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A B S T R A C T   

Objective: The aim of this study was to identify relevant risk factors for epileptic seizures upon initial diagnosis of 
a brain tumor and to develop and validate a machine learning based prediction to allow for a tailored risk-based 
antiepileptic therapy. 
Methods: Clinical, electrophysiological and high-resolution imaging data was obtained from a consecutive cohort 
of 1051 patients with newly diagnosed brain tumors. Factor-associated seizure risk difference allowed to 
determine the relevance of specific topographic, demographic and histopathologic variables available at the time 
of diagnosis for seizure risk. The data was divided in a 70/30 ratio into a training and test set. Different machine 
learning based predictive models were evaluated before a generalized additive model (GAM) was selected 
considering its traceability while maintaining high performance. Based on a clinical stratification of the risk 
factors, three different GAM were trained and internally validated. 
Results: A total of 923 patients had full data and were included. Specific topographic anatomical patterns that 
drive seizure risk could be identified. The involvement of allopallial, mesopallial or primary motor/somato-
sensory neopallial structures by brain tumors results in a significant and clinically relevant increase in seizure 
risk. While topographic input was most relevant for the GAM, the best prediction was achieved by a combination 
of topographic, demographic and histopathologic information (Validation: AUC: 0.79, Accuracy: 0.72, Sensitivity: 
0.81, Specificity: 0.66). 
Conclusions: This study identifies specific phylogenetic anatomical patterns as epileptic drivers. A GAM allowed 
the prediction of seizure risk using topographic, demographic and histopathologic data achieving fair perfor-
mance while maintaining transparency.   

1. Introduction 

Seizures represent a burdensome comorbidity to patients with brain 
tumors, occurring in 30–50% of patients, yet the role of prophylactic 
treatment remains controversial (Fisher et al., 2017, 2014; van Breemen 
et al., 2007). Although prophylactic anticonvulsant therapy for newly 
diagnosed brain tumors is not recommended (Glantz et al., 2000; Sirven 
et al., 2004; Tremont-Lukats et al., 2008), this issue remains 

controversial and the practice varies widely across different centers and 
countries (Siomin et al., 2005). Seizure risk stratification at diagnosis of 
the brain tumor would substantially contribute to this dispute and in 
addition inform the nature of surveillance and the potential benefit of 
lifestyle changes (Rossetti and Stupp, 2010). However, insufficient 
pathophysiological insight into the role of risk factors has rendered ac-
curate prediction difficult. 

Anatomical features of primary brain tumors have been shown to 
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impact seizure risk and semiology (Akeret et al., 2019). One advantage 
of anatomical information derives from its availability at time of diag-
nosis thanks to modern neuroimaging. Histopathologic tumor entity and 
molecular markers have also been associated with seizure risk (Ertürk 
Çetin et al., 2017; Kerkhof and Vecht, 2013; Pallud et al., 2014; Sanson 
et al., 2009; Skardelly et al., 2015), but these have the disadvantage of 
being available late in the diagnostic process. While experienced clini-
cians may be able to estimate the most probable entity of the underlying 
tumor, the definitive diagnosis only becomes available late in the 
diagnostic process. Machine learning (ML) provides new approaches for 
prediction, often outperforming conventional statistical methods (Raj-
komar et al., 2019; Staartjes et al., 2018; Swinburne et al., 2019; Titano 
et al., 2018; van Niftrik et al., 2019). However, transparency and 
pathophysiological plausibility remain important concerns, contributing 
to the limited translation into clinical practice (Rajkomar et al., 2019). 
ML methods differ in terms of their transparency. Generalized additive 
models (GAM) offer the specific advantage that they can arrive at pre-
dictions with high accuracy while still remaining explainable, as smooth 
partial dependences can be derived to illustrate the influence of every 
feature (Hastie and Tibshirani, 1986). ML based methods have been 
applied in various areas of epilepsy research (Abbasi and Goldenholz, 
2019; Arle et al., 1999; Gleichgerrcht et al., 2018; Munsell et al., 2015), 
yet never to predict the risk of seizures using anatomical data. 

This study aims at a comprehensive assessment of the risk factors for 
epileptic seizures in parenchymal brain tumors and their predictive 
potential using a ML based approach. An improved pathophysiological 
understanding of the drivers for epileptic seizures and their imple-
mentation in a prediction model has the potential to provide a tailored 
antiepileptic treatment approach in patients with newly diagnosed brain 
tumors. 

2. Materials and methods 

This study is reported in accordance with the STROBE (von Elm 
et al., 2007) and TRIPOD (Moons et al., 2015) statements. 

2.1. Source population 

The data was obtained consecutively over an eight-year period 
(January 2009 to December 2016) from patients with a newly diagnosed 
brain tumor admitted to our tertiary care hospital. The eligibility criteria 
comprised: (i) Primary diagnosis with consecutive histopathologic 
confirmation of a primary or secondary brain tumor, (ii) no pretreat-
ment or previous cranial surgery, (iii) intraparenchymal encephalic 
tumor location (supra-, infratentorial or both), exclusion of extraaxial or 
spinal tumors, (iv) availability of complete preoperative high resolution 
magnetic resonance imaging (MRI) data (technical details in supple-
mentary methods), (v) determinable seizure status preoperatively, (vi) no 
prophylactic antiepileptic treatment and (vii) quantifiable number of 
lesions (see below). 

2.2. Data collection 

The study was approved by the local ethics committee (KEK 01120). 
Supplementary Table 1 provides the demographic, clinical and histo-
pathologic data obtained with the respective specifications. Clinical and 
electrophysiological investigations regarding epileptic seizures were 
performed preoperatively in a specialized epilepsy unit. Seizure preva-
lence was assessed based on patient history and description by family 
members for epileptic events. In cases of diagnostic uncertainty, labo-
ratory values were consulted and inter-ictal electroencephalography 
(EEG) or long-term EEG performed to inform clinical decision making. 
The assessment of seizure semiology followed the 2017 International 
League Against Epilepsy Classification (Fisher et al., 2017). Histopath-
ologic analysis was performed by our hospital’s Institute of 
Neuropathology. 

2.3. Brain segmentation and tumor anatomy classification 

The classification of anatomical brain tumor features followed a 
predefined segmentation scheme (Akeret et al., 2020), described in 
Supplementary Table 2 and illustrated in Supplementary Fig. 1. The 
segmentation is based on the Terminologia Anatomica (Allen, 2009). 
The assessment of the anatomical brain tumor features was performed 
on preoperative high-resolution MRI. Image analysis was independently 
conducted by two assessors (KA and CS) masked to demographic and 
histopathologic patient characteristics. In cases of disagreement a 
consensus was obtained by consulting the senior author (NK). The 
topographic anatomical parameters were analyzed separately for each 
patient and coded binarily (tumor affected vs. non-affected, applicable 
vs. non-applicable) by combining the morphological sequences (T1, T1 
with contrast, T2 and FLAIR). Structures considered as displaced or with 
edematous changes only were classified as non-infiltrated. Patients with 
more than ten encephalic lesions were excluded. 

2.4. Statistical analysis 

Continuous data are given as mean and standard deviation, cate-
gorical data as absolute numbers and percentages. Seizure risk and 
semiology are provided with a 95% confidence interval (Wilson). 
Seizure risk difference represents the absolute risk difference between 
binary variables (eg. seizure risk if anatomical structures affected minus 
seizure risk if anatomical structure not affected) or to the indicated 
reference within categorical variables with more than two levels (eg. 
histological entity with glioblastoma as reference). Seizure risk differ-
ence is given with a 95% confidence interval (Wilson). For certain his-
topathologic entities, grouping was performed to increase statistical 
power (eg. combination of dysembryoplastic neuroepithelial tumors 
(DNET) and ganglioglioma to developmental tumors). 

2.5. Predictive modeling strategy 

Missing data imputation was not required as only patients with 
complete data were included in the study. Topographic features were 
one-hot encoded for the machine learning models. Seizure occurrence 
was used as binary endpoint. The dataset was randomly split into 
training and testing set in a 70/30 ratio (n = 646/277). To counteract 
class imbalance, conventional random upsampling was applied 
(Staartjes and Schröder, 2018). Input variable selection was performed 
on the training dataset using random forest-based recursive feature 
elimination (RFE) with bootstrap resampling (Guyon et al., 2002). 
Model selection was based on resampled out-of-the-box performance on 
the training set. We initially evaluated the following models: generalized 
linear model (glm), random forest (rf), C5.0 decision tree, gradient boosting 
machine (gbm), neural network (nnet), radial kernel support vector machine 
(svmRadial) and GAM. Bootstrapping with replacement in 25 repetitions 
was used to train the different models and to assess out-of-sample error. 
As it provided similar performance, but higher interpretability, the GAM 
was chosen. 

In a second step, after ideal model selection, RFE was performed on 3 
different set of strictly non-redundant variables: 1. Topographic (T) – 
including only anatomical data; 2. Topographic/Demographic (TD) – also 
including age and gender; and 3. Topographic/Demographic/Histopatho-
logic (TDH) – with the additional inclusion of histological entity and 
WHO grade. GAM were trained on the training patient set for each of the 
3 different variables combinations obtained after RFE. For each, area 
under the curve (AUC), accuracy, sensitivity, specificity, calibration 
slope and intercept with the corresponding 95% confidence intervals 
were calculated and taken into consideration. 

The T, TD and TDH GAM were internally validated on the testing set. 
Explanation of model-internal variable weighting was possible through 
calculation of partial dependenc (PD) values. For each variable in a 
GAM, PD describes the marginal effect that a specific input has on the 
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outcome. The advantage is that - in contrast to generic measures of 
variable importance available for other ML models - this is not a mere 
ranking according to importance, but additionally the directions, extent, 
and distribution of the marginal effects can be illustrated. As the TDH 
model was found to have best performance, PD was calculated for its 
variables. R 3.5.3. was used for all analyses (R Core Team, 2020). 

2.6. Data availability 

The authors confirm that the data supporting the findings of this 
study are available within the article and its Supplementary materials. 
Raw data are available from the corresponding author (KA) upon 
reasonable request. 

