts of proteolytic enzymes such as matrix metalloproteinases
(MMP) [39]. In comparison, malignant tumors do express MMPs, which is crucial for their
invasiveness [39,40]. Interestingly, it was shown that CAFs can travel alongside cancer cells
via the bloodstream and help with extravasation at metastatic sites [41]. CAF-originating
MMPs also pose a pro-angiogenic factor by creating favorable conditions for angiogenesis
through the degradation and remodeling of the ECM, as reviewed by Wand, Zhang and
Fan [42]. The authors give more examples for factors from CAFs that support angiogenesis,
like the expression of vascular endothelial growth factor (VEGF) or stromal cell-derived
factor 1 (SDF-1), which can recruit endothelial progenitor cells via CXCR4.

3.2. The Ignition of Immune Reactions

Inflammation as a hallmark of cancer [43] is known to play an essential role in carcino-
genesis and progression of most cancer types [44]. Chronic irritation in the distal esopha-
gus through acid and bile reflux causes inflammation, leading to the recruitment of pro-
inflammatory immune cells, and to the stimulation of epithelial cell proliferation, survival,
and migration, as depicted in Figure 1 [45,46]. Immune cells secreting signaling molecules
to promote tissue healing infiltrate the tissue as well [47]. Several studies have shown that
IL-1β, present in esophagitis, induces IL-6 production, driving inflammation [10,48].
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Figure 1. Immunologic networks in the progression of Esophagitis over Barrett’s esophagus to Dys-
plasia. Overall, the phenotype changes from type 1 domination in esophagitis (GERD) to type 2 in Bar-
ret’s Esophagus and back to type 1 in Dysplasia. Tregs may be initially protective through inhibition
of tumorigenic Th17 cells. Th2 cells support metaplasia via IL-4, which induces goblet cell associated
MUC2. Gray arrows indicate migration and question marks indicate unclear roles, as elaborated in
the main text. Abbreviations: Coxib = Cyclooxygenase Inhibitor; IL = Interleukin; ISC = Intestinal
Stem Cell; PPI = Proton Pump Inhibitor; SCJ = Squamo-Columnar Junction; TGF-β = Transforming
Growth Factor β; TNFα = Tumor Necrosis Factor α. Generated with biorender.com.
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In the L2-IL-1β mouse model, IL-8 promotes development of Barrett’s esophagus and
esophageal adenocarcinoma in part through recruitment of immature myeloid cells [49].
A study by Münch et al. using the model showed an influx of Lgr5+ CXCR2+ cells in
dysplastic tissues, indicating that IL-8 might also serve as a chemoattractant for the ISC [49].
Survival and proliferation of ISC are regulated by the stem cell niche, like neighboring
differentiated epithelial cells or pericryptal myofibroblasts [50]. Major signaling pathways
include the Wnt and Notch, as well as Bone Morphogenetic Proteins (BMP) and Hedgehog
pathways [51]. Of those, Notch and Wnt have already been identified to be involved in the
BE to EAC sequence [52,53]. Moreover, in several cancers, including EAC, IL-6 induces
epithelial-to-mesenchymal transition (EMT) by upregulating cancer stem cell associated
genes [10,54]. EMT is a key event in metastasis and increases therapy resistance [55,56].

Cancers that develop after chronic inflammation like EAC are usually substantially
driven by infiltrating immune cells. This has led scientists to endeavor the establishment
of a quantifiable measurement tool, the “immune score”, first described for colorectal
cancer [57]. The score includes the infiltration of cytotoxic CD8+ T cells (CTLs) and mem-
ory T cells (Tcm) [58]. It has a relatively high prognostic value, possibly superior to the
classical TNM staging, and is therefore interesting as an adjunct factor considering adjacent
immunotherapies [59]. Indeed, CTLs and the immune system as a whole play a crucial
role in averting cancer, hence higher scores represent a better prognosis. The immune
system has the potential to recognize mutations as “altered self”. For example, Segal et al.
performed an in silico analysis, estimating about 10 or 7 new and unique MHC-binding
peptides per HLA allele in breast and colorectal cancer, respectively [60]. However, despite
the constant vigilance of the immune system, tumors can thrive by evading the antitumor
immune response. The TME of both malignant and non-malignant tumors is comprised of
a network of cells that have adapted an immunosuppressive phenotype.

