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Abstract

The coordinated motion of a cell is fundamental to many important biological processes such as development, wound
healing, and phagocytosis. For eukaryotic cells, such as amoebae or animal cells, the cell motility is based on crawling and
involves a complex set of internal biochemical events. A recent study reported very interesting crawling behavior of single
cell amoeba: in the absence of an external cue, free amoebae move randomly with a noisy, yet, discernible sequence of ‘run-
and-turns’ analogous to the ‘run-and-tumbles’ of swimming bacteria. Interestingly, amoeboid trajectories favor zigzag turns.
In other words, the cells bias their crawling by making a turn in the opposite direction to a previous turn. This property
enhances the long range directional persistence of the moving trajectories. This study proposes that such a zigzag crawling
behavior can be a general property of any crawling cells by demonstrating that 1) microglia, which are the immune cells of
the brain, and 2) a simple rule-based model cell, which incorporates the actual biochemistry and mechanics behind cell
crawling, both exhibit similar type of crawling behavior. Almost all legged animals walk by alternating their feet. Similarly, all
crawling cells appear to move forward by alternating the direction of their movement, even though the regularity and
degree of zigzag preference vary from one type to the other.

Citation: Yang TD, Park J-S, Choi Y, Choi W, Ko T-W, et al. (2011) Zigzag Turning Preference of Freely Crawling Cells. PLoS ONE 6(6): e20255. doi:10.1371/
journal.pone.0020255

Editor: Tom Waigh, University of Manchester, United Kingdom

Received December 24, 2010; Accepted April 28, 2011; Published June 7, 2011

Copyright: � 2011 Yang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Korean Ministry of Science and Technology (KOSEF grant: R17-2007-017-0100-0). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: kyoung@korea.ac.kr

Introduction

The crawling of cells plays a key role in biological development,

wound healing, metastasis of cancer cells, and many other

physiological and pathological processes. The process involves

the complex coordination of a range of molecular events, including

directed assembly of actin monomers, gelation process of actin

filaments, formation of focal adhesion sites, disassembly of

crosslinked network of actin filaments, and recycling monomeric

actins [5,21,26]. The nexus of these molecular actions is also

coupled to the cell’s sensory systems, which recognize and

interpret the various external cues from the environment. Over

many years, significant advances have been made in identifying

the biochemical components responsible for the individual

molecular events, but how they are coordinated and translated

into the behavior of cell migration is not completely understood

[12,14,18,24,28].

In many cases cell motility is driven by external cues, such as

spatial or temporal modulations of attractants (or repellents)

[9,11]. However, cells even crawl in ‘darkness’ (i.e, in the absence

of external gradients), e.g. to detect harmful invaders or search for

food. In a natural situation, this cell-intrinsic motility might

simultaneously coexist with the directed motions driven by

extrinsic factors. Of the two different origins, one may dominate

over the other or both may play a significant role.

Over many years of biological evolution, cells presumably have

developed some special crawling strategies. The existence of

optimal searching strategies in animal populations has been tested

and modeled in a number of different circumstances [2,7,10,23],

but there are few reports on crawling single cells [8,20]. Only a few

years ago, Li et al. [15] reported their first experimental

observations of the crawling behavior of isolated Dictyostelium

discodium amoebae. They found that free amoebae in the absence

of external cues crawl randomly but with a long range directional

persistence. Interestingly, this long-range persistence originates in

part from the existence of many small zigzag turns. The cell

trajectories can be viewed as a sequence of small ‘runs’ (more or

less, straight movements) and ‘turns,’ similar to the ‘run-and-

tumble’ motion of petritrichously flagellated E. Coli bacteria [3] or

that of biflagellated alga Chlamydomonas [19]. However, there is

a major difference between dicty cells and bacteria or Chlamy-

domonas. While the turning events of bacteria and Chlamydo-

monas are purely stochastic, those of amoebae exhibit short-term

memory. Amoebae have a strong tendency to turn away from a

previous turn. This interesting finding was also confirmed by

Bosgraaf and Haastert, who quantified the ordered extension of

pseudopodia of amoeboid cells [4].

This study examined whether the observed zigzag crawling

behavior and the long-range directional persistence of Dictyoste-

lium amoebae can be a general property of any crawling cells. First

of all, microglia, which are the immune cells of the brain, were

investigated [13,17] as another example. The free microglia in a

cell culture also exhibited similar type of zigzag crawling motion.