3. Results 

3.1. Study population 

Details on the cohort’s eligibility assessment are provided in Sup-
plementary Fig. 2. Of 1051 screened patients, 923 could be included in 
the study. The mean age of the study population was 53.6 years (SD 
19.6). Details on demographic and histopathologic characteristics are 
shown in Table 1. 

4. Seizure prevalence 

Topographic tumor anatomy is given in Table 2 and Supplementary 
Table 3. The overall prevalence of epileptic seizures was 37.6%. Seizure 
semiology is shown in Supplementary Table 4. Focal to bilateral tonic- 
clonic seizures were most prevalent (50%), followed by focal motor 
seizures with intact awareness (18%). 

Seizure prevalence and seizure risk difference in relation to de-
mographic and histopathologic characteristics are given in Fig. 1 and 
Table 1. Seizure risk peaks between age 30 to 50 years. No gender dif-
ference was observed. Compared to patients with glioblastoma, patients 
with an astrocytoma (diffuse or anaplastic), an oligoastrocytoma 
(diffuse or anaplastic) or a developmental tumor (DNET or ganglio-
glioma) showed an increased risk of seizures. Pilocytic astrocytoma, 
medulloblastoma, ependymoma and the group summarized here as 
miscellaneous neuroepithelial tumors had a reduced risk of epileptic 
seizures. PCNSL and metastases also showed a lower seizure risk. A 
WHO grade III was associated with the highest risk of seizures, followed 
by grade II, while there was no significant difference between grade I 
and IV tumors. 

Seizure prevalence and seizure risk difference in relation to tumor 
topography is given in Figs. 2 and 3 and Table 2. While no right-left 
difference was seen, bilateral tumors were associated with a signifi-
cantly reduced risk of seizures. Compared to 44.4% for supratentorial 
tumors, the risk of seizures for infratentorial tumors was significantly 
and substantially lower with 0.9%. No difference was found between 
tumors involving one or more cerebral lobes or one or more cerebral 
gyri. Tumors without the involvement of a cerebral lobe or gyrus, 
however, showed a profoundly reduced risk of seizures. Involvement of 
the central or insular lobes was associated with a significant and relevant 
increase in seizure risk. While the involvement of the frontal, temporal 
and limbic lobes was also associated with an increased risk of seizures, 
albeit to a lesser extent, no such association was observed with the pa-
rietal and occipital lobes. On a gyral level, an involvement of the pos-
terior third of the superior and middle frontal gyrus, the adjacent 
precentral, postcentral and subcentral gyrus, as well as paracentral 
lobule proved to be epileptogenic. The same applies to the posterior 
orbital gyrus, the rectus gyrus and the subcallosal area. An involvement 

Table 1 
Seizure risk in relation to demographic and histopathologic characteristics. The demographic and histopathologic composition of our cohort is shown with the seizure 
risk and seizure risk difference (at the time of diagnosis), stratified by age, sex, histological entity and WHO grade. Wilson 95% confidence intervals were calculated for 
seizure prevalence and seizure risk difference. Abbreviations: NA: Not applicable (i.e. tumors which are not assigned a WHO grade, e.g. metastases), t/v = training 
dataset / validation dataset.  

Feature Affected Seizure risk (95%CI) Seizure risk difference (95%CI)   

n % t/v n %  

Total  923 100% 646/277 347 37.6% – 
Age          

0–20  84 9.1% 63/21 16 19.0% (from 12.1 to 28.7) REF  
21–40  106 11.5% 72/34 55 51.9% (from 42.5 to 61.2) 32.9 (from 19.3 to 44.4)  
40–60  314 34.0% 224/90 131 41.7% (from 36.4 to 47.2) 22.7 (from 11.6 to 31.6)  
>60  419 45.4% 287/132 145 34.6% (from 30.2 to 39.3) 15.6 (from 4.9 to 23.9) 

Gender         
Male 547 59.3% 382/165 202 36.9% (from 33.0 to 41.1) REF  
Female 376 40.7% 264/112 145 38.6% (from 33.8 to 43.6) 1.7 (from − 4.7 to 8.0) 

Histological entity         
GBM 351 38.0% 240/111 146 41.6% (from 36.6 to 46.8) REF  
Astrocytoma (diffuse or anaplastic) 92 10.0% 55/37 66 71.7% (from 61.8 to 79.9) 30.1 (from 18.9 to 39.8)  
Oligoastrocytoma (diffuse or anaplastic) 21 2.3% 14/7 17 81.0% (from 60 to 92.3) 39.4 (from 17.8 to 51.8)  
Oligodendroglioma (diffuse or anaplastic) 38 4.1% 27/11 21 55.3% (from 39.7 to 69.9) 13.7 (from − 2.7 to 29.1)  
Pilocytic astrocytoma 29 3.1% 25/4 0 0% (from 0 to 11.7) ¡41.6 (from − 46.8 to − 28.9)  
Medulloblastoma 14 1.5% 10/4 0 0% (from 0 to 21.5) ¡41.6 (from − 46.8 to − 19.5)  
Ependymoma 26 2.8% 21/5 3 11.5% (from 4 to 29) ¡30.1 (from − 39.2 to − 11.9)  
Developmental (DNET & ganglioglioma) 18 2.0% 11/7 14 77.8% (from 54.8 to 91.0) 36.2 (from 12.6 to 50.3)  
Miscellaneous neuroepithelial* 18 2.0% 13/5 2 11.1% (from 3.1 to 32.8) ¡30.5 (from − 40.0 to − 8.2)  
Primary CNS lymphoma 35 3.8% 19/16 9 25.7% (from 14.2 to 42.1) − 15.9 (from − 28.6 to 1.2)  
Metastases 281 30.4% 211/70 69 24.6% (from 19.9 to 29.9) ¡17.0 (from − 24.0 to − 9.7) 

WHO grade         
WHO grade I 52 5.6% 41/11 15 28.8% (from 18.3 to 42.3) REF  
WHO grade II 68 7.4% 50/18 34 50.0% (from 38.4 to 61.6) 21.2 (from 3.4 to 36.8)  
WHO grade III 119 12.9% 73/46 74 62.2% (from 53.2 to 70.4) 33.4 (from 17.2 to 46.7)  
WHO grade IV 367 39.8% 251/116 146 39.8% (from 34.9 to 44.9) 10.9 (from − 3.3 to 22.6)  
WHO grade NA 317 34.3% 231/86 78 24.6% (from 20.2 to 29.6) − 4.2 (from − 18.4 to 7.4) 

*Miscellaneous neuroepithelial: including AT/RT (atypical teratoid/rhabdoid tumor), central neurocytoma, pilomyxoid astrocytoma, PXA (pleomorphic xan-
thastrocytoma), plexus papilloma, PNET (primitive neuroectodermal tumor), RGNT (rosette forming glioneuronal tumor), SGCA (subependymal giant cell astrocy-
toma), subependymoma. 
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Table 2 
Seizure risk in relation to tumor topography. The topographic anatomical distribution of tumors is shown with the associated seizure risk and seizure risk difference 
(seizure risk in patients where the anatomical structure was affected by the tumor minus seizure risk in patients where the anatomical structure was not affected by the 
tumor). Abbreviations: t/v = training dataset / validation dataset.  

Involved structure Affected Seizure risk affected (95%CI) Seizure risk non-affected (95% 
CI) 

Seizure risk difference (95% 
CI)  

n % t/v n % n %  

SIDE         
Right 356  38.6% 239/ 

117 
153 43.0% (from 37.9 to 

48.2) 
– – REF 

Left 346  37.5% 247/99 145 41.9% (from 36.8 to 
47.2) 

– – − 1.1 (from − 8.3 to 6.2) 

Both 221  23.9% 160/61 49 22.2% (from 17.2 to 
28.1) 

– – ¡20.8 (from − 28.0 to 
− 13.0)  

RELATION TO TENTORIUM         
Supratentorial 745  80.7% 515/ 

230 
331 44.4% (from 40.9 to 

48.0) 
– – REF 

Infratentorial 115  12.5% 84/31 1 0.9% (from 0.2 to 4.8) – – ¡43.5 (from − 47.2 to 
− 38.3) 

Both 63  6.8% 47/16 15 23.8% (from 15.0 to 
35.6) 

– – ¡20.6 (from − 30.1 to 
− 8.3)  

SUPRATENTORIAL STRUCTURES         
Cerebral lobes         
Unilobar 529  57.3% 371/ 

158 
250 47.3% (from 43.0 to 

51.5) 
– – REF 

Multilobar 217  23.5% 148/69 92 42.4% (from 36.0 to 
49.0) 

– – − 4.9 (from − 12.5 to 3.0) 

No cerebral lobe affected (none) 177  19.2% 127/50 5 2.8% (from 1.2 to 6.4) – – ¡44.5 (from − 49.0 to 
− 38.9) 

Frontal lobe 267  28.9% 185/92 119 44.6% (from 38.7 to 
50.6) 

228 34.8% (from 31.2 to 
38.5) 

9.8 (from 2.9 to 16.8) 

Central lobe 124  13.4% 84/40 76 61.3% (from 52.5 to 
69.4) 

271 33.9% (from 30.7 to 
37.3) 

27.4 (from 18.0 to 36.1) 

Parietal lobe 171  18.5% 116/55 71 41.5% (from 34.4 to 
49.0) 

276 36.7% (from 33.3 to 
40.2) 

4.8 (from − 3.1 to 13) 

Occipital lobe 123  13.3% 87/36 43 35.0% (from 27.1 to 
43.7) 

304 38.0% (from 34.7 to 
41.4) 

− 3.0 (from − 11.6 to 6.3) 

Temporal lobe 204  22.1% 145/59 94 46.1% (from 39.4 to 
52.9) 

253 35.2% (from 31.8 to 
38.7) 

10.9 (from 3.3 to 18.5) 

Insular lobe 59  6.4% 38/21 38 64.4% (from 51.7 to 
75.4) 

309 35.8% (from 32.6 to 
39.0) 

28.6 (from 15.5 to 40.1) 

