The Journal of Neuroscience, August 12, 2020 - 40(33):6389-6397 - 6389

Behavioral/Cognitive

Prior Expectations of Motion Direction Modulate Early
Sensory Processing
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United Kingdom

Perception is a process of inference, integrating sensory inputs with prior expectations. However, little is known regarding
the temporal dynamics of this integration. It has been proposed that expectation plays a role early in the perceptual process,
biasing sensory processing. Alternatively, others suggest that expectations are integrated only at later, postperceptual deci-
sion-making stages. The current study aimed to dissociate between these hypotheses. We exposed human participants (male
and female) to auditory cues predicting the likely direction of upcoming moving dot patterns, while recording neural activity
using magnetoencephalography (MEG). Participants’ reports of the moving dot directions were biased toward the direction
predicted by the cues. To investigate when expectations affected sensory representations, we used inverted encoding models
to decode the direction represented in early sensory signals. Strikingly, the cues modulated the direction represented in the
MEG signal as early as 150 ms after visual stimulus onset. While this may not reflect a modulation of the initial feedforward
sweep, it does reveal a modulation of early sensory representations. Exploratory analyses showed that the neural modulation
was related to perceptual expectation effects: participants with a stronger perceptual bias toward the predicted direction also
revealed a stronger reflection of the predicted direction in the MEG signal. For participants with this perceptual bias, a corre-
lation between decoded and perceived direction already emerged before visual stimulus onset, suggesting that the prestimulus
state of the visual cortex influences sensory processing. Together, these results suggest that expectations play an integral role
in the neural computations underlying perception.
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Perception can be thought of as an inferential process in which our brains integrate sensory inputs with prior expectations to
make sense of the world. This study investigated whether this integration occurs early or late in the process of perception. We
exposed human participants to auditory cues that predicted the likely direction of visual moving dots, while recording neural
activity with millisecond resolution using magnetoencephalography. Participants’ perceptual reports of the direction of the
moving dots were biased toward the predicted direction. Additionally, the predicted direction modulated the neural represen-
tation of the moving dots just 150 ms after they appeared. This suggests that prior expectations affected sensory processing at
early stages, playing an integral role in the perceptual process. /
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expectations at early sensory stages (Rao and Ballard, 1999; Lee
and Mumford, 2003; Friston, 2005; Wyart et al., 2012; Keller and
Mrsic-Flogel, 2018). In support of this hypothesis, many studies
have shown that prior expectations can modulate processing at
the earliest stages of the cortical hierarchy (Den Ouden et al,
2009; Alink et al., 2010; Kok et al., 2012), as well as early in time
(starting around 100-150 ms post-stimulus; Todorovic et al,
2011; Wacongne et al., 2011; Hsu et al.,, 2015; Aru et al.,, 2016;
Jabar et al., 2017; Alilovi¢ et al., 2019 or even as early as 75 ms;
Keil et al,, 2017), even prior to stimulus presentation (Sherman
etal, 2016; Kok et al., 2017).

Alternatively, it has been suggested that prior expectations
leave early sensory processing untouched, and instead only mod-
ulate later decision-making processes (Rao et al.,2012; Bang and
Rahnev, 2017; Rungratsameetaweemana et al., 2018), for instance
in parietofrontal brain circuits (Heekeren et al., 2004; Gold and
Shadlen, 2007). Under this account, the effects of expectations in
early sensory regions as revealed by previous functional magnetic
resonance imaging studies are proposed to reflect late, postdeci-
sion feedback signals, simply “informing” sensory regions of the
decision that has been made. Even early effects of expectations
revealed by electrophysiological studies (Chaumon et al., 2008;
Gamond et al.,, 2011; Todorovic et al.,, 2011) may be epipheno-
mena rather than directly impacting perception, analogous to the
proposals that working memory representations in sensory regions
reflect epiphenomena (Xu, 2018; but see Zhangetal., 2019).

Previous studies have been unable to distinguish between these
two hypotheses, since they have not linked the neural effects of ex-
pectation to behavioral changes in perception. Additionally, most
previous electrophysiological studies measured the overall ampli-
tude of the neural response to expected or unexpected stimuli,
rather than probing stimulus-specific representations in the neural
signal (Aru et al, 2016; Rungratsameetaweemana et al., 2018).
This is critical, since previous studies have shown that informa-
tional content can be fully dissociated from the overall amplitude
of neural signals (Harrison and Tong, 2009; Kok et al., 2012).
Therefore, these studies may have missed stimulus-specific effects
of expectations on sensory processing. A notable exception is the
study by Alilovi¢ et al. (2019), who found that spatial expectations
affected stimulus location representations starting at ~200ms
poststimulus.