Although the immune cell infiltration in tumors is heterogenous between patients, simi-
larities can be found within different types of cancers [32]. Figure 2 gives an overview of the
interacting immune cells in EAC: dendritic cells (DCs), tumor-associated macrophages (TAM),
CTLs, T-regulatory cells (Treg), natural killer (NK) cells, B cells, and myeloid derived sup-
pressor cells (MDSCs, or immature myeloid cells, iMCs) and mast cells (MCs) [32,46,59,61,62].
Lagisetty et al. found that eosinophils, a common cell type in the esophagus, vanish
during BE to EAC progression accompanied by an increase of the immune suppressive T
helper subset Th2 and a drop in CD8+ T cell population after progression from high grade
dysplasia to EAC [61]. In their study they also show a shift from inflammatory immune
cell markers to upregulated inhibitory markers like the PD1/PDL1-axis, based on RNA
sequencing. This correlates with the clinical observation, that patients with eosinophilic
esophagitis never develop any tumor disease of the esophagus, a correlation that needs
to be evaluated in future studies [63]. In contrast, other inflammatory conditions such as
lichen planus may lead to squamous cancer [64].

3.3. Dendritic Cells

Dendritic cells (DCs) can process tumor-derived antigens and activate antigen-specific
CD8+ naïve T cells in the tumor-draining lymph node (TDLN) [65]. In the context of EAC,
only a few studies suggest a role for DCs. DCs have access to large amounts of tumor
antigens, including soluble mediators such as endogenous danger signals from necrotic
cancer cells (DNA, HMGB1, S100), that are able to activate DCs [66]. Since the TDLN is the
site to which DCs originating from the tumor migrate and neo-antigens from the tumor
drain, the TDLN is crucial for the outcome in the development of cancer as well as effective
immunotherapy [67]. The TDLN, however, is notably more tolerogenic compared to other
LNs from the same animal [67]. DCs isolated from primary tumors as well as TDLNs
are phenotypically immature and can poorly stimulate T cells. Immature DCs can inhibit
effector T cell responses by inducing anergy, a defense mechanism that evolved to prevent
autoimmunity [46,67]. DCs readily mature in vitro by pro-inflammatory stimulation but
not in vivo, underlining that there is more to this phenomenon than just immaturity.
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Figure 2. Tumor Microenvironment in Esophageal Adenocarcinoma. Redundant processes suppress
central events in anti-tumor immunity, such as CTL and NK cell activity and associated Th1 activation,
or DC maturation. Abbreviations: CAF = Cancer Associated Fibroblast; ECM = Extracellular Matrix;
IL = Interleukin; LOX = Lysyl Oxidase; PPI = Proton Pump Inhibitor; SCJ = Squamo-Columnar
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Box Transcription Factor 9; TNFα = Tumor Necrosis Factor α; VEGF = Vascular Endothelial Growth
Factor; MMP = Matrix Metalloproteinase; and YAP1 = yes-associated protein 1. Generated with
biorender.com.

Bobryshev et al. reported that DC numbers in human biopsies increase in EAC
compared to BE, but their mechanistic role in the TME for EAC development remains
unresolved [62]. The authors discussed that increased numbers of DCs in several cancers
appear to have lower allostimulatory activities compared to peripheral DCs. Their con-
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tribution may also be simply due to the defective maturation, which indirectly supports
immune escape [68]. It has been shown that DCs are required for a proper response to
treatment targeting the PD-1 axis [69]. Higher expression levels of PD-L1 by cancer cells in
EAC significantly increases patient disease free survival after immune checkpoint inhibitor
therapy [70].

3.4. T Cells

CD4+ T helper cells can be divided into several subsets, including Th1, Th2, Th17 and
regulatory T cells (Tregs). Of those, Tregs have become a prominent member involved in
cancer progression. They are induced by IL-2 and TGF-β and are necessary for peripheral
tolerance [71]. Their normal effector function is to balance immune reactions, mainly
by secreting IL-10 and TGF-β, which is especially important for the homeostasis of gut
mucosa. Many cancers exploit these cells for immune evasion, exacerbating prognosis of
most cancers. Surprisingly, in cancers of the GI tract their presence seems to be favorable,
e.g., colorectal cancer [72,73] and EAC [74]. In CRC this observation could be explained by
the high translocation of bacteria, which is normally accompanied by Th17 cell responses.
These can have pro-tumorigenic effects that are inhibited by the Tregs. The direct role
of microbiome alterations in the context of EAC is currently elusive but the presence of
Th17 cells is assumed. Given the possible protective role, there is an urgent need to better
understand the role of Tregs in EAC. In CRC, for instance, adoptively transferred Tregs
suppresses inflammation-induced tumorigenesis, likely by inhibiting the formation of the
inflammatory network [75–78]. This implies a beneficial role for the prevention of the BE to
the EAC sequence.