Limbic lobe 133  14.4% 92/41 61 45.9% (from 37.6 to 
54.3) 

286 36.2% (from 32.9 to 
39.6) 

9.7 (from 0.8 to 18.7)  

Cerebral gyral segments         
Unigyral 447  48.4% 316/ 

131 
208 46.5% (from 42.0 to 

51.2) 
– – REF 

Multigyral 297  32.2% 201/96 133 44.8% (from 39.2 to 
50.5) 

– – − 1.7 (from − 9.0 to 5.5) 

No cerebral gyral segment affected 179  19.4% 129/50 6 3.4% (from 1.5 to 7.1) – – ¡43.2 (from − 48.2 to 
− 37.2) 

Frontal pole 16  1.73% 12/4 5 31.2% (from 14.2 to 
55.6) 

342 37.7% (from 34.6 to 
40.9) 

− 6.5 (from − 23.8 to 18.1) 

Anterior superior frontal gyrus (anterior third) 56  6.07% 40/16 22 39.3% (from 27.6 to 
52.4) 

325 37.5% (from 34.3 to 
40.8) 

1.8 (from − 10.4 to 15.3) 

Middle superior frontal gyrus (middle third) 52  5.63% 38/14 24 46.2% (from 33.3 to 
59.5) 

323 37.1% (from 33.9 to 
40.3) 

9.1 (-4.2 to 22.8) 

Posterior superior frontal gyrus (posterior 
third) 

75  8.13% 50/25 43 57.3% (from 46.1 to 
67.9) 

304 35.8% (from 32.7 to 
39.1) 

21.5 (from 9.7 to 32.5) 

Anterior middle frontal gyrus (anterior third) 58  6.28% 36/22 21 36.2% (from 25.1 to 
49.1) 

326 37.7% (from 34.5 to 
41.0) 

− 1.5 (from − 13.1 to 11.8) 

Middle middle frontal gyrus (middle third) 49  5.31% 34/15 16 32.7% (from 21.2 to 
46.6) 

331 37.9% (from 34.7 to 
41.1) 

− 5.2 (from − 17.1 to 9.1) 

Posterior middle frontal gyrus (posterior third) 59  6.39% 36/23 33 55.9% (from 43.3 to 
67.8) 

314 36.3% (from 33.2 to 
39.6) 

19.6 (from 6.5 to 31.9) 

Inferior frontal gyrus, orbital part 27  2.93% 19/8 10 37.0% (from 21.5 to 
55.8) 

337 37.6% (from 34.5 to 
40.8) 

− 0.6 (from − 16.4 to 18.4) 

Inferior frontal gyrus, triangular part 34  3.68% 22/12 14 41.2% (from 26.4 to 
57.8) 

333 37.5% (from 34.3 to 
40.7) 

3.7 (from − 11.4 to 20.6) 

Inferior frontal gyrus, opercular part 37  4.01% 22/15 18 48.6% (from 33.4 to 
64.1) 

329 37.1% (from 34.0 to 
40.4) 

11.5 (from − 4 to 27.3) 

Anterior orbital gyrus 10  1.08% 6/4 4 40.0% (from 16.8 to 
68.7) 

343 37.6% (from 34.5 to 
40.8) 

2.4 (from − 21.0 to 31.3) 

Medial orbital gyrus 16  1.73% 10/6 9 56.2% (from 33.2 to 
76.9) 

338 37.3% (from 34.2 to 
40.5) 

19.0 (from − 4.3 to 39.9) 

Lateral orbital gyrus 14  1.52% 10/4 4 343 − 9.1 (from − 26.3 to 17.1) 

(continued on next page) 
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Table 2 (continued ) 

Involved structure Affected Seizure risk affected (95%CI) Seizure risk non-affected (95% 
CI) 

Seizure risk difference (95% 
CI)  

n % t/v n % n %  

28.6% (from 11.7 to 
54.6) 

37.7% (from 34.6 to 
40.9) 

Posterior orbital gyrus 32  3.47% 18/14 18 56.2% (from 39.3 to 
71.8) 

329 36.9% (from 33.8 to 
40.1) 

19.3 (from 2.1 to 35.2) 

Gyrus rectus 15  1.63% 6/9 10 66.7% (from 41.7 to 
84.8) 

337 37.1% (from 34.0 to 
40.3) 

29.6 (from 4.4 to 48.0) 

Rostral gyrus 13  1.41% 6/7 6 46.2% (from 23.2 to 
70.9) 

341 37.5% (from 34.4 to 
40.7) 

8.7 (from − 14.5 to 33.6) 

Subcallosal area 20  2.17% 11/9 12 60.0% (from 38.7 to 
78.1) 

335 37.1% (from 34.0 to 
40.3) 

22.9 (from 1.3 to 41.3) 

Precentral gyrus 57  6.18% 39/18 29 50.9% (from 38.3 to 
63.4) 

318 36.7% (from 33.6 to 
40.0) 

14.2 (from 1.1 to 27.1) 

Postcentral gyrus 46  4.98% 31/15 29 63.0% (from 48.6 to 
75.5) 

318 36.3% (from 33.1 to 
39.5) 

26.8 (from 12.0 to 39.6) 

Paracentral lobule 29  3.14% 19/10 18 62.1% (from 44.0 to 
77.3) 

329 36.8% (from 33.7 to 
40.0) 

25.3 (from 6.9 to 40.8) 

Subcentral gyrus 34  3.68% 22/12 19 55.9% (from 39.5 to 
71.1) 

328 36.9% (from 33.8 to 
40.1) 

19.0 (from 2.2 to 34.5) 

Superior parietal lobule 41  4.44% 30/11 19 46.3% (from 32.1 to 
61.3) 

328 37.2% (from 34.1 to 
40.4) 

9.2 (from − 5.5 to 24.4) 

Supramarginal gyrus 67  7.26% 45/22 30 44.8% (from 33.5 to 
56.6) 

317 37.0% (from 33.9 to 
40.3) 

7.8 (from − 4.0 to 20.0) 

Angular gyrus 47  5.09% 30/17 20 42.6% (from 29.5 to 
56.7) 

327 37.3% (from 34.2 to 
40.6) 

5.2 (from − 8.2 to 19.7) 

Precuneus 58  6.28% 38/20 22 37.9% (from 26.6 to 
50.8) 

325 37.6% (from 34.4 to 
40.8) 

0.4 (from − 11.5 to 13.6) 

Cuneus 37  4.01% 27/10 13 35.1% (from 21.8 to 
51.2) 

334 37.7% (from 34.6 to 
40.9) 

− 2.6 (from − 16.3 to 13.8) 

Superior occipital gyrus 22  2.38% 17/5 6 27.3% (from 13.2 to 
48.2) 

341 37.8% (from 34.7 to 
41.1) 

− 10.6 (from − 25.1 to 10.5) 

Middle occipital gyrus 50  5.42% 38/12 17 34.0% (from 22.4 to 
47.8) 

330 37.8% (from 34.6 to 
41.1) 

− 3.8 (from − 15.8 to 10.4) 

Inferior occipital gyrus 19  2.06% 14/5 6 31.6% (from 15.4 to 
54.0) 

341 37.7% (from 34.6 to 
40.9) 

− 6.1 (from − 22.7 to 16.5) 

Occipital pole 3  0.33% 2/1 0 0% (from 0 to 56.1) 347 37.7% (from 34.6 to 
40.9) 

− 37.7 (from − 40.9 to 18.5) 

Lingual gyrus 29  3.14% 22/7 15 51.7% (from 34.4 to 
68.6) 

332 37.1% (from 34.0 to 
40.4) 

14.6 (from − 3.0 to 31.8) 

Fusiform gyrus 47  5.09% 33/14 21 44.7% (from 31.4 to 
58.8) 

326 37.2% (from 34.1 to 
40.5) 

7.5 (from − 6.2 to 21.9) 

Anterior superior temporal gyrus (anterior 
third) 

42  4.55% 25/17 21 50.0% (from 35.5 to 
64.5) 

326 37.0% (from 33.9 to 
40.2) 

13.0 (from − 1.8 to 27.8) 

Middle superior temporal gyrus (middle third) 34  3.68% 22/12 16 47.1% (from 31.5 to 
63.3) 

331 37.2% (from 34.1 to 
40.5) 

9.9 (from − 6.1 to 26.3) 

Posterior superior temporal gyrus (posterior 
third) 

40  4.33% 27/13 16 40.0% (from 26.3 to 
55.4) 

331 37.5% (from 34.4 to 
40.7) 

2.5 (from − 11.5 to 18.2) 

Anterior middle temporal gyrus (anterior 
third) 

38  4.12% 27/11 18 47.4% (from 32.5 to 
62.7) 

329 37.2% (from 34.1 to 
40.4) 

10.2 (from − 5.0 to 25.9) 

Middle middle temporal gyrus (middle third) 35  3.79% 28/7 18 51.4% (from 35.6 to 
67.0) 

329 37.0% (from 33.9 to 
40.3) 

14.4 (from − 1.8 to 30.3) 

Posterior middle temporal gyrus (posterior 
third) 

38  4.12% 28/10 20 52.6% (from 37.3 to 
67.5) 

327 36.9% (from 33.8 to 
40.2) 

15.7 (from 0.0 to 30.9) 

Anterior inferior temporal gyrus (anterior 
third) 

27  2.93% 26/9 19 70.4% (from 51.5 to 
84.1) 

328 36.6% (from 33.5 to 
39.8) 

33.5 (from 14.6 to 47.9) 

Middle inferior temporal gyrus (middle third) 35  3.79% 20/7 15 42.9% (from 28.0 to 
59.1) 

332 37.4% (from 34.3 to 
40.6) 

5.5 (from − 9.7 to 22.1) 

Posterior inferior temporal gyrus (posterior 
third) 

33  3.58% 26/7 15 45.5% (from 29.8 to 
62.0) 

332 37.3% (from 34.2 to 
40.5) 

8.2 (from − 7.8 to 25) 

Planum temporale 7  0.76% 6/1 2 28.6% (from 8.2 to 
64.1) 

345 37.7% (from 34.6 to 
40.8) 