Second, a simple activator-inhibitor kinetic model [24], which

incorporates some of the essential biochemical reactions of actin

polymerization (and depolymerization) and cell mechanics, was
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used to show that freely crawling cells intrinsically support zigzag

turns and that the degree of the zigzag turning preference can be

tuned by changing some key parameters associated with the actin

polymerization process.

Results

Directional persistence in crawling microglia trajectories
Figure 1 shows an image of microglia cells dissociated from rat

brains (PMG: left) and mouse-derived microglia cell lines (MG5:

right), which are approximately 2 days old in a culture dish. They

are motile and have a fan-shaped cell body with a broad ruffling

fronts and tail-like long structures in the rear end [see Movie S1].

The trajectories of many freely moving PMG and MG5 cells were

monitored continuously for more than twenty hours and two

representative cases are shown for each in Fig. 1B (red: PMG,

blue: MG5). The individual trajectories are intrinsic to each cell

because there is no externally imposed gradient guiding the cells in

the very low density preparation. They move quite slowly with an

average velocity 1*4 mm/min.

The non-interacting PMG and MG5 cell trajectories exhibit a

strong directional persistence as shown in Fig. 1C which plots the

mean-square displacements d2 vs. time t on a log-log scale for eight

different cells in each case. For approximately 20*200 minutes,

the graphs are almost straight with a slope in between 1 and 2

(PMG: mean 1.42, s.d. 0.08; MG5: mean 1.57, s.d. 0.11). Both

PMG and MG5 cells are neither purely diffusive nor ballistic

objects but crawl with a long-range directional persistence.

Moreover, their mean velocity distributions over *10 minutes

show a non-Gaussian ‘hollow-shaped’ distribution in vx{vy space

(see Fig. S1), which is an important characteristics that excludes

two well-known models of random motion for the observed PMG

cell trajectories, the worm-like chain model [22] and Ornstein-

Uhlenbeck (OU) model [27]. This is similar to the case of crawling

Dictyostelium amoebae [15]. Qualitatively, similar characteristics

were also observed with mouse-derived MG5 microglia cell lines

[see Fig. 1B (blue trajectories) and Fig. 1C (bottom)]. Both PMG or

MG5 cells typically have tail-like projections in their rear ends, but

their shapes do not show any noticeable correlation with the

moving speed or direction of the cells.

Preference for zigzag turns
As in the case of freely moving Dictyostelium amoebae, the

long-range directional persistence of crawling microglia appears to

be closely related to their preference of making small zigzag turns.

Under a close-up view, the trajectories followed by moving

microglia cell can be viewed as a chain of small line segments li
(see Fig. 1D and Movie S1). Along each segment, the cell moves

more or less straight until the end, where a turning event with an

angle ai occurs (see Materials and Methods for the details on data

processing).

The probability density function of the inter-turn time

intervals Ti is well fitted by an exponential function except for

the small T (v1 min) regime (see Fig. S2). Thus, the turning

events may be viewed as a Poisson process. The probability

density functions of the turning angles ai, inter-turn distances li,
and inter-turn average velocities vi are also given in Fig. S2. The

distribution of ai may also be viewed as two exponential

functions sitting back-to-back, but for the large jaij regime the

fitting becomes poor. This is mainly due to the frequent ‘front

splitting events’ resulting in very sharp turns near 900 [see Fig.

S3(A)] and 1800 turns, in which cells return to where they

originated from. Table 1 lists the mean values of the quantities

characterizing the cell trajectories.

The preference for zigzag turns is well depicted in the return

map of ai, as shown in Fig. 2A, which plots the relationship of aiz1

to ai. For a given example, the total number of points (N{) in the

upper-left and lower-right quadrants combined for PMG and

MG5 was 255 and 168, respectively, while the total number of

points (Nz) in the upper-right and lower-left quadrants combined

for PMG and MG5 was 101 and 78, respectively. In other words,

crawling microglia tend to make turns in the opposite direction of

the previous turn with a zigzag preference index

p~N{=Nz~2:5 and 2:1 for PMG and MG5, respectively.

The p value varies from one cell to another, and MG5 cell lines

show somewhat smaller values (1.6, s.d. 0.1, n = 8) than PMG cells

(1.9, s.d. 0.2, n = 8) (see Fig. 2B). The dependence of aiz1 on ai

suggests the existence of a determinism or memory in the selection

process of the turning angle, but the memory is noisy in that the

zigzag turn is not guaranteed for every turn. Moreover, the

memory is short-term, not lasting long beyond one step forward, as

confirmed by the autocorrelation function of ai in Fig. 2C.