Th17 cells differentiate from naïve T cells as well, in response to TGF-β, IL-6 and
IL-23, which are all present in the TME [79,80]. They are characterized by the secretion
of IL-17 and are associated with poor prognosis [72,79]. While not fully proven yet, the
presence of Th17 cells in EAC is strongly implied by high levels of IL-17 in the TME [81].
Moreover, Th17 cells from other cancers constitutively express CCR4 and CCR6, and their
corresponding chemoattractants CCL22 and CCL20 were found in the TME of esophageal
cancers patients [80]. However, in the respective study, ESCC and EAC patients were mixed
in the analysis.

The T cell subsets Th1 and Th2 are at play in the progression from BE to EAC too.
Under physiological conditions, Th1 mediates tumor rejection by producing, e.g., TNFα
and IFNγ and eliciting cell-mediated killing [82]. On the contrary, Th2 associated cytokines
such as IL-4, IL-6 and IL-10 support tumor growth and suppress cellular immunity [83].
The balance between these two cell types shifts during carcinogenesis. In the initiating
steps during esophagitis, squamous epithelial cells secret IL-1β and IL-8, as evident by
both mouse and human data [49,84]. This pro-inflammatory environment changes after
the development of BE, when patients have increased levels of mostly IL-10 and IL-4,
suggesting a Th2-like response [84]. This milieu also supports the metaplastic changes in
BE through the induction of the MUC2 gene by IL-4 [85]. Importantly, this state may support
tumor development through the suppression of cell-mediated anti-tumor response [83]. In
dysplasia, the balance shifts yet again back to Th1 with increase in IFNγ IL-1β, IL-2 and
IL-8 levels [86,87].

3.5. MDSCs

MDSCs are pathologically activated immature myeloid cells (iMC) that are defined as
CD11b+Gr-1+(Ly6G-Ly6Chigh) [88]. In cancer-free animals, they are detectable as iMCs in
the bone marrow and occasionally the spleen, but accumulate in large numbers in the spleen
under chronic inflammation and in cancer, where they become tolerogenic MDSCs [88–90].
MDSCs can suppress T cell functions in multiple ways, e.g., by transforming them into Tregs,
expanding pre-existing Tregs or depleting the T cell essential amino acid arginine [91,92].
Besides this, they can also directly promote tumor progression and metastasis in an invasive
colon cancer mouse model [93–95]. Cis-Apc/Smad-4 tumorigenesis is characterized by
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high iMCs infiltration at the invasion fronts. Here, they produce MMP2 and MMP9, which
can degrade collagen IV, the predominant type in the basal membrane. Multiple studies
have pointed out that stromal and tumor cell-derived IL-6 plays an essential role in the
generation and activation of MDSCs for SCCs [96,97]. In a transgenic IL-8 mouse model, it
was previously shown that this cytokine accelerated gastric and colon cancers through the
recruitment of MDSCs [98].

3.6. TAMs

The polarization state of macrophages within the TME is divers and ranges from
the rather tumoricidal M1-like, classically activated macrophages to the tumorigenic al-
ternatively activated, M2-like phenotype. A clear distinction in vivo can be challenging
due to sometimes overlapping cytokine profiles, as opposed to the clear polarization that
can be induced in vitro [99]. In spite of the discrimination between M1 and M2 being
oversimplified and perhaps outdated, TAMs are alternatively activated macrophages with
tissue growth supporting and immune-suppressing functions, characterized by high levels
of IL-10 production [100]. Within the M2-spectrum, they belong to the M2d subset, which is
induced by IL6 [101]. Since IL-6 is a relevant cytokine in EAC, it could be assumed that this
is one of the mechanisms that induces TAMs here. Other generally described mechanisms
are Il-4 and hypoxia [102]. Blood monocytes are recruited to the tumor site via IL-8 where
they differentiate to TAMs, but TAMs can also originate from mesenchymal-derived tissue
resident macrophages [99]. TAMs express, e.g., angiogenic VEGF, IL-10, IL-12, TNFα and
TGF-β [103]. Hence, their presence in cancers is associated with poor survival, which is also
true in EAC [101]. Cao et al. also reported that the M2/M1 ratio was higher in late stage
and metastatic patients [101]. To analyze the induction of TAM, they cocultured an EAC
cell line (SKGT) with a macrophage cell line (THP1), which resulted in M2d polarization.