− 9.1 (from − 29.7 to 26.6) 

Planum polare 21  2.28% 15/6 11 52.4% (from 32.4 to 
71.7) 

336 37.3% (from 34.2 to 
40.5) 

15.1 (from − 5.1 to 34.7) 

Temporal pole 44  4.77% 26/18 28 63.6% (from 48.9 to 
76.2) 

319 36.3% (from 33.2 to 
39.5) 

27.3 (from 12.2 to 40.3) 

Short insular gyri 49  5.31% 31/18 31 63.3% (from 49.3 to 
75.3) 

316 36.2% (from 33.0 to 
39.4) 

27.1 (from 12.7 to 39.6) 

Long insular gyri 45  4.88% 29/16 29 64.4% (from 49.8 to 
76.8) 

318 36.2% (from 33.1 to 
39.5) 

28.2 (from 13.3 to 40.9) 

Parahippocampal gyrus 48  5.2% 31/17 29 60.4% (from 46.3 to 
73.0) 

318 36.3% (from 33.2 to 
39.6) 

24.1 (from 9.6 to 37.0) 

Anterior cingulate gyrus (anterior third) 39  4.23% 29/10 19 48.7% (from 33.9 to 
63.8) 

328 37.1% (from 34.0 to 
40.3) 

11.6 (from − 3.6 to 27.0) 

Middle cingulate gyrus (middle third) 33  3.58% 26/7 17 330 14.4 (from − 2.2 to 30.7) 
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Table 2 (continued ) 

Involved structure Affected Seizure risk affected (95%CI) Seizure risk non-affected (95% 
CI) 

Seizure risk difference (95% 
CI)  

n % t/v n % n %  

51.5% (from 35.2 to 
67.5) 

37.1% (from 34.0 to 
40.3) 

Posterior cingulate gyrus (posterior third) 36  3.9% 24/12 14 38.9% (from 24.8 to 
55.1) 

333 37.5% (from 34.4 to 
40.8) 

1.4 (from − 13.1 to 17.9) 

Cerebral cortex 713  77.25% 496/ 
217 

331 46.4% (from 42.8 to 
50.1) 

16 7.6% (from 4.7 to 12.0) 38.8 (from 33.1 to 43.5) 

Cerebral peripheral white matter 734  79.52% 512/ 
222 

329 44.8% (from 41.3 to 
48.4) 

18 9.5% (from 6.1 to 14.6) 35.3 (from 29.1 to 40.3) 

Subcortical white matter (sector 1) 713  77.25% 496/ 
217 

324 45.4% (from 41.8 to 
49.1) 

23 11% (from 7.4 to 15.9) 34.5 (from 28.4 to 39.6) 

Subgyral white matter (sector 2) 649  70.31% 449/ 
200 

292 45.0% (from 41.2 to 
48.8) 

55 20.1% (from 15.8 to 
25.2) 

24.9 (from 18.5 to 30.7) 

Gyral white matter (sector 3) 540  58.5% 372/ 
168 

254 47.0% (from 42.9 to 
51.3) 

93 24.3% (from 20.3 to 
28.8) 

22.7 (from 16.6 to 28.6) 

Lobar white matter (sector 4) 462  50.05% 315/ 
147 

213 46.1% (from 41.6 to 
50.7) 

134 29.1% (from 25.1 to 
33.4) 

17.0 (from 10.8 to 23.1) 

Corpus callosum 99  10.73%  31 31.3% (from 23.0 to 
41.0) 

316 38.3% (from 5.1 to 
41.7) 

− 7.0 (from − 16 to 3.2) 

Central involvement 34  3.68% 22/12 6 17.6% (from 8.3 to 
33.5) 

341 38.4% (from 35.2 to 
41.6) 

¡20.8 (from − 30.6 to 
− 4.5) 

Marginal involvement: subependymal 89  9.64% 62/27 30 33.7% (from 24.7 to 
44.0) 

317 38.0% (from 34.8 to 
41.4) 

− 4.3 (from − 13.9 to 6.5) 

Marginal involvement: subpial 30  3.25% 21/9 6 20.0% (from 9.5 to 
37.3) 

341 38.2% (from 35.1 to 
41.4) 

¡18.2 (from − 29.2 to 
− 0.6)  

Cerebral central gray matter         
Caudate nucleus 14  1.52% 11/3 4 28.6% (from 11.7 to 

54.6) 
343 37.7% (from 34.7 to 

40.9) 
− 9.1 (from − 26.3 to 17.1) 

Putamen 11  1.19% 8/3 3 27.3% (from 9.7 to 
56.6) 

344 37.7% (from 34.6 to 
40.9) 

− 10.4 (from − 28.3 to 19.0) 

Globus pallidus 11  1.19% 8/3 4 36.4% (from 15.2 to 
64.6) 

343 37.6% (from 34.5 to 
40.8) 

− 1.2 (from − 22.7 to 27.2) 

Claustrum 27  2.93% 16/11 14 51.9% (from 34.0 to 
69.3) 

333 37.2% (from 34.1 to 
40.4) 

14.7 (from − 3.5 to 32.4) 

Hypothalamus 21  2.28% 16/5 6 28.6% (from 13.8 to 
50.0) 

341 37.8% (from 34.7 to 
41.0) 

− 9.2 (from − 24.3 to 12.4) 

Amygdala 44  4.77% 28/16 29 65.9% (from 51.1 to 
78.1) 

318 36.2% (from 33.1 to 
39.4) 

29.7 (from 14.6 to 42.3) 

Hippocampus 56  6.07% 38/18 34 60.7% (from 47.6 to 
72.4) 

313 36.1% (from 33.0 to 
39.4) 

24.6 (from 11.1 to 36.7) 

Thalamus 47  5.09% 31/16 13 27.7% (from 16.9 to 
41.8) 

334 38.1% (from 35.0 to 
41.4) 

− 10.5 (from − 21.7 to 4.0)  

Cerebral central white matter         
Internal capsule 14  1.52% 11/3 4 28.6% (from 11.7 to 

54.6) 
343 37.7% (from 34.6 to 

40.9) 
− 9.1 (from − 26.3 to 17.1) 

External capsule 34  3.68% 21/13 19 55.9% (from 39.5 to 
71.1) 

328 36.9% (from 33.8 to 
40.1) 

19.0 (from 2.2 to 34.5) 

Extreme capsule 37  4.01% 22/15 20 54.1% (from 38.4 to 
69.0) 

327 36.9% (from 33.8 to 
40.1) 

17.1 (from 1.1 to 32.4) 

Innominate substance 39  4.23% 25/14 20 51.3% (from 36.2 to 
66.1) 

327 37.0% (from 33.9 to 
40.2) 

14.3 (from − 1.1 to 29.5) 

Ventricular wall 521  56.45%  228 43.8% (from 39.6 to 
48.1) 

119 29.6% (from 25.3 to 
34.2) 

14.2 (from 7.9 to 20.2) 

Focal 163  17.66% 118/45 95 58.3% (from 50.6 to 
65.6) 

– – REF 

Diffuse 358  38.79% 243/ 
124 

133 37.2% (from 32.3 to 
42.3) 

– – ¡21.1 (from − 29.9 to 
− 11.9) 

Lateral ventricle         
Frontal horn of lateral ventricle 165  17.88% 112/53 69 41.8% (from 34.6 to 

49.4) 
278 36.7% (from 33.3 to 

40.2) 
5.1 (from − 2.9 to 13.5) 

Body of lateral ventricle 129  13.98% 81/48 58 45.0% (from 36.6 to 
53.6) 

289 36.4% (from 33.1 to 
39.8) 

8.6 (from − 0.4 to 17.8) 

Atrium of lateral ventricle 241  26.11% 163/78 100 41.5% (from 35.5 to 
47.8) 

247 36.2% (from 32.7 to 
39.9) 

5.3 (from − 1.8 to 12.5) 

Occipital horn of lateral ventricle 83  8.99% 61/22 29 34.9% (from 25.6 to 
45.7) 

318 37.9% (from 34.6 to 
41.2) 

− 3.0 (from − 12.9 to 8.3) 

Temporal horn of lateral ventricle 157  17.01% 104/53 69 43.9% (from 36.4 to 
51.8) 

278 36.3% (from 33.0 to 
39.8) 

7.6 (from − 0.6 to 16.2) 

Third ventricle 35  3.79% 22/13 8 22.9% (from 12.1 to 
39.0) 

339 38.2% (from 35.0 to 
41.4) 

− 15.3 (from − 26.6 to 1.1) 

Aqueduct 15  1.63% 9/6 2 13.3% (from 3.7 to 
37.9) 

345 38.0% (from 34.9 to 
41.2) 

− 24.7 (from − 34.8 to 0.1) 

Fourth ventricle         

(continued on next page) 
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Table 2 (continued ) 

Involved structure Affected Seizure risk affected (95%CI) Seizure risk non-affected (95% 
CI) 

Seizure risk difference (95% 
CI)  

n % t/v n % n %  

Fourth ventricle: Superior (apex) 11  1.19% 5/6 3 27.3% (from 9.7 to 
56.6) 

344 37.7% (from 34.6 to 
40.9) 

− 10.4 (from − 28.3 to 19.0) 

Fourth ventricle: lateral (recess) 65  7.04% 47/18 3 4.6% (from 1.6 to 12.7) 344 40.1% (from 36.9 to 
43.4) 

¡35.5 (from − 40.0 to 
− 26.8) 

Fourth ventricle: inferior (obex) 16  1.73% 7/9 1 6.2% (from 1.1 to 28.3) 346 38.1% (from 35.0 to 
41.4) 

¡31.9 (from − 38.0 to 
− 9.6) 

Fourth ventricle: dorsal (fastigium) 21  2.28% 13/8 2 9.5% (from 2.7 to 28.9) 345 38.2% (from 35.1 to 
41.5) 

¡28.7 (from − 36.3 to 
− 9.1) 

Septum pellucidum 20  2.17% 11/9 1 5.0% (from 0.9 to 23.6) 346 38.3% (from 35.2 to 
41.5) 

− 33.3 (from − 38.5 to 14.4) 