Here, we overcame these limitations by using magnetoence-
phalography (MEG) to directly relate the effects of expectation
on neural representations to the effects on the contents of per-
ception. Participants were exposed to auditory cues that, unbe-
knownst to them, predicted the likely motion direction of a
subsequent random dot kinetogram (RDK). Perception was
probed by asking participants to report which direction the dots
were moving in. A forward model decoder (Brouwer and
Heeger, 2009; Kok et al., 2017), trained on task-irrelevant RDKs
presented in independent runs, was used to reveal the motion
direction represented in the MEG signal immediately after stim-
ulus presentation. This allowed us to determine the time points
at which the sensory representation was modulated by the pre-
diction cue.

To preview, we found that prior expectations modulated the
content of sensory representations as early as 150 ms poststimu-
lus. These neural effects were mirrored by a bias in perception, in
line with proposals that expectations can bias perception by
modulating early sensory processing.

Materials and Methods

Participants. Thirty healthy human volunteers participated in the MEG
experiment. The study was approved by the UCL Research Ethics
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Figure 1. Schematic diagram of the experimental procedure. A, The main task.
Participants were presented with an auditory cue, followed by an RDK stimulus. Participants
indicated their response on a continuous scale by rotating a line segment. B, Possible coher-
ent directions in the RDK. One tone predicted 27°, and the other tone predicted 63°, each
with 60% validity. C, In localizer runs, participants were presented with task-irrelevant mov-
ing dots stimuli with 100% coherence, while performing a dot-dimming task at fixation.

Committee, and all participants gave informed consent and received
monetary compensation. Two participants were excluded because of ex-
cessive head movement, one for excessive eye blink artifacts during stim-
ulus presentation, one because >50% of trials had to be rejected because
of artifacts, and two because of below-threshold task performance
(r < 0.9 between mean perceived and presented direction). The remain-
ing 24 participants (11 female; mean * SD age, 25 * 8) had normal or
corrected-to-normal vision. This sample size was chosen on the basis of
similar previous studies that had observed significant effects (Kok et al.,
2013, 2017; Mostert et al., 2015).

Stimuli. All stimuli were generated using MATLAB (MathWorks;
RRID:SCR_001622) and the Psychophysics Toolbox (David Brainard,
Department of Psychology University of California, Santa Barbara, Santa
Barbara, CA; RRID:SCR_002881). The visual stimuli were RDKs, which
consisted of white dots (dot size, 0.1° visual angle; density, 2.5 dots/°2)
on a gray background. Each RDK display contained a given proportion
of dots moving in a coherent direction, with the remaining dots moving
in random directions. Each dot appeared at a random location, moved at
a speed of 6°/s, and lasted for 200 ms before disappearing. The dots were
displayed in an annulus (inner diameter, 3°% outer diameter, 15°), sur-
rounding a white fixation bullseye (diameter, 0.7°) for 1 s. The auditory
stimuli consisted of pure tones (450 or 1000 Hz) and lasted 200 ms.

During the behavioral session, visual stimuli were presented on an
LCD monitor (1024 x 768 resolution; 60 Hz refresh rate), and tones
were presented on external speakers. During the MEG session, visual
stimuli were projected on a screen placed 58 cm from the participants’
eyes (1024 x 768 resolution; 60 Hz refresh rate), and auditory stimuli
were presented via earphones inserted into the ear canal (E-A-RTONE
3A 10 O, Etymotic Research).