3.7. Neutrophils

Analogously to the plastic polarization of macrophages (M1/M2), neutrophils can
also undergo a transformation from anti-tumor to a tumor-supporting phenotype (N1
to N2) [99]. Physiologically this aids in tissue regeneration after resolving an infection
because of the collateral damage inflicted by neutrophilic activity. The pro-tumorigenic
phenotype is mainly induced by TGF-β but it is uncertain whether these tumor-associated
neutrophils (TAN) actually display a polarized phenotype or just a varying degree of
activation [99]. Moreover, it remains open whether neutrophils have the same plasticity
as T cells or macrophages and if the N2-like phenotype is reversible [104]. Our study
implicates TANs in playing a role in EAC in IL-1β-overexpressing mice (L2-IL-1β mouse
model) [49]. In this model, mice develop Barrett’s esophagus with similar histopathology
to humans, as described above. Dysplastic tissues from mice fed with a high-fat diet
produced elevated levels of CXCL1, the murine functional homolog of CXCL8. Accord-
ingly, these mice had increased numbers of neutrophils in the tissue. Moreover, NK cell
populations were reduced, suggesting that neutrophils inhibit NK cell degranulation, but
the mechanism was not elucidated [49,105]. In alignment with this, another study found
an increasing IL-8 expression during progression as well as higher neutrophil numbers in
patient samples based on bulk RNA sequencing from tissues of different stages of the BE to
EAC sequence [61].

3.8. NK Cells

NK cells belong to the lymphoid lineage but are generally considered as innate immune
cells due to their lack of gene rearrangement. One of their major tasks is to detect and
eliminate aberrant cells, e.g., cancer cells. They potentially directly recognize cancer cells,
as these often downregulate MHC-1 expression as an immune evasion strategy (missing-
self hypothesis) or indirectly via their Fc gamma receptor (antibody-dependent cellular
cytotoxicity, ADCC) [106]. In response to activation, they secrete IFNγ, which enhances
type 1 immune responses. However, their potential in solid tumors, including gastric
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cancer, is limited due to the immune suppressive TME. The prognostic value of NK cell
infiltration like other lymphocyte infiltration has been shown in many cancers. However,
to our knowledge, virtually no study directly investigated their role in EAC although their
potential has gained attention in other adenocarcinomas like pancreatic cancer [107]. One
study saw a favorable association of NK cells with survival in gastric adenocarcinoma [108].
Another study linked NK cell infiltration to prolonged survival in esophageal cancer but
without clear distinction between ESCC and EAC [108].

3.9. Secretory Molecules

As broached in the previous paragraphs, the cytokine signaling pathways in the TME
determine the tumor behavior. The initial IL-1β of the inflammation caused by chronic
injury leads to the upregulation of IL-6 and IL-8 in the microenvironment by stromal cells,
CAFs and immune cells [11]. IL-8 initially recruits neutrophils that, in the long run, adapt
to an immunosuppressive phenotype. IL-6 likely drives the activation of MDSC that in
turn act tumorigenic by the induction of TAMs and Tregs via TGF-β, IL-6, IL-10 and IL-12.

Utilizing a tissue micro array of 72 EAC patient samples, Conroy et al. showed a
higher expression of TGF-β in the stroma surrounding EAC than within the tumor but
significantly higher expression of IL-10 within the tumor [107]. Accordingly, Tregs were
enriched in the stroma and CD107a, a marker for cytotoxic degranulation, was reduced
in the tumor [59]. Similarly, elevated IL-17 levels were detected. The presence of IL-17
has further implication, as this cytokine has a strong link to Th17 cells, which are indeed
involved in EAC [109]. A study of Liu et al. showed that IL-17 signaling enhances EAC
progression and invasiveness through NF-κB-mediated MMP2 and MMP9 activation [110].
NF-kB is a central transcription factor in the pro-inflammatory activation of the immune
system. On the stromal side, it was shown that NF-κB-inhibition in myofibroblasts reduced
inflammation in the microenvironment of BE, thereby attenuating the phenotype in the
L2-IL-1β mouse model [33].