Figures 2D (PMG) and 2E (MG5) show mean value of the dot

product of two tangent vectors separated by time t, as a measure of

the directional persistence. They fall quickly during the first

minute or so and decay slowly beyond that point. Indeed, they can

be well fitted to a sum of two exponentially decaying functions

De{t=t1z(1{D)e{t=t2 (R2 values, PMG 0.91*0.98, MG5

0.81*0.95), showing that the free microglia cell motility involves

both a strong short-range directional correlation due to the

existence of small ‘runs’ (with the time constant t1) and a long-

range directional persistence mediated by the zigzag turning

preference (with the time constant t2).

Zigzag turns in a mathematical model cell
Few mathematical models have discussed the mechano-

chemical aspects of cell crawling, particularly for the long-term

behavioral pattern of free cells. Regarding the experimental

observations on the crawling pattern of amoebae, Li et al.

proposed a simple mathematical model to describe the

dynamics of the instantaneous direction of motion w(t) [15].

The model was basically a noise-driven damped linear

oscillator that was facilitated by low frequency white noise.

Although the proposed model could produce some of the

essential features, such as the power spectral density function of

w(t) and the autocorrelation function of Dw from their

experimental data, it was a simple model lacking a detailed

connection to the biochemical reactions governing the cell

shape and crawling behavior. Recently, Nishimura et al. [18]

proposed a more realistic model for cell locomotion and

cytofission, and discussed the important role of the actin

polymerization-suppression factor, known as the ‘‘cortical

factor,’’ for determining the directional persistence of cell

migration. They found that the persistence could be changed

significantly by two parameters, the threshold value of actin

polymerization and the rate of transferring the cortical factor

from the cytosol to the cortical layer.

Another realistic mathematical model for crawling cell was

developed recently by Satulovsky et al. [24]. It is a rule-based top-

down model that incorporates some of the essential chemical and

mechanical components of cell crawling. This general model was

developed to understand how the signaling events controlling cell

protrusion and retraction are coordinated to generate the shapes

and migration patterns of different cell types. A range of migrating

cells could be produced depending on the values of some key

parameters, including Dictyostelium amoebae, fibroblasts, kerato-

cytes, and neurons. In this study, the zigzag motility of this model

cell was examined.

Zigzag Turns of Freely Crawling Cells
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On a two dimensional surface, a simply closed loop, whose

boundary can protrude by a local activation signal or retreat in

response to a global inhibition signal, was modeled as a cell. The

local activator Sz(~rr,t) induces the polymerization of actins, which

moves the cell boundary in the forward direction of movement.

On the other hand, the global inhibitor, S{(t), dissociates the

actin network and retreats the cell boundary toward the center of

the cell if S{
wSz. Therefore, the moving front is activator rich,

whereas the tail part is inhibitor rich. The growth rate of Sz is a

nonlinear function of Sz and S{, and the concentration of the

inhibitor S{*A
Ð

Sz(~rr,t)d~rr, where A is the area enclosed by

the model cell boundary. The model also includes a stochastic

process for the formation (and dissociation) of focal adhesion sites:

For every iterative time step, each point along the cell boundary

has some likelihood of adhesion to and detachment from the

substrate with a probability Pz
fa and P{

fa , respectively.

Figure 3 shows four different model cell trajectories obtained by

changing one of the key parameters, Kdecay, which is the decay rate

constant of Sz. The directional persistence of the model cell

trajectory varies significantly as a function of Kdecay (see Fig. 4A).

For example, for Kdecay~0:20 the linear regime ends below

t&400, whereas for Kdecay~0:03 it extends over t&2000. The

visual similarity of the model cell (Fig. 4B) to the real microglia

(Fig. 1A) is quite striking. Moreover, the trajectories of the model

cell can also be viewed as a sequence of small ‘runs’ and ‘turns’ as

shown in Fig. 4B. The probability distribution of turning angles ai,

inter-turn distances li, inter-turn time intervals Ti, and inter-turn

average velocities vi (see Fig. S4) are similar to those obtained in

the experiments with PMG and MG5 cells (see Fig. S2).