Experimental procedure. The experiment consisted of two types of
task runs. In the main task, each trial consisted of an auditory cue
(200ms) followed after 550 ms by a visual RDK stimulus for 1000 ms
(Fig. 1A). After a 500 ms interval, participants reported the direction of
the coherently moving dots by orienting a line segment in a 360° circle
(2500 ms). The initial direction of the line was randomized between
—45° and 135°. After the response interval, during the intertrial interval
(ITT; 1500 ms), the fixation bullseye was replaced by a single dot, signal-
ing the end of the trial while still requiring participants to fixate. The
RDKs had one of the following five possible directions of coherent
motion: 9°, 27°, 45°, 63°, or 81°. Participants were informed that the
coherent direction would range between 0° and 90°, but not that there
was a discrete set of possible directions. The two auditory cues predicted
either 27° or 63° respectively, with 60% probability (Fig. 1B).
Participants were not informed of this cue-direction relationship. The
four nonpredicted directions were each equally likely to occur (10%
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probability). The relationship between which tone predicted which
direction was counterbalanced across participants. Thus, for example,
for half the participants, a 1000 Hz auditory cue would indicate that 27°
would be presented with 60% probability, and that 9°, 45°, 63°, and 81°
would each be presented with 10% probability, while a 450 Hz auditory
cue would predict 63° with 60% probability, and 9°, 27°, 45°, and 81°
each with 10% probability. For the other half of the group, the cue-direc-
tion contingencies were opposite, meaning a 450 Hz cue predicted 27°
and a 1000 Hz cue predicted 63°. Note that, as a result of this, 27° and
63° motion directions were presented more often over the course of the
experiment than 9°, 45°, and 81°. Participants were not informed of the
cue—direction relationships, or of the fact that 27° and 63° occurred
more often than other directions overall. A debrief questionnaire at the
end of the experiment asked participants whether they had consciously
noted either of these aspects of the experiment (see below for details).
Each run contained 60 trials (~6 min).

During localizer runs, RDKs were presented with 100% coherence,
creating training data for the MEG decoder (Fig. 1C). Eleven motion
directions were presented in a pseudorandom order, for 1000 ms each.
These directions were —45°, —27°, —9°, 9°, 27°, 45°, 63°, 81°, 99°, 117°,
and 135°. One localizer block consisted of 88 trials (~3 min). The fixa-
tion bullseye at the center of the annulus dimmed at random time
points, and subjects were instructed to press a button when this
occurred. The ITI was jittered between 900 and 1100 ms. During these
runs, the moving dots were fully task irrelevant in order to extract
motion direction signals independent of task demands (Kok et al., 2017).
The task was also intended to encourage central fixation in order to min-
imize eye movement-related confounds (Mostert et al., 2018).

All participants took part in a behavioral session 1-4d before the
MEG session to familiarize them with the task and expose them to the
cue—-direction contingencies. Participants received written instructions
and performed two short blocks (of 20 and 40 trials, respectively) with
trial-by-trial feedback to facilitate learning. They then performed seven
main task blocks of 60 trials each (~45min) during which they no lon-
ger received trial-by-trial feedback, but were informed of their mean
error after each block for motivation, as in the MEG session. The RDKs
began with 40% coherence in the instructions and practice blocks, to
facilitate learning of the task, and gradually reduced from 40% to 20%
coherence during the main behavioral session. Finally, participants par-
ticipated in one localizer block to familiarize them with the fixation dim-
ming task. In the MEG session, participants performed five to seven
runs (~9 min each). Each run consisted of 60 trials of the main task, fol-
lowed by a 15 s pause, then one block of the localizer task. In the main
task, the RDKs had 20% coherence. After the experiment, participants
filled out a debriefing questionnaire to verify the implicit nature of the
expectations. They were asked: “Did any directions of motion occur
more often than the rest? If so, please indicate which direction(s) you
thought occurred more often than the others.” Subsequently, partici-
pants were asked, “Did you notice any relationship between the tones
you heard and the directions of motion you saw? If so, please describe
the relationship you observed in the text box below.” For both questions,
they were also provided with a unit circle in which they could illustrate
their answer by drawing arrows to represent specific motion directions.

Most participants (22 of the 24) reported noticing that some direc-
tions occurred more often than others. An inspection of their drawings
indicates that of these participants, seven correctly reported that 27° and
63° occurred most often. More importantly, a minority (7 of 24 partici-
pants) reported noticing a relationship between the tones and directions.
Of these, four participants reported the correct relationship, two
reported the opposite relationship, and one did not report any specific
relationship. We replicated our main MEG analyses with the four partic-
ipants who reported the correct relationship excluded (see Results).

MEG recording and preprocessing. Whole-head magnetic signals
were recorded continuously (600 Hz sampling rate) using a MEG system
(CTF) with 272 functioning axial gradiometers inside a magnetically
shielded room. Participants were seated upright and indicated their
responses on an MEG-compatible button box. To minimize eye blink-
related artifacts, participants were instructed to blink only when the
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RDK was not on the screen. Eye movement was recorded using an
EyeLink 1000 eye tracker (1000 Hz sampling rate). Presentation latencies
for stimuli (visual, ~17 ms; auditory, ~15ms) were measured using a
photodiode and microphone; these were used to align the MEG and eye-
tracking data to the onset of stimulus presentation. After the first MEG
run, participants were informed of their head motion and encouraged to
stay as still as possible during the recordings. Since participants displayed
substantially more head motion during the first run, this run was dis-
carded for all participants.