Molecules downstream of cytokine signaling relevant in EAC have been identified too.
For instance, Th17 cells also produce IL-22, a member of the IL-10 family that signals via
signal transducer and activator of transcription (STAT) 3 [111]. STAT3 is a key transcription
factor for Th17 cells and shifts immune responses towards the pro-tumorigenic side. It in-
teracts with TAMs by inducing the expression of IL-23, which in turn (together with TGF-β,
IL-1β and IL-6) induces Th17 differentiation. STAT3 also inhibits the pro-inflammatory
transcription factor NF-κB in TAMs and IL-12 expression in DCs [112]. In IL23R-exprssing
Tregs, IL-23 activates STAT3, leading to the production of IL-10, which also signals through
STAT3 [113–115]. Strikingly, in a recent publication, Bhat et al. demonstrated that AP-
endonuclease 1 (APE1), a positive regulator of STAT3 activity, was transiently overex-
pressed in BE cells after bile acid exposure, but was constitutively overexpressed in EAC
cells [116].

3.10. Microbiome

Finally, the microbiome has been increasingly appreciated for its role in cancer pro-
gression. In malignancies, especially cancers of the gastrointestinal tract, microorganisms
are frequently displaced in the tissue [117]. Intriguingly, EAC incidence has risen with
the advent of antibiotics and the decline in Helicobacter pylori infection rates, suggesting a
potential role of the microbiome in disease manifestation and progression at the esopha-
gogastric junction [118]. Mechanistically, BE progression is associated with the infiltration
of CD11b+Gr1+ myeloid cells [11] and it was shown that these cells also respond to bacterial
lipopolysaccharide, a component of the outer membrane of Gram-negative bacteria [119].
The esophageal microbiome of BE and EAC patients is furthermore characterized by a
general increase in Gram-negative bacteria [120]. We investigated the fecal microbiome
driven by our recent findings in the L2-IL1β mouse model of BE, where high-fat diet led to
dysplasia independent of obesity by changing the gut microbiome and consequently the
inflammatory microenvironment [49]. In humans, changes in the compositions of the major
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commensals of the phyla Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria and
Fusobacteria were described [121]. An increase in gram negative bacteria, such as Fusobac-
terium nucleatum, has been postulated, which may trigger NF-kB signaling in BE through
TLR4 activation [122]. Considering that different microbes thrive at varying oxygen- and
pH-levels as well as present antimicrobial peptides, a translocation during progression from
BE to EAC appears plausible. Therefore, elucidating whether microbes influence disease
progression might have prognostic value and could potentially be therapeutically targeted.

3.11. Search Strategy

The literature searches were conducted between September 2018 and March 2022 in
the database of PubMed. Searching terms included esophageal adenocarcinoma, Barrett’s
esophagus, tumor microenvironment, carcinogenesis, and immunology. Sources were
preferred that discriminated esophageal adenocarcinoma from squamous cell carcinoma.

4. The TME as an Opportunity for Cancer Prevention

Tumor diseases are the second most common cause of death worldwide after car-
diovascular diseases. The development of tumors is a complex process in which several
genetic and non-genetic factors play a role. Although there is enormous potential in
primary prevention, most cancers cannot be avoided. Therefore, secondary prevention
through early detection and early treatment is important. The goal is to detect cancer as
early as possible to improve treatment success and survival. Ideally, screening strategies
should be clinically effective at the individual level and cost-effective at the population
level. The carcinogenesis of EAC provides a good example to analyze the potential of
molecular secondary prevention and to test its utility. Patients with gastrointestinal tu-
mor diseases (colon, stomach, esophagus) already receive regular screening endoscopy.
Therefore, material collection is already established and a concept of molecular prevention
would be extendable to these diseases and, most importantly, practical and feasible in
clinical applications. The detection of metaplastic or inflammatory precursor lesion is
an important risk factor and it seems reasonable to improve the surveillance strategy by
additional identification of biomarkers. This would allow a clearer prognosis in the future
and thus extend the intervals of surveillance endoscopies, minimizing costs and the burden
for the patient.