Occasionally, the model cell also shows front-splitting events as

shown in Fig. S3 similar to the case of the PMG cell. In addition,

the model cell trajectories also favor zigzag turns, which are again

well captured in the return map of ai (see Fig. 4C). Moreover, the

auto-correlation function of ai (Fig. 4D) shows that the memory of

the last turn affects only the current turn and decays quickly

thereafter. As in the case of microglia crawling trajectories, the

Figure 1. Crawling trajectories of PMG and MG5 cells. A) Snapshot images showing the typical shapes of crawling PMG cells (left) and MG5 cell
line (right), B) four crawling trajectories (red, PMG, total duration 56 and 25 hrs; blue, MG5, total duration 12 and 18 hrs), C) Log-log plot of mean-
squared displacements vs. time interval t (n = 8 for each plot), D) Blown up image showing a sequence of small zigzag turns [boxed area in (B)]. The
green dots are the centroid positions and the red dots mark a turning event. In (C), the slopes of the red and blue dotted lines are 1 and 2,
respectively.
doi:10.1371/journal.pone.0020255.g001

Zigzag Turns of Freely Crawling Cells
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function vcoshw, measuring the directional persistence, of the

model cell was well fitted to a sum of two exponential functions

(Fig. 4E). Again, t1 and t2 correspond to the two time scales, one

for the small ‘runs’ and the other for the long-range directional

persistence. The measured value of t2 changes significantly (w10

fold) as Kdecay changes from 0.01 to 0.20 with its maximum value

near Kdecay&0:02 as shown in Fig. 4F.

Changing Kdecay affects a number of different features of the cell

trajectory simultaneously as shown in Fig. 5. As Kdecay changes

from 0.01 to 0.20, �TT , �ll, �aa, and �pp, change by 26.6%, 96.3%,

128.8%, and 76.6%, in that order, with respect to their

corresponding minimum values. The minimum of �aa, the maxima

of �pp, �TT and �ll all are closely located around Kdecay&0:02. Of

course, the smaller �aa is or the larger �pp, �TT and �ll are, the larger t2

becomes. Therefore, in the simulations �aa, �pp, �TT and �ll all contribute

synergetically to the maximum peak of t2 near Kdecay&0:02.

Discussion

The moving trajectories of the freely crawling rat microglia and

mouse-derived microglia cell line, which had been grown in

culture for 2–4 days, were analyzed carefully by long-term time-

lapse video imaging. The trajectories could be viewed as a chain of

small ‘runs,’ and in many cases two successive angles connecting

the runs along the chain were not random but anti-correlated.

This anti-correlation is statistically significant. In addition, similar

behavior was identified in a simple rule-based model cell that

incorporates the biochemistry of actin polymerization/depolymer-

ization of the cell shape regulation. The properties of the model

cell trajectories, as characterized by �TT , �ll, �vv, �aa, �pp, �tt1 and �tt2, could

be changed significantly by varying the decay rate Kdecay of the

activator species associated with actin polymerization. These

findings are consistent with those reported by Li et al. [15]

regarding the motility of starving Dictyostelium amoebae. Table 1

lists various quantities of dicty cells as well as PMG, MG5, and the

model cell.

Soon after Li’s work on dicty cell motility, Maeda et al. [16]

published an interesting article on a closely related issue. They

examined the dynamics and statistics associated with the cell

shapes of crawling dicty cells in their moving frames. They

identified three distinct dynamical states, elongated, rotating, and

oscillating, and found that it was typical of crawling dicty cells to

have abrupt transitions among these different states. No detailed

statistics regarding the time intervals associated with the transitions

were provided. The period of oscillation for the oscillatory states

was typically 2*3 min, which is similar to what Li et al. reported

for the mean inter-turn time interval (�TT*0:67 min). The

oscillatory state can be viewed as an unusual case in which all

successive turns result in a quite regular zigzag pattern, even

though Li’s work reported that the dicty memory is only short-

range rarely extending over one turn. This contradiction can

originate from the difference in the characteristics of the cells being

investigated or in the environments to which the cells were

subjected to.