The data were preprocessed using FieldTrip (Oostenveld et al.,
2011). To detect irregular artifacts, the variance, collapsed over channels
and time, was calculated for each trial. Trials with large variances were
visually inspected and removed if they contained large and irregular arti-
facts. Trials with eye blinks during RDK presentation were also removed.
This resulted in the removal of 71 * 47 (mean *= SD; ~14 * 9%) trials
from the localizer runs, and 26 * 20 (~7 = 5%) trials from the main
task runs. Independent component analysis (ICA), using the logistic
infomax ICA algorithm as implemented in the EEGLAB toolbox
(https://scen.ucsd.edu/eeglab/), was used to remove regular artifacts, by
correlating the independent components (ICs) with the eye-tracking
data to identify eye blinks, and then manually inspecting before remov-
ing ICs related to eye blinks. Twenty-two of 24 participants had one IC
removed from each MEG run, 1 participant had two ICs removed from
one run and one IC from the remaining runs, and 1 participant had
three ICs removed from one run, 2 ICs from another run, and 1 IC from
the remaining runs. Data were low-pass filtered with a two-pass
Butterworth filter with a filter order of 6 and a cut off of 40 Hz. The data
were baseline corrected on the interval of —250 to 0 ms relative to audi-
tory cue onset for the main task, and —200 to Oms relative to visual
onset for the localizer task.

Decoding analysis. To probe the effect of expectations on stimulus
representations in visual cortex, we used a forward modeling approach
(Brouwer and Heeger, 2009) to decode motion directions from the MEG
signal (Myers et al., 2015; Kok et al.,, 2017). This approach has been
highly successful at decoding continuous stimulus features from neural
data (Brouwer and Heeger, 2009, 2011; Garcia et al., 2013; Kok et al,,
2013, 2017; Myers et al., 2015). Furthermore, it yields decoded features
on a continuous dimension rather than a discrete classification, making
it potentially more sensitive to subtle biases than a categorical classifier.

The decoding approach consisted of two stages. First, the model was
trained on the MEG data from the moving dots localizer to create an
encoding model: a transformation from stimulus (motion direction)
space to MEG sensor space. Then, this encoding model was inverted to
create a decoding model, which was used to transform unseen MEG
data (from the main task runs) from sensor space to motion direction
space. Thus, the decoding model was estimated on the basis of the mov-
ing dot localizer data, and then applied to the data from the main experi-
ment to generalize from sensory signals evoked by task-irrelevant
moving dots to the noisy moving dot signals evoked in the main task
(Kok et al., 2017). To test the performance of the model, we also applied
it to the localizer data using the following cross-validation approach: in
each iteration, one run of the localizer was used as the test set, and the
remaining data were used as the training set.

The forward encoding model consisted of 21 hypothetical channels,
each with an idealized direction tuning curve: a half-wave rectified sinu-
soid raised to the sixth power. The 21 channels were spaced evenly
within the 180° space ranging from —45° to 135° to cover all directions
presented in the localizer runs. For each participant, the MEG data from
the localizer were used to calculate an encoding model. First, a matrix
Cirain (21 channels X 71, trials) was generated, containing the hypothe-
sized channel amplitudes for each trial. Specifically, each row of matrix
Cirain Was calculated by expressing the presented direction as a hypothet-
ical amplitude for each channel, resulting in the row vector Cin; of
length 71, for each channel i. The sensor data were represented in a
matrix Biin (272 sensors X iy trials). The key aspect of the encoding
model was a weight matrix, specifying the transformation from stimulus
space (represented in matrix Cyiy) to sensor space (matrix Byi). The
rows of the weight matrix were calculated by least-squares estimation for
each channel, as follows:
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This was used to create the following linear encoding model:
Btrain = wctmin +N.

Here, W is a weight matrix (272 sensors x 21 channels) specifying
the transformation from stimulus representational space (channel activ-
ities) to neural representational space (sensor amplitudes). N represents
the residuals.