With a lifetime risk of merely 5% to progress, but an 11-fold relative risk of cancer, the
major problem in clinical management of BE is the need to distinguish patients likely to
progress from those that will not [5,123]. This challenge is only growing as new technologies
improve the detection of BE in the population, which increases the number of patients
we are managing. None of the currently known clinical and endoscopic criteria have
a sufficient predictive power to identify BE progressors in a clinically useful manner,
highlighting the interest to identify novel molecular biomarkers. We know very little
about how cancers evolve and what fuels progression from normal to pre-malignant and
malignant tissue. To improve cancer prevention, we need to understand the dynamics
of epithelial transformation over space and time, and the selective pressures within the
(micro) environment that shape these evolutionary trajectories.

Especially in patients with GERD and/or BE, surveillance is a key recommendation,
for which substantial resources are expended. Guidelines on the clinical management of
BE have been postulated by the American College of Gastroenterology (ACG) [124]. So
far, surveillance of BE is done by esophagogastroduodenoscopy (EGD), including biopsies
for pathological evaluation [125]. Patients with BE frequently present with symptomatic
heartburn and seek medical attention at early stages of disease. This is useful for the
detection of dysplasia or cancer but does not allow a true risk prediction for those patients
who do not have dysplasia but could still progress to EAC. Given the high prevalence of
GERD symptoms in the general population and the low prevalence of BE in these patients,
a targeted screening for early detection and treatment on the one hand and a cost-effective
approach on the other hand is warranted. Better prediction of neoplastic progression would
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facilitate to focus surveillance on patients with a high risk of malignant transformation.
To explore individualized cancer screening strategies, data from specific and well-defined
patient cohorts need to be used. This may allow individualized approaches for screening
and surveillance in the future, while maximizing the clinical- and cost-effectiveness. The
integration of identified TME risk factors into clinical assessment could help to identify
more high-risk patients for cancer prevention and avoid overdiagnosis for low-risk patients.

The effectiveness of EGD has been questioned because the mortality remains high
and the procedure can be costly cumulatively [126]. A novel method to monitor the state
of BE is the use of the cytosponge, as reviewed by Iqbal et al. [126] The cytosponge is an
encapsulated sponge that can be swallowed by the patient. In the stomach, the capsule of
the sampling device dissolves, the sponge expands and is then pulled back up through
the esophagus. Along the way it takes up cells from the luminal surfaces, that later can be
analyzed. One advantage of this method sticking out is that nurses can perform it. In a
clinical trial, the marker trefoil-factor 3 (TFF3) was used to identify BE in GERD patients and
was compared to the standard EGD procedure. Patients who tested positive for TFF3 went
on with endoscopic diagnosis. The cytosponge method showed an improved detection of
BE [126]. The cytosponge TFF3 test appears to be a feasible, safe, and a generally acceptable
test for outpatient use in patients with GERD and probably also obesity as a risk factor
for EAC. The procedure leads to improved detection of BE patients, thereby allowing a
more proactive prevention approach in identification with minimal invasive treatment
of dysplasia and early EACs. It needs to be discussed whether TME analysis could be
integrated into such a screening tool as well. In short, optimized prevention of tumor
disease comprises a staggered investigation strategy with individually applied clinical
diagnostics. This includes a combination of cytosponge (TTF3) with characterization of
patients at risk (new molecular markers), as well as endoscopy in suspicious cases.

Carcinogenesis is accompanied by mutations, but unfortunately the mutational land-
scape is not a good predictive tool in EAC. Commonly mutated genes are present in both
non-dysplastic BE and EAC, and the predictive value remains unclear [127]. The only
exceptions to this are p53 and SMAD4 [23,127–129]. In EAC, a common mutational sig-
nature of T:A > G:C transversions in a CTT setting has been suggested to be associated
with a mutation pattern caused by acid or bile exposure in the context of gastroesophageal
reflux [94,95,99]. Unbiased stratification of EAC based on the mutational signature pro-
files also resulted in three subgroups that show different biological features and clinical
characteristics [118]. It is likely that the exposure to different risk factors (e.g., bile reflux,
H. pylori infection) in the upper gastrointestinal tract has an impact on these signature
profiles and could be used for cancer prevention. Studies of heredity EAC causes focus
mostly on familial aggregates. These studies are limited in sample sizes but were able to
show clusters of BE or EAC [127,130]. However, the underpinning cause might be a genetic
susceptibility to develop GERD [130].