Choroid plexus of lateral ventricle 8  0.87% 6/2 1 12.5% (from 2.2 to 
47.1) 

346 37.8% (from 34.7 to 
41.0) 

− 25.3 (from − 36.1 to 9.4) 

Supratentorial leptomeninges 47  5.09% 32/15 18 38.3% (from 25.8 to 
52.6) 

329 37.6% (from 34.4 to 
40.8) 

0.7 (from − 12.2 to 15.4)  

INFRATENTORIAL STRUCTURES         
Brainstem         
Mesencephalon (tectum) 4  0.43% 1/2 0 0% (from 0.0 to 49.0) 347 37.8% (from 34.7 to 

40.9) 
− 37.8 (from − 40.9 to 11.3) 

Mesencephalon (tegmentum) 2  0.22% 2/0 1 50.0% (from 9.5 to 
90.5) 

346 37.6% (from 34.5 to 
40.7) 

12.4 (from − 28.2 to 53.1) 

Mesencephalon (crus) 5  0.54% 5/0 0 0% (from 0.0 to 43.4) 347 37.8% (from 34.7 to 
41.0) 

− 37.8 (from − 41.0 to 5.8) 

Mesencephalon (subpial) 4  0.43% 3/1 0 0% (from 0.0 to 49.0) 347 37.8% (from 34.7 to 
40.9) 

− 37.8 (from − 40.9 to 11.3) 

Pons (tegmentum) 23  2.49% 17/6 0 0% (from 0.0 to 14.3) 347 38.6% (from 35.4 to 
41.8) 

¡38.6 (from − 41.8 to 
–23.9) 

Pons (base) 12  1.3% 10/2 0 0% (from 0.0 to 24.2) 347 38.1% (from 35.0 to 
41.3) 

¡38.1 (from − 41.3 to 
− 13.6) 

Pons (subpial) 4  0.43% 3/1 0 0% (from 0.0 to 49.0) 347 37.8% (from 34.7 to 
40.9) 

− 37.8 (from − 40.9 to 11.3) 

Medulla oblongata (tegmentum) 9  0.98% 5/4 0 0% (from 0.0 to 29.9) 347 38.0% (from 34.9 to 
41.2) 

¡38.0 (from − 41.2 to 
− 7.9) 

Medulla oblongata (base) 5  0.54% 3/2 0 0% (from 0.0 to 43.4) 347 37.8% (from 34.7 to 
41.0) 

− 37.8 (from − 41.0 to 5.8) 

Medulla oblongata (subpial) 3  0.33% 3/0 0 0% (from 0.0 to 56.1) 347 37.7% (from 34.6 to 
40.9) 

− 37.7 (from − 40.9 to 18.5) 

Cerebellar lobes         
Anterior cerebellar lobe 29  3.14% 18/11 2 6.9% (from 1.9 to 22.0) 345 38.6% (from 35.5 to 

41.8) 
¡31.7 (from − 37.6 to 
− 16.3) 

Middle cerebellar lobe 35  3.79% 29/6 4 11.4% (from 4.5 to 
26.0) 

343 38.6% (from 35.5 to 
41.9) 

¡27.2 (from − 34.8 to 
− 12.3) 

Posterior cerebellar lobe 81  8.78% 65/16 8 9.9% (from 5.1 to 18.3) 339 40.3% (from 37.0 to 
43.6) 

¡30.4 (from − 26.2 to 
− 21.4) 

Flocculonodular cerebellar lobe 16  1.73% 13/3 0 0% (from 0.0 to 19.4) 347 38.3% (from 35.2 to 
41.5) 

¡38.3 (from − 41.5 to 
− 18.6) 

Cerebellar vermian lobules         
Central 12  1.3% 9/3 0 0% (from 0.0 to 24.2) 347 38.1% (from 35.0 to 

41.3) 
¡38.1 (from − 41.3 to 
− 13.6) 

Culmen 13  1.41% 9/4 0 0% (from 0.0 to 22.8) 347 38.1% (from 35.0 to 
41.3) 

¡38.1 (from − 41.3 to 
− 15.1) 

Declive 11  1.19% 9/2 0 0% (from 0.0 to 25.9) 347 38.0% (from 35.0 to 
41.2) 

¡38.0 (from − 41.2 to 
− 12.0) 

Folium 9  0.98% 8/1 0 0% (from 0.0 to 29.9) 347 38.0% (from 34.9 to 
41.2) 

¡38.0 (from − 41.2 to 
− 7.9) 

Tuber 8  0.87% 8/0 0 0% (from 0.0 to 32.4) 347 37.9% (from 34.8 to 
41.1) 

¡37.9 (from − 41.1 to 
− 5.3) 

Pyramid 7  0.76% 6/1 0 0% (from 0.0 to 35.4) 347 37.9% (from 34.8 to 
41.1) 

¡37.9 (from − 41.1 to 
− 2.3) 

Uvula 10  1.08% 8/2 0 0% (from 0.0 to 27.8) 347 38.0% (from 34.9 to 
41.2) 

¡38.0 (from − 41.2 to 
− 10.1) 

Nodule 15  1.63% 12/3 0 0% (from 0.0 to 20.4) 347 38.2% (from 35.1 to 
41.4) 

¡38.2 (from − 41.4 to 
− 17.6) 

Cerebellar hemispheric lobules         
Ala lobuli centralis 10  1.08% 8/2 1 10% (from 1.8 to 40.4) 346 37.9% (from 34.8 to 

41.1) 
− 27.9 (from − 36.7 to 2.7) 

Anterior quadrangular lobule 18  1.95% 13/5 0 0% (from 0.0 to 17.6) 347 38.3% (from 35.2 to 
41.6) 

¡38.3 (from − 41.6 to 
− 20.5) 

Posterior quadrangular lobule 13  1.41% 11/2 2 15.4% (from 4.3 to 
42.2) 

345 37.9% (from 34.8 to 
41.1) 

–22.5 (from − 34.0 to 4.5) 

Superior semilunar lobule 29  3.14% 24/5 3 10.3% (from 3.6 to 
26.4) 

344 38.5% (from 35.3 to 
41.7) 

¡28.1 (from − 35.6 to 
–11.8) 

Inferior semilunar / gracile lobule 53  5.74% 46/7 5 9.4% (from 4.1 to 20.3) 342 
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of the anterior third of the inferior temporal gyrus, the temporal pole, 
the short and long insular gyri and the parahippocampal gyrus was also 
associated with an increased seizure risk. An increased risk of seizures 
was furthermore found with the extreme and external capsule located 
underneath the insula. The involvement of the cerebral cortex proved to 
be a significant epileptic driver. Along the cortico-ventricular axis, 
epileptogenicity decreases gradually down the white matter sectors. 
While a subependymal involvement of the corpus callosum had no 
relevant effect on the seizure risk, a central and subpial affection of the 
corpus callosum showed a significantly reduced risk. Both the involve-
ment of the amygdala and the hippocampus proved pro-epileptogenic. 
Diffuse involvement of the ventricular wall showed a reduced seizure 
risk compared to a focal involvement. All infratentorial brainstem or 

cerebellar structures were associated with a reduced risk of seizures. 

4.1. Machine learning model 

Results of the out-of-the-box preliminary investigation of model 
performance are given in Supplementary Table 5. Due to comparable 
performance to the other ML methods and the advantage of allowing the 
explanation of model-internal variable weighting through calculation of 
PD values, GAM was selected as the final model. The performance of the 
T, TD and TDH GAM are given in Table 3 and Fig. 4. Best performance at 
internal validation is seen with the TDH model (AUC: 0.79 (0.74–0.77), 
Accuracy: 0.72 (0.66–0.78), Sensitivity: 0.81 (0.74–0.88), Specificity: 
0.66 (0.59–0.73)). Topographic features contribute the most to model 

Table 2 (continued ) 

Involved structure Affected Seizure risk affected (95%CI) Seizure risk non-affected (95% 
CI) 

Seizure risk difference (95% 
CI)  

n % t/v n % n %  

39.3% (from 36.1 to 
42.6) 

¡29.9 (from − 36.1 to 
− 18.6) 

Biventer lobule 25  2.71% 18/7 1 4.0% (from 0.7 to 19.5) 346 38.5% (from 35.4 to 
41.8) 

¡34.5 (from − 39.1 to 
− 18.7) 

Tonsilla 10  1.08% 10/0 2 20.0% (from 5.7 to 
51.0) 

345 37.8% (from 34.7 to 
41.0) 

− 17.8 (from –32.5 to 13.3) 

Flocculus 6  0.65% 6/0 0 0% (from 0.0 to 39.0) 347 37.8% (from 34.8 to 
41.0) 

− 37.8 (from − 41.0 to 1.3) 

Cerebellar cortex 121  13.11% 90/31 11 9.1% (from 5.2 to 15.5) 336 41.9% (from 38.5 to 
45.3) 

–32.8 (from − 38.0 to 
− 25.5) 

Cerebellar peripheral white matter 120  13.0% 89/31 11 9.2% (from 5.2 to 15.7) 336 41.8% (from 38.5 to 
45.3) 

–32.6 (from − 37.9 to 
− 25.4) 

Subcortical white matter (sector 1) 120  13.0% 89/31 11 9.2% (from 5.2 to 15.7) 336 41.8% (from 38.5 to 
45.3) 

–32.6 (from − 37.9 to 
− 25.4) 

Sublobular white matter (sector 2) 108  11.7% 78/30 5 4.6% (from 2.0 to 10.4) 342 42.0% (from 38.6 to 
45.4) 

¡37.4 (from − 41.7 to 
− 30.7) 

Lobular white matter (sector 3) 88  9.53% 66/22 3 3.4% (from 1.2 to 9.5) 344 41.2% (from 37.9 to 
44.6) 

¡37.8 (from − 41.8 to 
− 30.8) 

Lobar white matter (sector 4) 43  4.66% 34/9 0 0% (from 0.0 to 8.2) 347 39.4% (from 36.3 to 
42.7) 

¡39.4 (from − 42.7 to 
− 30.6) 