In the second stage of the analysis, the decoding model was created
by inverting the encoding model. This was achieved using a recently
developed method taking the noise covariance between (neighboring)
sensors into account, which increases decoding accuracy compared with
a decoding model that does not adjust for noise covariance (Mostert et
al., 2015; Kok et al., 2017). First, Biain and Ciain were demeaned, so that
their average over trials was 0 for all sensors and channels, respectively
(Kok et al., 2017). Then, noise covariance, X;, between the sensors was
estimated for each channel i using the following equations:

1
S=——giE]
Mirain — 1

& = B(rain — WiCtrain,i-

To optimize noise suppression, regularization by shrinkage, using
analytically determined optimal shrinkage parameters, was used to cal-
culate regularized covariance matrices for each channel, Zf (Blankertz et
al,, 2011, for details). These regularized covariance matrices were used to
create spatial filters. The optimal spatial filter v;for the ith channel was
estimated as follows (Mostert et al., 2015; Kok et al., 2017):

Efflw,»
Vi = e
wiZ 'w

Each filter was normalized so that the magnitude of its output
matched the magnitude of the channel activity that it would be used to
recover. The filters were combined into a decoding weight matrix V (272
sensors x 21 channels). This decoding weight matrix could then be used
to estimate the channel responses for independent MEG data, as follows:

_yvT
Clest - V Btesta

where Biegt (272 sensors X ng trials) represents the independent
test data.

These channel responses were estimated at each time point of the
test data in steps of 5ms, with the data being averaged within a window
of 28.3 ms at each step. The length of 28.3 ms was based on an a priori
window of 30 ms, subtracting one sample such that the window con-
tained an odd number of samples and could be centered symmetrically.
To verify the ability to decode motion direction from the MEG signal,
we first applied the decoding approach to the localizer data themselves
in a “leave-one-run-out” cross-validation method. In each iteration, all
localizer runs but one were used to estimate the decoding model, which
was then applied to estimate the channel responses in the remaining
run. The estimated channel responses were used to compute a weighted
average of the 21 basis functions, and the direction at which the resulting
curve reached its maximum value constituted the decoded motion
direction.

Decoding performance was quantified, per time step, by calculating
the within-participant Pearson correlation among the 11 presented
directions and the mean decoded direction per presented direction. This
yielded a correlation coefficient for each participant at every time step.
The Pearson correlation was used because we expected to find a linear rela-
tionship between variables on an interval scale. However, because of the
relatively small sample sizes underlying these correlation coefficients
(N=11 directions), it would not have been appropriate to test the
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Figure 2. Behavioral results. Reported direction as a function of presented direction.
Mean reported direction plotted against presented direction, separately for the two predictive
cues. Inset shows the difference in mean reported direction between the two cue conditions.
Given that the only difference between these two conditions was the cued direction, this
value can be interpreted as the bias induced by the predictive cue for each of the five pre-
sented directions separately. Error bars indicate the SEM.

significance of these within-participant correlations. Rather, we used these
correlations as an index of the linear relationship between the variables and
tested the significance of the correlations at the group level. Specifically, we
applied Fisher’s r-to-Z transform (Fisher, 1915) to the correlation values,
and tested whether they were significantly different from zero at the
between-participant level using cluster-based permutation tests. To con-
firm that these results were reliable, we replicated the analysis using
Spearman’s p, a nonparametric measure of rank correlation, which yielded
similar results with a very similar effect size (both analyses revealed a signif-
icant cluster from 90 to 110ms; Spearman’s p: p=0.0193, d=0.70;
Pearson’s r: p=0.018, d=0.71).

This was repeated with each iteration leaving a different localizer run
out, and the final decoding performance was quantified by averaging
results across all these iterations. Using cluster-based permutation, we
determined the earliest cluster of time points at which decoding perform-
ance was significantly above chance at the group level (90-110 ms poststi-
mulus; see Fig. 3). Within this cluster, the peak in decoding performance
at the group level was 100 ms. We determined each participant’s individ-
ual decoding peak within 10 ms of this group peak (i.e., 90-110 ms poststi-
mulus, matching the significant group cluster). For each participant, the
final decoding model was trained on this individual peak time point (plus
the two neighboring time points on either side, for robustness) in the lo-
calizer data, to optimize the detection of early sensory signals. This decod-
ing model was applied to the data from the main task in steps of 5ms,
with the data being averaged within a window of 28.3 ms at each step. As
before, the decoded motion direction was calculated as the peak of the
curve generated by taking a weighted average of the basis functions, with
the estimated channel responses constituting the weights. This procedure
yielded a 2D matrix (time X n) specifying the estimated motion direc-
tion for each trial in the main experiment, in a time-resolved manner.