As argued here, early detection of a tumorigenic niche would define a groundbreaking
novel modality that potentially allows to define a population at risk to develop EAC.
As one example, the receptor CXCR4 has previously been implicated for its diagnostic
value as its expression on both tumor cells and immune cells was correlated with disease
progression [131]. Early stage lesions are often not recognizable with conventional white-
light endoscopy [132]. We observed a gradual increase of CXCR4+ neutrophils and T cells,
which is in line with other reports about the role of these inflammatory leukocytes during
tumorigenesis. In the L2-IL-1β mouse model, we tested fluorescence molecular endoscopy
for such an inflammatory microenvironment marker, combined with white-light endoscopy,
for the potential to serve as a “red-flag” technique for early EAC detection [133]. Indeed, the
administration of CXCR4-targeted peptide conjugated to Sulfo-Cy5 dye (MK007) allowed
early detection of dysplastic lesions [131,134,135]. The results from ex vivo studies further
demonstrated a potential for clinical translation of fluorescence molecular imaging by
enabling pre-clinical investigation of EAC biomarkers.
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TME as a Target for Chemoprevention

Chemoprevention using safe agents as a primary approach, or adjunctive to endo-
scopic therapy, is an attractive option to avoid neoplastic progression. Pharmacologic
approaches that are well tolerated have the potential for wider adoption and to have a
greater impact in reducing the number of patients that develop EAC. In the context of over-
all preventive public health, this approach would be largely non-invasive and would lower
costs significantly by reducing the frequency of endoscopic surveillance. However, progress
in the development of chemoprevention therapies for EAC has been severely restricted by
the low progression rates and associated hurdles to initiate significant clinical trials.

Next to avoiding a reflux-inducing diet, proton pump inhibitors (PPI) have been
shown to be beneficial [99]. PPIs mainly block acid production in parietal cells of the
stomach. Consequently, intraesophageal pH values rise above physiological levels while
cell proliferation decreases and differentiation in BE increases. A differentiated cell state
is considered desirable, as opposed to de-differentiation, which is a cancer-associated cell
characteristic. However, the clinical importance of such favorable effects on these surrogate
markers is not clear. Although PPIs have an excellent safety profile, some researchers
express concern about a possible increased cancer risk due to dysbiosis resulting from a
higher pH [136]. Changes in the microbiome that occur during EAC development may
play a role too, as elaborated on earlier. However, a definite study is currently missing.
Other causes of dysbiosis, like the use of antibiotics and their contributions to cancer risk,
are debated as well [137]. For instance, results from a UK study hint at an increased risk
after repeated administration due to decrease of protective Streptococcus. However, the
study fails to distinguish between ESCC and EAC, making it challenging to extrapolate
insights [137,138].

Many studies have supported the potential of chemoprevention with cyclooxyge-
nase (COX) inhibitors (coxib) for EAC, including aspirin, non-selective non-steroidal anti-
inflammatory drugs (nsNSAIDs), and selective COX-2 inhibitors. Coxibs could exert their
antitumor effect either by reducing the risk of BE or the risk of EAC progression in BE
patients. Despite their early promise, coxibs are of no clinical value at this point. On the
other hand, aspirin may be beneficial, and we have demonstrated in the mouse model
that anti-inflammatory treatment with COX inhibitors or IL-1β antagonists (Anakinra©)
can prevent carcinogenesis [139]. As another example, a randomized phase III study of
low- or high-dose aspirin in combination with low- or high-dose PPI (esomeprazole) was
conducted to chemo-prevent Barrett’s metaplasia (AspECT) [140]. The results show that
a combination of high-dose PPI and low dose aspirin, significantly and safely improved
outcomes in patients with BE, but without specificity for cancer development.