Cerebellar nuclei 11  1.19% 9/2 0 0% (from 0.0 to 25.9) 347 38% (from 35.0 to 
41.2) 

¡38.0 (from − 41.2 to 
− 12.0) 

Cerebellar peduncles         
Superior cerebellar peduncle 8  0.87% 7/1 1 12.5% (from 2.2 to 

47.1) 
346 37.8% (from 34.7 to 

41.0) 
− 25.3 (from − 36.1 to 9.4) 

Middle cerebellar peduncle 18  1.95% 12/6 0 0% (from 0.0 to 17.6) 347 38.3% (from 35.2 to 
41.6) 

¡38.3 (from − 41.6 to 
− 20.5) 

Inferior cerebellar peduncle 8  0.87% 5/3 0 0% (from 0.0 to 32.4) 347 37.9% (from 34.8 to 
41.1) 

¡37.9 (from − 41.1 to 
− 5.3) 

Infratentorial leptomeninges 24  2.60% 16/8 1 4.2% (from 0.7 to 20.2) 346 38.5% (from 35.4 to 
41.7) 

¡34.3 (from − 39.0 to 
− 17.9)  

Fig. 1. Seizure risk dependent on demographic characteristics The risk of epileptic seizures is presented in relation to demographic characteristics. Fig. 1A: Seizure 
prevalence by age and gender. Fig. 1B: The influence of histopathologic tumor characteristics (histological entity and WHO grade) on seizure risk, defined as seizure 
risk difference in relation to the designated reference category (Ref.) with the corresponding 95% confidence interval (Wilson). 
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Fig. 2. Seizure prevalence in relation to tumor topography A color-coded representation of the prevalence of epileptic seizures at the time of diagnosis is shown, 
depending on the topographic anatomical structure involved by the tumor. Fig. 2A: Lateral view on the cerebral hemisphere with its gyral segments. Fig. 2B: Medial 
view on the cerebral hemisphere. Fig. 2C: Supratentorial ventricular walls. Fig. 2D: Supratentorial central white and gray matter. Fig. 2E: Coronal section through the 
cerebral hemisphere with the white matter sectors, the corpus callosum and the deep white and gray matter shown. Fig. 2F: Axial section through the mesencephalon. 
Fig. 2G: Axial section through the pons. Fig. 2H: Axial section through the medulla oblongata. Fig. 2I: Anterior view on the cerebellum with its vermian and 
hemispheric lobules. Fig. 2J: Superior view on the cerebellum. Fig. 2K: Inferior view on the cerebellum. Fig. 2L: Posterior view on the fourth ventricle, the cerebellar 
peduncles and the transected cerebellum with its white matter sectors and deep nuclei. 
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Fig. 3. Seizure risk dependent on topographic tumor anatomy. The influence of the tumor’s involvement of specific topographic anatomical structures on seizure risk 
is shown. Binary factors are presented with their corresponding seizure risk difference (percentage difference: seizure risk if structure is affected minus seizure risk if 
structure is not affected), with a 95% confidence interval (Wilson confidence interval for risk differences). For categorical data with more than two levels, the seizure 
risk difference is given in relation to the designated reference (Ref.) with the corresponding 95% confidence interval (Wilson). Fig. 3A: General topographic 
anatomical categories and supratentorial anatomical structures. Fig. 3B: Infratentorial anatomical structures. 
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performance. The results of the PD and delta PD analysis of the TDH 
GAM are given in Fig. 5 and Supplementary Table 6. The highest positive 
delta partial dependence of the model is on the presence of an 
involvement of the cerebral cortex. The highest negative partial 
dependence is found with the involvement of the cerebellar lobular 
white matter and the cerebellar cortex. 

5. Discussion 

Aiming to identify clinically relevant risk factors for epileptic sei-
zures in previously seizure free patients with brain tumors, the present 
study highlights the relevance of the topographic anatomical tumor 
characteristics and identifies specific phylogenetic anatomical patterns 
as epileptic drivers. Using a GAM, the seizure risk can be predicted based 
on topographic, demographic and histopathologic data with fair per-
formance while maintaining transparency of the prediction. 

5.1. Demographic seizure risk factors 

Basic demographic data on age and gender is available at the 
beginning of the diagnostic process and thus potentially useful in pre-
dicting seizure risk. The described age-dependent risk profile, with a 
peak between 30 and 50 years, is consistent with some previous reports 
(Liigant et al., 2001), while others described the risk as increasing with 
age (Pallud et al., 2014) or considered age to be irrelevant (Chang et al., 
2008). Whether age is an independent risk factor is questionable, as the 
observed differences may be explained by age-dependent histopatho-
logic and topographic distributions. For instance, histopathologic en-
tities of childhood and adolescence (e.g. pilocytic astrocytoma, 
medulloblastoma, ependymoma) and their preferred infratentorial 
location were associated with a low risk of seizures. No gender differ-
ence in seizure risk was observed, which is consistent with previous 
reports (Chang et al., 2008; Wilne et al., 2007). 

5.2. Histopathologic seizure risk factors 

Significant differences in seizure risk were observed between the 
histopathologic brain tumor entities and grades: Consistent with previ-
ous reports (Kerkhof and Vecht, 2013), a higher seizure risk in devel-
opmental tumors as well as low-grade tumors versus high-grade tumors 
was observed. Pilocytic astrocytoma, medulloblastoma and ependy-
moma showed low epileptogenic potential relative to glioblastoma. The 
lower seizure risk in metastases and PCNSL is consistent with previous 
literature (Lynam et al., 2007; van Breemen et al., 2007; Weller et al., 
2012). These differences in seizure risk might be due to histopathologic 
tumor characteristics or due to the inherent topographic anatomical 

pattern of the various entities. Such patterns include: the preferably 
cortical location of developmental tumors; the involvement of the ce-
rebral cortico-ventricular axis, typically of the insula or anterior tem-
poral lobe, without diffuse invasion of the corpus callosum or 
subependymal ventricular wall in grade II and III gliomas; the infra-
tentorial location of pilocytic astrocytoma, medulloblastoma and 
ependymoma; the common infratentorial location of metastases; or the 
diffuse invasion of the corpus callosum and the ventricular wall by 
PCNSL. The most plausible explanation seems to be that epileptogenicity 
is a combined effect of tumor-intrinsic molecular and histopathologic 
characteristics and the brain’s anatomy (Akeret et al., 2019). 

5.3. Topographic anatomical seizure risk factors 

This study identified specific topographic anatomical brain tumor 
patterns to be associated with high or low seizure risk. The concept of 
pathoclisis implies a selective vulnerability of different areas of the brain 
to various diseases (Vogt and Vogt, 1922). Accordingly, anatomical re-
gions differing in their histologic and molecular characteristics as well as 
their phylo- and ontogenetic background might exhibit different seizure 
risks. 

The supratentorial lobar/gyral structures appear to be the most 
relevant ones regarding epileptogenicity. Whereas almost half of the 
patients with supratentorial tumors suffer from epileptic seizures, such 
are found in less than 1% of infratentorial tumors. Deep-seated supra-
tentorial tumors (eg. basal ganglia, internal capsule, thalamus, septum 
pellucidum, choroid plexus) also have a much lower seizure risk. 

Significant differences were also observed among the lobar and gyral 
structures, with the primary motor/somatosensory, mesopallial and 
allopallial structures found pro-epileptogenic. The central lobe (with the 
precentral gyrus, postcentral gyrus, subcentral gyrus and paracentral 
lobule) and the insular lobe (with the short and long insular gyri) 
showed the highest positive seizure risk difference. The posterior third 
of the superior and the middle frontal gyrus also had an increased 
seizure risk, both of which lie directly adjacent to the precentral gyrus. 
Similarly, the also adjoining pars opercularis of the inferior frontal gyrus 
showed the same tendency. An increased seizure risk was also found 
with the posterior orbital gyrus, rectal gyrus, the subcallosal area, 
temporal pole, the anterior third of the inferior temporal gyrus and the 
parahippocampal gyrus. This anatomical pro-epileptogenic pattern 
corresponds to the central and the mesopallial fronto-insulo-temporal 
structures. The allocortical hippocampus and amydala also showed an 
increased risk of seizures, as did the extreme and external capsule 
located below the insular cortex. 

The cerebral structures associated with an increased seizure risk are 
characterized by a distinctive cortical microarchitecture and 

Table 3 
Discrimination and calibration of the generalized additive models Performance measures of the topographic (T), topographic/demographic (TD) and topo-
graphic/demographic/histopathologic (TDH) generalized additive models after variables selection by recursive feature elimination at bootstrap on the train set and 
internal validation on a separate test set. AUC, Accuracy, Sensitivity, Specificity, PPV, NPV, F1 score, calibration curve intercept and slope with the corresponding 95% 
confidence intervals are reported. Abbreviations: AUC: area under the curve; PPV: positive predictive values; NPV: negative predictive value; T: topographic; TD: 
topographic/demographic; TDH: topographic/demographic/histopathologic.  