Statistical analysis. To quantify overall behavioral performance, the
mean of all reported directions per presented direction was calculated
for each participant (Fig. 2A), and was used to calculate the Pearson’s
correlation coefficient between reported and presented directions, per
participant. To ensure the robustness of our results, we also repeated this
analysis using Spearman’s p, which yielded a very similar correlation
(mean * SD: Pearson’s correlation =0.98 = 0.022; Spearman’s p =0.98
+ 0.041). Participants with a coefficient <0.9 (N=2) were excluded
from further analysis.

To examine the effects of the predictive cues on reported direction,
we performed a two-way repeated-measures ANOVA with factors
“Presented Direction” and :Predicted Direction.” There were five pre-
sented directions (9°, 27°, 45°, 63°, and 81°) and two predicted directions
(27° and 63°), yielding independent variables with five and two levels,
respectively. This was to establish the extent to which the direction
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which the participants reported seeing (Reported Direction; the depend-
ent variable) was affected by what they were actually presented with
(Presented Direction), and what the cue predicted (Predicted Direction).
Significant main effects and interactions were followed up with  tests.

Our main research question was whether prior expectations modu-
lated the neural representation of the moving dot stimuli, and, if so, at
which time points. To address this question, we first averaged decoding
results over trials, per presented and predicted directions, and then per-
formed a linear subtraction of the decoded direction in conditions where
27° was cued (half of all trials) from the decoded direction in conditions
where 63° was cued (the remaining half of trials). The logic behind this
method was that, as the only difference between the conditions was the
predicted direction, the subtraction would subtract out any signals in
common between the cued conditions and isolate any difference related
to the cues. We used cluster-based permutation tests (Maris and
Oostenveld, 2007) to establish at which time points this subtraction was
significantly different from zero. Specifically, univariate ¢ statistics were
calculated for time points from —250 to 500 ms relative to moving dots
onset, in 5ms steps, and neighboring elements that passed a threshold
value corresponding to a p value of 0.05 (one tailed) were collected into
clusters. Cluster-level test statistics consisted of the sum of ¢ values
within each cluster, which were compared with a null distribution cre-
ated by drawing 10,000 random permutations of the observed data. A
cluster was considered significant when its p value was below 0.05 (i.e., a
cluster of its size occurred in <5% of the null distribution clusters).

To investigate whether the motion direction signals we decoded were
directly related to subjective perception, we quantified the perceptual
“bias” elicited by the cue. For each participant, the bias was the mean
reported direction when 27° was predicted subtracted from the mean
reported direction when 63° was predicted. This was interpreted as the
perceptual bias induced by the predictive cues because the only differ-
ence between these two conditions was the direction predicted by the
cues. We performed a post hoc split of the participants into two sub-
groups, on the basis of whether they had a mean positive perceptual bias
toward the expectation cues (N=17) or not (N =7). To establish whether
neural motion direction signals were related to behavioral changes in
perception, analyses were performed on these groups. First, to investi-
gate whether there was a neural-perceptual relationship across partici-
pants, we performed a between-participants cluster-based permutation
test to see whether neural expectation effects differed significantly
between the two groups, which were split on the basis of behavior.

Second, to investigate whether there was a neural-perceptual rela-
tionship within participants, we calculated the trial-by-trial partial
Pearson correlation between the decoded direction from the MEG data
and the perceived direction in each trial, controlling for the presented
direction. On average, this correlation was calculated over N =263 trials
(SD, %23 trials) per participant. A separate correlation coefficient was
obtained for every decoding time-step within the period from —250 to
500 ms, per participant, resulting in N=24 correlation coefficients for
each time step. Statistical tests of correlation coefficients were preceded
by applying Fisher’s r-to-Z transform (Fisher, 1915). The resulting time
courses of z values were subjected to cluster-based permutation tests
(using the same parameters as described above) at the group level. These
correlations were calculated separately for participants with a positive
perceptual bias induced by the expectation cues (N=17) and those with-
out such a bias (N=7), since the former had demonstrably used the ex-
pectation cue to inform perception, whereas the latter did not.

Results

Behavioral results

To ensure that participants were paying attention to and per-
ceiving the directions of the RDKs, only participants with
good performance (correlation between mean reported and
presented directions, >0.9; for details, see Materials and
Methods) were included in the analysis (final sample:
mean * SD, r=0.98 = 0.02). In the localizer task, partici-
pants correctly detected dimming of the fixation dot with
high accuracy (mean * SD: 95.4% * 8.9%).
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Figure 3.  Within-localizer MEG decoding performance. Correlation between presented and
decoded direction (cross-validated for each participant, then averaged across participants),
plotted for each time point. The shaded region indicates the SEM; horizontal lines represent
significant clusters (p << 0.05).