Regarding the regular oscillatory behavior of crawling cells,

Barnhart et al. [1] reported a robust ‘‘bipedal locomotion’’ of

crawling fish epithelial keratocytes. They found persistent

oscillatory movement in which retraction of the trailing edge on

one side of the cell body is out of phase with retraction of the other

side. In other words, the trailing edge oscillation is the key for

keratocyte locomotion, whereas the front dynamics is believed to

be the key component in the navigation of crawling amoebae and

microglia. The authors also provided a mathematical model

viewing the keratocytes as a three-component stick/slip elastic

system, in which a leading front is coupled mechanically to the left

and right portion of the tailing edge. Nonlinear elastic coupling

between the front and tail was the key for rendering the lateral

periodic oscillation of the cell body. One important result of their

model is the positive correlation between the mean cell speed and

oscillation frequency. As an analogy, PMG and MG5 cells also

show a positive correlation between the average cell speed and the

inverse of the average inter-turn time interval (not shown).

Directional persistence of crawling cells was also discussed in

several other recent reports. For example, Selmeczi et al. [25]

investigated the motile patterns of human keratincocytes and

fibroblasts, and found that some key properties of much studied

OU model conflicted with their experimental data. With an extra

term, which carries the memory of past velocities, added to the

simple OU model, however, they could better describe the

trajectories of the cells. Another study on the crawling behavior of

freely moving cells was reported recently by Dieterich et al. [6].

They observed anomalous cell migrations of renal epithelial

Madin-Darby kidney cells and reported that their crawling paths

were best described by the fractional Klein-Kramers equation

which involved temporal memory. Once again, it was indicated

that neither the worm-like chain model nor the simple OU model

were suitable for describing the crawling cells of their concern.

The mathematical models proposed by Selmeczi et al. or Dieterich

et al. may also be applicable to dicty amoebae and microglia, since

both models have components for data-driven tailoring of cell-

specific type. These two reports, however, do not specifically

discuss the zigzag turning behavior of crawling. But, we indicate

that the moving trajectory of the epithelial cell reported in [6]

could also be viewed as a sequence of ‘run-and-turns’ showing a

strong tendency of zigzag turns.

In summary, the trajectories followed by freely crawling cells are

viewed as a chain of ‘run-and-turns, ’ and then the cells appear to

favor making zigzag turns. This contrasts with the well-known

bacterial tumbling that results in the random selection of a moving

direction. The cultured microglia of rat brains and MG5 cell lines

Table 1. Summary of the characteristic values of zigzag turns.

cell type �TT (min) �ll (mm) �vv (mm/min) �aa (degree) �pp �tt1 (min) �tt2 (min)

PMG (n = 8) 1.9+0.2 5.1+1.5 2.7+1.2 48.3+7.3 1.9+0.1 0.6+0.1 33.7+3.6

MG5 (n = 8) 2.0+0.1 5.3+0.9 2.7+0.6 52.0+5.5 1.6+0.1 0.9+0.1 41.9+5.2

The model cell� 1.38+0.02 9.1+0.2 6.3+1.4 1.9+0.1 1.9+0.1 5.0+1.4 51.5+4.7

Dicty (n = 12){ & 0.67 & 5 & 7 & 38.4 2.1+0.1 – –

�Kdecay~0:03, n = 10.
{Li et al. [17].
doi:10.1371/journal.pone.0020255.t001

Zigzag Turns of Freely Crawling Cells
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as well as Dictyostelium amoebae are good examples of this zigzag

motility hypothesis. Satulovsky’s simple mathematical model cell

incorporating only the essential biochemistry of actin polymeriza-

tion and cell mechanics also generates a similar motile behavior.

Taken all together, the observed zigzag turning behavior is

believed to be a generic feature of many different crawling cells in

isolation. The key biophysics that underlies the observed inherent

zigzag motility might be due to the extension pattern of

pseudopodia [4] and the spatiotemporal dynamics of the coherent

actin waves [29]. However, the generality of the observed motile

behavior and the underlying mechanisms need to be further tested

using many other types of cells and models. Finally, we should

indicate that the run-and-turn chain scenario is an interpretation

that is forced on smooth trajectories of crawling cells: the

trajectories themselves are not piecewise linear but differentiable.

The main finding of this investigation is that crawling cells seem to

prefer to have zigzag motility with a short-term memory, and our

analyis leading to this conclusion does not require that the cell

trajectories to be a piecewise linear chain.

Materials and Methods

Ethics Statement
All experimental procedures and protocols were in accordance

with the guidelines established by the Committee of Animal

Research Policy of Korea University College of Medicine.