Generalized additive models T model TD model TDH model 

Bootstrap Validation Bootstrap Validation Bootstrap Validation 

Discrimination AUC 0.72 (0.70–0.73) 0.70 (0.64 to 0.76) 0.72 (0.71–0.74) 0.70 (0.63–0-76) 0.75 (0.74–0.77) 0.79 (0.74–0.84)  
Accuracy 0.65 (0.64–0.66) 0.64 (0.58–0.70) 0.66 (0.65–0.68) 0.66 (0.61–0.72) 0.69 (0.68–0.71) 0.72 (0.66–0.78)  
Sensitivity 0.62 (0.59–0.64) 0.66 (0.58 to 0.75) 0.65 (0.63–0.67) 0.68 (0.59–0.77) 0.71 (0.69–0.73) 0.81 (0.74–0.88)  
Specificity 0.68 (0.66–0.69) 0.63 (0.55 to 0.70) 0.67 (0.66–0.69) 0.65 (0.58–0.72) 0.69 (0.67–0.70) 0.66 (0.59–0.73)  
PPV 0.52 (0.50–0.54) 0.54 (0.45–0.63) 0.53 (0.52–0.55) 0.55 (0.47–0.63) 0.56 (0.54–0.58) 0.62 (0.53–0.70)  
NPV 0.76 (0.74–0.77) 0.73 (0.66–0.80) 0.77 (0.75–0.78) 0.77 (0.69–0.83) 0.81 (0.79–0.82) 0.84 (0.78–0.90)  
F1 score* 0.57 0.68 0.58 0.70 0.63 0.74 

Calibration Intercept − 0.52 (− 0.71 to 
− 0.34) 

− 0.42 (− 0.70 to 
− 0.15) 

− 0.49 (− 0.68 to 
− 0.31) 

− 0.41 (− 0.70 to 
− 0.12) 

− 0.48 (− 0.68 to 
− 0.28) 

− 0.47 (− 0.77 to 
− 0.17)  

Slope 0.92 (0.72 to 1.12) 0.52 (0.32 to 0.72) 0.94 (0.76 to 1.12) 0.46 (0.29 to 0.64) 0.94 (0.77 to 1.2) 0.57 (0.39 to 0.76) 

* The F1 score is a composite score and represents the harmonic mean of precision (i.e. PPV) and sensitivity. 
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phylogenetic background, which might account for an increased struc-
tural epileptogenicity. The primary motor, supplementary motor and 
primary somatosensory cortices define the central lobe and adjacent 
areas (Brodmann areas 4, 6, 3, 1, 2) (Brodmann, 1909). Layer V of the 

primary motor cortex harbors the largest neurons of the body, the Betz’ 
giant cells (Brodmann, 1909), which have been attested a particularly 
high epileptogenicity in electrophysiological studies (Chouinard and 
Paus, 2006; Telfeian and Connors, 1998). The posterior fronto-orbito- 

Fig. 4. Calibration curves of the three seizure risk prediction models Calibration curves of the topographic (T), topographic/demographic (TD) and topographic/de-
mographic/histopathologic (TDH) models at bootstrap and internal validation after predictor selection by recursive feature elimination. The x axis demonstrates 10 
bins of the probabilities predicted by the models, which are contrasted against the true observed frequency of the outcome on the y axis. A locally estimated 
scatterplot smoother (LOESS) curve is estimated over the 10 bins to arrive at a calibration curve. The red horizontal line demonstrates ideal calibration with an 
intercept of 0 and a slope of 1. Fig. 4A: Bootstrap of the T model. Fig. 4B: Internal validation of the T model. Fig. 4C: Bootstrap of the TD model. Fig. 4D: Internal 
validation of the TD model. Fig. 4E: Bootstrap of the TDH model. Fig. 4F: Internal validation of the TDH model. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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mesial, the insular and the temporo-mesio-polar areas are mesocortical 
(Fleischhauer, 1976; Stephan, 1976; Vogt and Vogt, 1926; Zilles and 
Amunts, 2012). The amygdala and the hippocampus are allocortical 
(Fleischhauer, 1976; Stephan, 1976; Vogt and Vogt, 1926; Zilles and 
Amunts, 2012). Mesocortex and allocortex have a different cytoarchi-
tecture than the neocortex and are phylogenetically older, which might 
be related to epileptogenicity. There is evidence based on animal 
models, electrophysiological studies, functional MRI studies and nuclear 
medicine studies that not only hippocampus and amygdala, but also the 
adjacent allo- and mesocortical areas have an increased potential for 
epileptogenicity (Avoli et al., 2002; Gale, 1988; Kelly and McIntyre, 
1996; McIntyre and Gilby, 2008; Piredda and Gale, 1985; Uva et al., 
2005; Vaughan and Jackson, 2014; Vismer et al., 2015). In particular, 
the piriform, perirhinal and entorhinal cortex have been identified as 
“trigger zones” for seizures. In experimental animal studies, these re-
gions showed a particularly high sensitivity for the induction of seizures 
by chemical or electrical stimuli (Vaughan and Jackson, 2014; Vismer 
et al., 2015). While under physiological conditions there is rhythmic 
activity between these regions, malfunction seem to easily lead to 
pathological synchronization and spreading of epileptiform activity 
throughout the brain (Cataldi et al., 2013; McIntyre and Gilby, 2006; 
Vismer et al., 2015). The distinct cytoarchitecture as well as the pro-
nounced local and long-range connections of these regions appear to be 
of pathophysiological relevance (Shepherd, 2011; Vaughan and Jack-
son, 2014; Vismer et al., 2015). In the rat, a pyramidal cell in the piri-
form cortex synapses with more than 1000 other cells, creating a large 
excitatory network (Johnson et al., 2000), requiring strong local feed-
back inhibition to prevent runaway activation (Franks et al., 2011). 
There are extensive connections between hippocampus, amygdala, 
piriform cortex, entorhinal cortex, orbitofronal cortex and agranular 
insular cortex (Burwell and Amaral, 1998; Johnson et al., 2000; Kaji-
wara et al., 2007; Krettek and Price, 1977; Shipley and Ennis, 1996). 

Numerous local recurrent circuits within this network can serve as 
substrates for seizure activity (Löscher and Ebert, 1996). The topo-
graphic anatomical brain tumor patterns identified in the current study, 
which appear to be associated with an increased seizure risk, all repre-
sent components of this phylogenetically older “olfactory network”. The 
observation that the cingulate gyrus and the planum polare, which are 
also largely mesocortical, also tend to have a higher seizure risk, further 
supports this hypothesis. In contrast to this, adjacent neocortical struc-
tures (such as the planum temporale) show an opposite tendency. Even 
within the neocortex there are differences in seizure risks: a gradient is 
observed from the primary motor/somatosensory cortex to the frontal 
pole and the occipital pole, as well as from the temporal pole towards the 
occipital pole. This might also be phylogenetically determined by the 
differing character of the primary neocortical areas, the unimodal and 
the multimodal association cortices. 

In addition to true differences in structural epileptogenicity, varying 
rates of seizure-detection might also contribute to the observed differ-
ences in seizure risk. Seizures originating in certain anatomical areas 
might have a more prominent clinical manifestation than others. Sei-
zures with origin in the central lobe, for example, are expected to pre-
sent with clinically apparent motor or somatosensory symptoms. 
Likewise, tumors of the mesopallial structures might indirectly impact 
on the central lobe through a space-occupying effect. 

Deep-reaching lobar tumors appear to have a reduced seizure risk, 
which might be explained by the invasion and destruction of fiber tracts 
(i.e. short and long association fibers, commissural fibers), preventing 
the spread of epileptic activity that developed locally (most likely 
cortically). Within the gyral segments, the cortex showed the highest 
risk for seizures, decreasing progressively along the white matter sectors 
towards the ventricular wall. A reduced seizure risk was seen with 
involvement of the corpus callosum, but only in its central, i.e. fibrous 
part. The lower seizure risk seen with bilateral tumors might be 

Fig. 5. Partial dependence in the TDH model Partial dependence on age and difference in partial dependence (delta partial dependence) of variables showing a 
differential marginal effect in the topographic/demographic/ histopathologic (TDH) model. Variables included in the model with partial dependence difference equal to 
0 are not shown. Fig. 5A: Demographic and histopathologic (histologic entity and WHO grade) characteristics. Fig. 5B: Topographic anatomical characteristics. 

K. Akeret et al.                                                                                                                                                                                                                                  



NeuroImage: Clinical 28 (2020) 102506

14

explainable by an expansion across the corpus callosum or a dience-
phalic/rhombencephalic tumor location. 

5.4. Machine learning based prediction 

In this study, we aimed to combine the elements of pathophysio-
logical reasoning, transparent ML based modelling and clinical decision- 
making context. Machine learning provides new approaches for pre-
diction, often outperforming conventional statistical methods (Rajko-
mar et al., 2019; Staartjes et al., 2018; Swinburne et al., 2019; Titano 
et al., 2018; van Niftrik et al., 2019). However, pathophysiological 
plausibility, transparency and clinical applicability remain important 
concerns, contributing to the limited translation into practice (Rajkomar 
et al., 2019). The scientific framework for the development of the model 
remains critical. Predictors must be available in the clinical decision 
situation, preferably display a pathophysiological plausibility, and the 
results of the prediction must impact clinical decision-making. 

Both the performance and the transparency of the different models 
were taken into account in a preliminary analysis. Given the trans-
parency provided by the PD analysis and comparable discrimination and 
calibration performance, GAMs were preferred to other algorithms. 

To ensure clinical applicability, topographic, demographic and his-
topathologic input was implemented layer-wise in the model. All three 
models (T, TD and TDH GAM) showed a high performance. While the TD 
model failed to improve significantly over the T model, the TDH model 
demonstrated a further increase in performance. 

Delta PD analysis allowed the model relevant input to be patho-
physiologically reflected through comparison with the preceding infer-
ence analysis. The differentiation between dependence of a prediction 
model and causal interference should be an integral component of model 
development, understanding and translation. It has gained even more 
significance with ML based approaches, due to their often intransparent 
character. Delta PD of our TDH model was largely consistent with the 
results of the inference analysis. Some relevant differences, however, 
exist. The TDH model not only showed the expected dependence on age, 
but male gender was also a negative driver. This is likely explained by a 
higher incidence of metastases in males and not by a direct causal 
relationship. The dependence on histopathology only consists of me-
tastases as negative driver and astrocytoma as well as WHO grade I as 
positive drivers. A plausible explanation is the unequal prevalence of the 
different tumor types with predominance of glioblastoma, metastases 
and astrocytoma (Akeret et al., 2020; Siegel et al., 2020). Certain cere-
bellar structures, such as the cerebellar subcortical white matter and the 
inferior semilunar/gracile lobules influence the prediction in the di-
rection of “seizures”. However, assuming a causal relationship would be 
a wrong conclusion, as the inference analysis provided strong evidence 
against it. The fact that a subcortical cerebellar location in the inferior 
semilunar/gracile lobule is the most frequent manifestation of cerebellar 
metastases (Akeret et al., 2020) might be an explanation for the 
dependence of the model on these variables. The associated risk of 
concomitant supratentorial metastases and thus an increased risk of 
seizures might create this dependence. 