Participants’ perceptual reports of the direction of the moving
dots was significantly biased toward the directions predicted by
the auditory cues (F(;,05) = 8.5, p=0.0078, 1,,> = 0.27; Fig. 2).
That is, on average, motion direction was perceived as being
slightly more vertical when the cue predicted 63° (mean = SEM:
47.3° £ 0.9°) than when the cue predicted 27° (46.3° = 1.0°).
This indicates that, for identical visual stimuli, perception was
partially determined by the predictive auditory cues. The cue-
induced bias depended on the direction of the presented moving
dots (F4,02) = 3.6, p=0.0084, 77p2 = 0.14), being weakest for close
to horizontal (9°) and vertical (81°) directions, and stronger for
directions closer to oblique (27° to 63° Fig. 2).

Expectations modulate sensory representations as early as
150 ms poststimulus

The first time point at which motion direction could be decoded
from the MEG signal evoked by task-irrelevant moving dot stim-
uli, in the localizer runs, was from 90 to 110 ms poststimulus,
peaking at 100 ms (p=0.018, d=0.71; Fig. 3). To probe modula-
tions of early sensory signals by the predictive cues, motion
direction-decoding models were trained on participants’ individ-
ual peaks in this interval in the localizer runs and were used to
decode the motion direction from the MEG data in the main
task (for details, see Materials and Methods). After obtaining a
decoded direction for all trials, the decoded direction in trials
where 27° was predicted was subtracted from the decoded direc-
tion in trials where 63° was predicted. Therefore, any decoded
motion direction signal resulting from this subtraction can only
be explained by the difference in predicted directions. This anal-
ysis revealed that across the whole group, the predictive auditory
cues evoked a significant motion direction signal from 135 to
180 ms poststimulus, peaking at 150 ms (peak difference =20.4°%
p=0.027,d=0.72; Fig. 4A).

Neural expectation signal related to perceptual bias

To relate this neural effect of the predictive cues to perception,
we performed an exploratory analysis in which we split the par-
ticipants into two subgroups on the basis of the direction of their
perceptual bias and calculated effects separately for participants
who showed a positive perceptual bias (bias=2.0° £ 1.1°% per-
formance r=0.98 * 0.02; mean * SD; N=17) and participants
without a positive bias (mean bias = —1.2° = 0.7° performance
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Figure 4. Expectation effects on decoded direction signals. A, Top, The mean decoded

direction separately for the trials in which 27° was predicted, and the trials in which 63° was
predicted, in blue and red, respectively. Bottom, The cue effects on decoding, obtained as
the linear subtraction of the decoded direction between these two cue conditions (i.e., 63°
predicted; 27° predicted). B, Cue effects on decoding restricted to participants who showed a
perceptual bias toward the predicted directions. €, Cue effects on decoding restricted to par-
ticipants who did not show a perceptual bias toward the predicted directions. Shaded regions
represent the SEM; horizontal lines represent significant clusters (p << 0.05).

r=0.97 £ 0.03; N=7). The difference in absolute perceptual bias
between these groups was not significant (t,,) = 1.74; p =0.095);
nor was the difference in performance (¢, = 0.82; p=0.41). In
participants with an expectation-induced bias in perception,
the predictive cues evoked a significant motion direction sig-
nal from 135 to 175 ms poststimulus (peak =26.3°% p =0.044,
d=0.89), as well as from 270 to 340ms (peak=22.0%
p=0.0054, d=0.98; Fig. 4B). In the participants whose per-
ception was not biased toward the predicted directions, there
were no significant clusters in the MEG decoding signal (Fig.
4C). In fact, participants with a perceptual bias toward the
predicted directions displayed a significantly stronger expec-
tation signal from 245 to 355 ms than participants without
such a perceptual bias (p =0.0005, d =1.93). Thus, individual
variability in the neural signal evoked by the prediction cues
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Figure 5.  Single-trial correlation between reported and decoded directions. For each par-

ticipant, the partial Pearson correlation across trials between decoded and reported direc-
tions, controlling for the presented direction, was calculated at each time step. 4, B, The
graph represents the mean of these within-participant correlation values for participants
with a perceptual bias toward the cues (4) and for participants without a perceptual bias to-
ward the cues (B). Shaded regions represent SEM. Cluster-based permutation tests estah-
lished whether these correlation values were significant at the group level. Horizontal lines
represent significant clusters resulting from these tests (p << 0.05).

was related to individual variability in the perceptual bias
induced by these cues.