Figure 2. Zigzag preference of crawling PMG and MG5 cells. A) Typical return maps of turning angles ai (red, PMG; blue, MG5), B) Histograms
of the zigzag preference p (n = 8 for each case), C) Auto-correlation functions of ai and their corresponding fits to an exponential function, D) and E)
Auto-correlation functions of the instantaneous direction of movement for PMG and MG5 cells, respectively (n = 8 for each case). F) Histograms of the
two time constants obtained by fitting the curves in (D) and (E) to f (x)~Dexp{t=t1 z(1{D)exp{t=t2 . vcoshw in (D) and (E) are the ensemble time
average over the entire observation duration of the inner-product between the two directional unit vectors separated by t.
doi:10.1371/journal.pone.0020255.g002

Zigzag Turns of Freely Crawling Cells
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Microglia cell culture
Primary glia co-cultures were prepared from the cerebral

cortex of postnatal day 1–2 Sprague Dawley rat brains (Charles

River, OrientBio Inc.). The brains were excised quickly and the

cerebral cortices were removed and cleared of meninges under a

dissecting microscope. After a papain (6 unit) treatment (10 min),

fragmented cortical tissues were collected and dissociated

mechanically using a fire-polished Pasteur pipette in 2 ml of

DMEM supplemented with 10% FBS. The dissociated cells were

grown in T-75 culture flasks (BD Falcon) (370C, 5% CO2) with an

initial seeding density of 2:5|106 cells/flask in 10 ml DMEM

with 10% FBS. The culture medium was changed in every 5

days.

After growth in T-75 flasks for several days, the cells were

shaken with new culture media at 120 rpm for 10 min to

remove the dead cells, and subsequently shaken at 280 rpm

for 20 min to harvest the microglia cells detached from the

substrate. The supernatant was collected, centrifuged for

5 min at 1500 rpm, and the microglia cells thus acquired were

plated on a cover-slips (50 cells/mm2) for observation. After

plating, the cells were stabilized in an incubator (370C, 5%

CO2) for three hours, and the culture media was gently

replaced with DMEM with 10% FBS to further remove the

dead cells. The same culture medium and protocol used for

the PMG cells after dissociation was used for MG5 cell

culture. The MG5 cell line was a gift from Dr. Ikeda at

Toyama University, Japan.

Time-lapse imaging and data processing
Culture dishes containing the PMG (or MG5) plated cover-slips

were placed in a temperature (37 0C) and CO2 (5%) regulated

home-built chamber mounted onto the stage of an inverted

microscope (IX71, Olympus) with an objective lens (20x, NA

0.55). Time-lapse images were acquired at 15 sec intervals,

typically for a time period longer than 24 hours, using a cooled

CCD camera (MFcool, ProGres) with a spatial resolution of 0.5

mm/pixel. To trace out the trajectory of a crawling cell and

identify its turning events, the acquired images were binarized

using the ImageJ program and the centroid of the cell body was

calculated for each frame. We have assumed that the mass density

is uniform. The sequence of the centroid positions (Xj ,Yj ) [green

dots in Fig. S5A] was low-pass filtered by locally fitting them

separately to a third order polynomial function with a sliding

window of 11 successive points [red solid lines in Fig. S5B and

S5C], which corresponds to 150 sec in time or &7 mm in space.

The local curvature k was calculated at each time step using the

fitted functions [blue dots in Fig. S5D]. Finally, a lowpass filter was

applied to k(t) with a cutoff at 30 sec, and the local extrema of the

filtered k(t) [black dots in Fig. 5D] were considered to be a turning

point.

Fitting and filtering effects on the zigzag preference
Whether it is an experimental data or a simulation result, the

centroid trajectories of crawling cells have some high-frequency

fluctuation due to intrinsic physiological noise as well as errors in

Figure 3. Centroid trajectories of the crawling model cells for different parameter values of Kdecay. The other parameter values were fixed
as follows: Rz~0:103 mm/s, R{~0:0281 1/s, Kdiff ~11:9 mm2/s, Nburst~13, Pbaseline~0:181 1/(s:mm), l~3:22 1/mm, c~29:1 1/s, C{~1:93|10{5 1/
mm3, Pz

fa ~0:0003, P{
fa ~0:0058, rmin~2:857 mm. Each frame is 1000|1000 mm2 and includes 200000 iteration steps.

doi:10.1371/journal.pone.0020255.g003

Zigzag Turns of Freely Crawling Cells
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the imaging and data processing. Then, the questions are how

much do we smooth the raw data before we identify a turning

event as an extremum of the local curvature k(t). As discussed in

the previous section, the smoothing process involves 1) a local

fitting of the centroid positions to a third order polynomial

function and 2) a lowpass filtering of k(t). Naturally, the zigzag

preference p depends on the cutoff values that we introduced

during the smoothing process.