6. Limitations and relevance 

A practical limitation of the presented model is the inherent diffi-
culty of localizing brain tumors in such detail, requiring profound 
anatomical knowledge and training. A simplified version will be 
required to establish a topographic anatomical model in clinical routine. 
The seizure risk driver identified in this study are a basis for such a 
simplified model. Another potential limitation consists in not including 
molecular tumor markers in the model. The relevance of such molecular 
markers in a seizure-risk prediction model applied at the time of initial 
diagnosis is limited due to the latency of the availability of such markers. 
Although this also applies to the histopathologic tumor entity, the latter 
can often be estimated or at least significantly limited by an experienced 

clinician based on the radiological appearance of the tumor. For this 
reason, gross histopathologic tumor entity was included in the TDH 
variant of our model, while molecular markers were not used. Clinical 
parameters were also excluded, as they show a high interrater variability 
and their pathophysiological relevance is questionable. Another clinical 
limitation is that seizures, especially non-motor seizures, are often 
underdiagnosed. Up to 50% of electrographic seizures remain unnoticed 
by the patient (Elger and Hoppe, 2018). In our center we attempt to keep 
this rate low by performing a long-term EEG in cases of unclear medical 
history to exclude tumor-related seizures. However, the possibility re-
mains that in our cohort seizures, especially non-motor seizures, are 
underdiagnosed and that the correlations are influenced by a higher 
number of motor seizures compared to unrecognized non-motor sei-
zures. A disadvantage of the selected study design with consecutive in-
clusion of all patients with first diagnosis of a primary or secondary 
brain tumor with any encephalic location is the resulting heterogeneity 
of the study population with limited statistical power for groups that are 
underrepresented (e.g. rare tumor entities). The advantage of this 
design, however, consists in its conformity to the clinical routine and 
therefore in its high generalizability. The design was aimed at simu-
lating the clinical situation. A statistical limitation of this study is the 
high number of demographic, histopathologic and topographic param-
eters assessed and the associated problem of multiple hypothesis testing. 
This is an inherent limitation of the attempt of this study to consider all 
of the above variables collectively in terms of their interaction and 
pathophysiological plausibility. This limitation has been countered by 
using confidence intervals in the univariate analysis of seizure risk dif-
ference instead of p values to provide estimates of the magnitude and 
precision of the effect and to establish a pathophysiological plausibility 
evaluation rather than a mere quantification of the level of evidence for 
a difference. Some of the tested variables may be associated with each 
other, which might lead to less accurate estimates of the influence of 
individual variables and higher standard errors of the predictive per-
formance measures through collinearity. A further limitation of this 
study is the relatively large ratio of tested predictors to patient numbers, 
which may limit the predictive performance of the final model by 
overfitting. These limitations were accepted, since it was not the aim of 
this study to develop a final predictive model, but rather to improve our 
pathophysiological understanding of brain tumor associated seizures 
and provide a basis for the development of a transparent prediction 
model. To establish a seizure risk prediction model for brain tumor 
patients, a simplification and a prospective, consecutive development 
study are required, followed by an impact study. The advantages of ML 
based methods should be used within this framework, but critically 
assessed for their pathophysiological plausibility. 

7. Clinical implications 

There are several potential clinical implications of a seizure risk 
prediction model. Even though prophylactic anti-epileptic therapy is not 
recommended by the ILAE and the American Association of Neurology 
(Glantz et al., 2000; Sirven et al., 2004; Tremont-Lukats et al., 2008) this 
issue remains controversial and the practice varies widely across 
different centers and countries. A survey conducted among neurosur-
geons of the American Association of Neurological Surgeon revealed 
that, despite these guidelines, prophylactic antiepileptic therapy is 
installed in more than 70% of brain tumors at first diagnosis (Siomin 
et al., 2005). A stratification of these patients into seizure high-risk and 
low-risk at the time of diagnosis would considerably simplify the ques-
tion of the risk-benefit ratio of prophylactic antiepileptic therapy and 
thus would have the potential to homogenize clinical practice. In addi-
tion to antiepileptic therapy, patient monitoring could also be adapted 
according to this risk stratification. Furthermore, this information could 
be incorporated into patient counselling regarding the potential anti-
epileptic effect of lifestyle changes (Rossetti and Stupp, 2010). 
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8. Conclusions 

The present study highlights the relevance of the topographic 
anatomical tumor characteristics with respect to epileptogenicity and 
identifies specific phylogenetic anatomical patterns as epileptic drivers. 
Using a generalized additive model, the seizure risk can be predicted 
based on topographic, demographic and histopathologic data with fair 
performance while maintaining transparency of the prediction. 
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Baron, M.H., Vlaicu, M., Guillevin, R., De’aux, B., Duffau, H., Taillandier, L., Capelle, 

K. Akeret et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/j.nicl.2020.102506
https://doi.org/10.1016/j.nicl.2020.102506
https://doi.org/10.1111/epi.16333
https://doi.org/10.1016/j.nicl.2019.101688
https://doi.org/10.1007/s11060-020-03574-w
https://doi.org/10.1007/s11060-020-03574-w
https://doi.org/10.3171/jns.1999.90.6.0998
http://refhub.elsevier.com/S2213-1582(20)30343-0/h0035
http://refhub.elsevier.com/S2213-1582(20)30343-0/h0035
https://doi.org/10.1002/(SICI)1096-9861(19980824)398:2<179::AID-CNE3>3.0.CO;2-Y
https://doi.org/10.1002/(SICI)1096-9861(19980824)398:2<179::AID-CNE3>3.0.CO;2-Y
https://doi.org/10.1111/epi.12400
https://doi.org/10.3171/JNS/2008/108/2/0227
https://doi.org/10.3171/JNS/2008/108/2/0227
https://doi.org/10.1177/1073858405284255
https://doi.org/10.1177/1073858405284255
https://doi.org/10.1016/S1474-4422(18)30038-3
https://doi.org/10.1016/S1474-4422(18)30038-3
https://doi.org/10.1016/j.seizure.2016.12.012
https://doi.org/10.1111/epi.12550
https://doi.org/10.1111/epi.13670
https://doi.org/10.1016/j.neuron.2011.08.020
https://doi.org/10.1111/j.1528-1157.1988.tb05795.x
https://doi.org/10.1111/j.1528-1157.1988.tb05795.x
https://doi.org/10.1212/WNL.54.10.1886
https://doi.org/10.1111/epi.14528
https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1214/ss/1177013604
https://doi.org/10.1523/jneurosci.20-18-06974.2000
https://doi.org/10.1111/epi.12437
https://doi.org/10.1002/cne.901720409
https://doi.org/10.1016/j.clineuro.2007.05.017
https://doi.org/10.1016/j.clineuro.2007.05.017
http://refhub.elsevier.com/S2213-1582(20)30343-0/h0160
http://refhub.elsevier.com/S2213-1582(20)30343-0/h0160
https://doi.org/10.7326/M14-0698
https://doi.org/10.7326/M14-0698
https://doi.org/10.1016/j.neuroimage.2015.06.008
https://doi.org/10.1016/j.neuroimage.2015.06.008


NeuroImage: Clinical 28 (2020) 102506

16

L., Huberfeld, G., 2014. Epileptic seizures in diffuse low-grade gliomas in adults. 
Brain 137, 449–462. DOI:10.1093/brain/awt345. 

Piredda, S., Gale, K., 1985. A crucial epileptogenic site in the deep prepiriform cortex. 
Nature. https://doi.org/10.1038/317623a0. 

R Core Team, 2020. R: A Language and Environment for Statistical Computing. 
Rajkomar, A., Dean, J., Kohane, I., 2019. Machine learning in medicine. N. Engl. J. Med. 

380, 1347–1358. https://doi.org/10.1056/NEJMra1814259. 
Rossetti, A.O., Stupp, R., 2010. Epilepsy in brain tumor patients. Curr. Opin. Neurol. DOI: 

10.1097/WCO.0b013e32833e996c. 
Sanson, M., Marie, Y., Paris, S., Idbaih, A., Laffaire, J., Ducray, F., Hallani, S. El, 

Boisselier, B., Mokhtari, K., Hoang-Xuan, K., Delattre, J.Y., 2009. Isocitrate 
dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in 
gliomas. J. Clin. Oncol. 27, 4150–4154. https://doi.org/10.1200/ 
JCO.2009.21.9832. 

Shepherd, G.M., 2011. The microcircuit concept applied to cortical evolution: from 
three-layer to six-layer cortex. Front. Neuroanat. 5 https://doi.org/10.3389/ 
fnana.2011.00030. 

Shipley, M.T., Ennis, M., 1996. Functional organization of olfactory system. J. Neurobiol. 
https://doi.org/10.1002/(SICI)1097-4695(199605)30:1<123::AID-NEU11>3.0.CO; 
2-N. 

Siegel, R.L., Miller, K.D., Jemal, A., 2020. Cancer statistics, 2020. CA. Cancer J. Clin. 
DOI:10.3322/caac.21590. 

Siomin, V., Angelov, L., Li, L., Vogelbaum, M.A., 2005. Results of a survey of 
neurosurgical practice patterns regarding the prophylactic use of anti-epilepsy drugs 
in patients with brain tumors. J. Neurooncol. DOI:10.1007/s11060-004-6912-4. 

Sirven, J.I., Wingerchuk, D.M., Drazkowski, J.F., Lyons, M.K., Zimmerman, R.S., 2004. 
Seizure prophylaxis in patients with brain tumors: a meta-analysis. Mayo Clin. Proc. 
79, 1489–1494. https://doi.org/10.4065/79.12.1489. 

Skardelly, M., Brendle, E., Noell, S., Behling, F., Wuttke, T.V., Schittenhelm, J., Bisdas, S., 
Meisner, C., Rona, S., Tatagiba, M.S., Tabatabai, G., 2015. Predictors of preoperative 
and early postoperative seizures in patients with intra-axial primary and metastatic 
brain tumors: a retrospective observational single center study. Ann. Neurol. 78, 
917–928. https://doi.org/10.1002/ana.24522. 
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