While this effect may be attributed to a broad reduction of inflammation, another
class of drugs, statins, have more direct mechanisms that may prevent cancer develop-
ment. Statins are a class of drugs prescribed to patients with elevated cholesterol levels.
Statins reduce cholesterol by inhibiting HMG-CoA reductase of the mevalonate pathway,
which is the rate-limiting step in cholesterol biosynthesis [141]. This has inhibitory effects
on downstream metabolites generated by this pathway, including isoprenoids. This has
several effects that decrease cell proliferation. For instance, without the post-translational
modification of Ras (isoprenylation), cyclin-mediated cell cycle progression is reduced [141].
In a meta-analysis, statins were consistently associated with a reduced risk of progres-
sion to EAC by 41% [141]. A particular study showed that a combination of statin and
acetylsalicylic acid increased the protective effect even further [142].

Conclusively, lifestyle choices pose a major risk factor to develop cancer. In EAC, BE
is supposed to be the most important precursor lesion, as it increases the EAC risk 30-fold
compared to the general population [123]. BE, in turn, is caused by chronic esophageal
reflux disease (GERD). Therefore, a diet and behavior should be avoided that worsens
reflux, such as smoking or a high fat diet and physical inactivity.
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5. Research Perspectives

Overall survival of cancer patients has drastically improved over the past few decades
thanks to a better understanding of the TME and cancer immunotherapies. However,
the prognosis of EAC remains dismal. Accumulating molecular and clinical data may
allow advancements in precision medicine for the treatment of EAC [143]. Hurdles like the
heterogeneity of BE tissues dampen the development of effective prevention or treatment
strategies. The pre-clinical L2-IL-1β mouse model offers the opportunity to image the
immune infiltration more thoroughly than, e.g., resection of neoplastic regions in the
patient. Moreover, thanks to the remarkable similarity to the human pathology, it might
allow for a more comprehensive picture of the spatial and temporal distribution of immune
cells in BE and EAC.

New advancements in gastro-esophageal cancer research have been fueled by the use
of organoid systems derived from patient material, e.g., colorectal cancer [144]. This could
help to reduce the use of animals. Although mouse models and organoid cultures are good
tools to study EAC, results should be treated with caution while translating them to the
clinic [16]. The published studies in the field coherently show the immune-suppressive
phenotype on EAC. However, few studies provide answers to the spatial distribution
of participating immune cells. Cao et al. discriminated the presence of macrophages
in the tumor center or at the edge and found no difference in overall survival or nodal
spread [101]. Based on sequencing data, MDSCs occur in EACs, but little research has
been done on their role in this specific type of cancer [61]. The immune score, that has
been proven successful in colorectal cancer evaluation, only factors in the presence of
CD8+ (memory) T cells but neglects other important immune cells such as NK cells or
macrophages [59]. The first successful attempts exist to establish a more comprehensive
picture for SCC [145]. Additionally included markers were for T helper cells (CD4), Tregs
(Foxp3), and myeloid cells (CD33), as well as inhibitory (PD-1/PD-L1, Tim-3, LAG-3) and
stimulatory checkpoints (OX-40, ICOS), and a marker for suppressive polarization (IDO).
Whether such a broad-ranging panel is practical in the clinical management, and which
markers are useful in EAC, remains open and needs further understanding.

6. Concluding Remarks

Despite its rareness, EAC is an important malignancy due to the high prevalence of
precursor lesions such as GERD and BE and its high mortality. Understanding the origin of
this disease as an aberrant expansion of cardiac-derived gastric stem cells, and considering
similar genomic and genetic alterations, allows us to group EAC with gastric cancer [14].
This has implications for the development of new prevention targets and future studies
or clinical trials. Assuming BE and GERD as the dominant precursor lesions, disease
progression follows a multistep process. Several pro- and anti-inflammatory processes
are at play in the development of metaplasia or the progression to dysplasia and EAC.
Knowledge on the role of specific immune cells and cytokines in the TME during that
process are still fragmentary. The discussed tumor-promoting inflammation, avoidance of
immune destruction, activation of invasion and metastasis, induction of angiogenesis and
genomic instability are all “hallmarks of cancer” [143]. These hallmarks have been extended
by Hanahan and Weinberg over time, e.g., by “polymorphic microbiomes”, which seems to
be important for EAC too. Future studies will ideally confirm the discussed findings and
put them together in a bigger picture. Such a comprehensive description of the TME in
gastric junctional cancer and esophageal carcinogenesis would eventually make effective
prevention possible.
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