The size of the fitting window significantly influences the

number of turning events as shown in Fig. S6 and S7A: with the

smaller window size, the larger the number of turns becomes. The

temporal range (40*160 sec) that we have explored in Fig. S7A

corresponds to the spatial range of 4.2*16.8 mm approximately,

considering that the mean crawling velocity is about 6.3 mm/min

for the given set of parameter values. This is a physical range in

which the zigzag phenomenon is relevant since the size (diameter)

of the model cell is about 10 mm. In other words, we are only

interested in the zigzag turns arising more or less at the physical

size of a single cell. Since the local fitting process has a spatial

lowpass filtering effect, a window size that is too small will results

Figure 4. Long-range directional persistence and zigzag turns of the crawling trajectories of a mathematical model cell. A) Mean
square displacements vs. time for Kdecay~0:01 (red), 0:03 (blue), 0:10 (violet), and 0:20 (green). The cyan and black dotted lines have a slope of 1 and
2, respectively. B) Close-up view of the green highlighted segment in Fig. 3 (Kdecay~0:10). Some snapshot images of the crawling cell are
superimposed on the trajectory. The red (blue) boundary is the moving front (trailing edge) where Sz

wS{ (Sz
vS{). The inset plots the

instantaneous local curvature along the centroid trajectory. Local maxima and minima are marked by red dots, which correspond to the turning
points (black dots) along the centroid trajectory. C) Return map of the turning angle (Kdecay~0:03). The zigzag preference p~1:9. D) Auto-correlation
function of the sequence of turning angles (Kdecay~0:03). The blue dotted line is an exponential function fit with a decay time constant of 0.705. E)
Auto-correlation functions of the instantaneous direction of movement for Kdecay~0:01 (red), 0:03 (blue), 0:10 (violet), and 0:20 (green). F) Two time
constants obtained by fitting vcoshw to f (x)~Dexp{t=t1 z(1{D)exp{t=t2 . The error bars represent the standard deviation based on 10 different
trajectories obtained with a different initial condition.
doi:10.1371/journal.pone.0020255.g004
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in too many uncorrelated noisy turns as shown in Fig. S7B. On the

contrary, a window size that is too big will wipe out the zigzag

information. Figure S7C plots the effect of the fitting window size

on the zigzag preference: it varies significantly but the zigzag

turning preference remains over the whole range being explored.

After the local curvature k(t) was computed with the smoothed

cell trajectories, a (boxcar) lowpass filter was applied to k(t) to

exclude very small-angle high-frequency turns. The effect of the

filter size on the total number of turns and the zigzag preference is

plotted in Fig. S8. Again, they vary but the zigzag phenomenon

remains the same. Our analysis on the model cell trajectories given

in Fig. 4 and Fig. S4 are based on the fitting window size of

101 sec and the lowpass filter size of 21 seconds.

Mathematical crawling cell model
The mathematical model cell proposed by Satulovsky et al. [24]

was simulated to determine if it could exhibit the zigzag motile

behavior observed in the current experiments. A crawling cell was

modeled as a simply closed contour on a two-dimensional space,

which evolves in space and time. The points along the cell

perimeter are represented as vectors~rr with the centroid of the cell

being the origin. The concentration of the activator Sz(~rr,t) is a

local variable, whereas the concentration of the inhibitor S{(t) is

a global variable. At each iteration time step, each point along the

perimeter can either advance, retreat, or does not move based on

the following set of rules. Retraction occurs when Sz(~rr,t)ƒS{(t),
and the rate of retraction is governed by the following stochastic

equation:

Lj~rrj=Lt~{max(½j~rrj{rmin�R{,0), ð1Þ

where rmin is the constant minimum radius and R{ is the

retraction rate constant. The function max(x,y) selects the larger

value of x and y. Protrusion occurs when Sz(~rr,t)wS{(t) at a rate

governed by the following equation:

Lj~rrj=Lt~max(G(Rz),0), ð2Þ

where Rz is the average protrusion rate and G(Rz) is a random

number generated from a Gaussian distribution of the mean Rz

and variance Rz. The evolution of activator Sz(~rr,t) is governed

by the equation

LSz(~rr,t)=Lt~Kdiff +2Sz(~rr,t){KdecaySz(~rr,t)

zmax(G((f (Sz(~rr,t){S{(t),c,l)zPbaseline)Nburst),0):
ð3Þ

The first two terms are deterministic, whereas the third term is a

stochastic positive feedback loop accounting for both the local

stimulation and the existence of a random signal. The function

f (x,c,l)~0 for xvl and (x{l) for x§l, where l is a threshold

value for the feedback. Pbaseline accounts for the rate of random bursts

cased by internal baseline activities. The function G again represents a

random number generated from a Gaussian distribution. The

retraction signal is governed by a global inhibition rule S{(t)~

C{A
Ð

Sz(~rr,t)d~rr, where C{ is the inhibition constant, A is the

total area of the cell, and the integration is a line integral over the entire

cell border, which is composed of 360 pixels (i.e., 1 pixel for 1 degree

with respect to the centroid). Each pixel corresponds to 0.286 mm and

one iteration time step is one second. At each iterative time step, the

formation of focal adhesions and their detachments are assigned

stochastically to the points along the cell perimeter with a probability

Pz
fa and P{

fa , respectively. Retraction is inhibited when a perimeter

point hits a focal adhesion. The biophysical justifications for the above

set of equations and the numerical iteration scheme are described in

detail in reference [24]. The values of the eleven parameters R{, Rz,

Kdiff , Kdecay, Nburst, Pbaseline, l, c, C{, Pz
fa , P{

fa used for the

numerical simulations are specified in the figure caption of Fig. 3.

Supporting Information

Figure S1 Mean velocity distribution of a PMG cell for different

values of Dt.

(TIF)

Figure S2 Probability density functions associated with the

trajectories of PMG (red) and MG5 (blue) cells: A) turning angle,

B) inter-turn distance, C) inter-turn time interval, and D) inter-

turn mean velocity (error bar: SEM, n = 8 for each case). The two

straight lines in (C) are an exponential function fit for T§2 min:

PMG (slope = 22.9), MG5 (slope = 23.5).

(TIF)

Figure S3 Sequence of snapshot images showing a ‘front-

splitting’ event: A) PMG cell and B) the model cell (Kdecay~0:03).

Each frame is 170|170 mm2 for (A) and 100|100 mm2 for (B).

The green lines in (B) represent the path of the centroid.

(TIF)

Figure S4 Probability density functions associated with the

trajectories of the model cell: A) turning angle, B) inter-turn

distance, C) inter-turn time interval, and D) inter-turn mean

velocity [Kdecay = 0.01 (red), 0.03 (blue), 0.10 (violet), and 0.20

(green)]. The straight line in (C) is an exponential function fit for

Kdecay = 0.03 for T§1 min (slope = 21.26).

(TIF)

Figure S5 Defining turning points: A) a PMG cell trajectory (raw

data: green, smoothed data: red) with turning points marked by red

dots, B) x-coordinates in time, C) y-coordinates, and D) local

curvature k(t) computed with the fitted values of x(t) and y(t)

Figure 5. Various properties of the model cell trajectories: A)
mean zigzag preference factor, B) mean turning angle, C) mean inter-
turn time interval, and D) mean inter-turn distance. The error bars
indicates the s.d. for 10 different trials with a different initial condition.
doi:10.1371/journal.pone.0020255.g005
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shown in (B) and (C). In (D), turning points are marked by black

dots. This trajectory data matches the supplementary Movie S1.

(TIF)

Figure S6 Fitting window size effect on the number of turns:

(green) raw trace of model cell trajectory for Kdecay~0:03, (black

and red dots) turning points obtained with a fitting window size of

101 sec and 51, respectively. Inset: blown-up image of the boxed

area. The black line within the inset is the smoothed trajectory

obtained with the fitting window size of 101. The result is based on

200000 seconds of iteration.

(TIF)

Figure S7 Fitting window size effect on the zigzag preference

factor p: A) Number of turns vs. fitting window size, B) Return

maps of turning angle sequences, C) p vs. fitting window size.

(TIF)

Figure S8 Filter cutoff size effect on the number of turns (dots)

and the zigzag preference (square).

(TIF)

Movie S1 A time-lapse movie showing a freely crawling rat

microglia cell: (green line) smoothed centroid trajectory and (red

dots) turning points.

(W V)
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