Correlation between perceptual and neural representations
emerges before stimulus onset

To further elucidate the relationship between neural sensory
representations and perception, we correlated the decoded
direction from the MEG data with the perceived direction on
individual trials, controlling for the presented direction (i.e.,
through partial correlation; see Materials and Methods).
This analysis aimed to investigate whether fluctuations in
neural representations were related to fluctuations in subjec-
tive perception. For the participants whose perception was
biased toward the predictive cues (N=17), decoded motion
directions correlated significantly with perceived directions
from —220 to 140 ms prestimulus (p=0.0056, d=1.07) and
from 165 to 205ms poststimulus (p=0.023, d=1.00; Fig.
5A). Thus, for these participants, the decoded neural signal
was related to fluctuations in perception across trials. For the
participants who did not display a perceptual bias toward the
predictive cues (N=7), there were no significant clusters
(Fig. 5B). The correlation between decoded and perceived
motion directions was significantly stronger for participants
with a perceptual bias toward the predictive cues than for
those without such a bias, from —10 to 35ms (p=0.041,
d=1.33) and from 160 to 315ms (p =0.0009, d=1.94) post-
stimulus. In other words, the relationship between neural
and perceptual fluctuations was stronger in participants for
whom the predictive cues induced an attractive perceptual
bias. In fact, these trial-by-trial correlations between decoded
and perceived motion directions were not significant at the
overall group level (i.e., without performing the participant
split), suggesting that these effects were driven by the partici-
pants with a positive perceptual bias toward the directions
predicted by the cues.

Implicit nature of the expectations

Participants were not informed of the meaning of the auditory
cues, and all participants filled out a debriefing questionnaire to
assess whether they were aware of the predictive relationships.
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Seven of 24 participants indicated that they had noticed some
relationship between the auditory tones and the direction of
dots. Of these, only four correctly reported the true relationship,
two reported the opposite relationship, and one was not able to
report a specific relationship. The early neural effects of the pre-
dictive cues were still present when the four participants who
reported being aware of the correct cue contingencies were
excluded from the analysis (significant cluster from 125 to
190 ms poststimulus; p =0.005, d=10.92), indicating that the ex-
pectation effects did not depend on the subjects being aware of
the predictive relationships.

Eye movement control analysis

Eye movements are known to be able to confound MEG decod-
ing analyses (Mostert et al., 2018). To minimize the effects of eye
movements, we estimated our decoding model based on inde-
pendent localizer runs during which participants were perform-
ing a central fixation task for which the directions of the moving
dots were task irrelevant (Kok et al., 2017; Mostert et al., 2018).

Still, to investigate whether systematic eye movements during
the localizer task could have affected our decoding results, we
trained and tested the decoder on the vertical and horizontal
gaze coordinates, as recorded by the eye tracker, rather than sen-
sor amplitudes. Importantly, moving dot direction could not be
decoded from the eye tracker signals in the first 150 ms poststi-
mulus (r<<0.1 for all time points, no significant clusters at
p <0.05, also no single significant time point between 0 and
150 ms; p < 0.05 uncorrected). This is the critical time window
for our analyses, since the decoder was trained on MEG data
from the localizer runs ~90-110ms poststimulus. As an addi-
tional stringent control, we performed the main analysis of inter-
est on the eye-tracking data; that is, training the decoding
models on the eye tracker signals in the localizer data on individ-
ual peaks between 90 and 110 ms, and applying them to the eye
tracker data from the main task to reveal any effects of the pre-
dictive cues. As expected, since participants did not make sys-
tematic eye movements during this time window in the localizer,
this analysis yielded no significant cue effects (no clusters at
p < 0.05; also no single significant time point between —250 and
500 ms; p < 0.05 uncorrected).

It is noteworthy that moving dot direction could be decoded
from gaze position in the localizer at later time points, namely
from 170 to 360 ms poststimulus (peak mean Pearson’s r = 0.460,
p <0.001, d=1.04). This indicates that participants moved their
eyes systematically depending on the direction of the moving
dots during this later time window in the localizer runs. Note,
however, as discussed above, that there were no significant points
in the earlier time window in which we trained the decoder for
the MEG data (90-110 ms), meaning that these later eye move-
ments did not affect our analyses.

As a final control analysis, we trained the decoding models on
the eye tracker data from the localizer runs on individual peaks
between 170 and 200 ms poststimulus (when localizer eye tracker
decoding first became significant at the group level), and applied
them to the eye tracker data from the main task. This analysis
yielded no significant effects of the predictive cues on eye tracker
signals (no clusters at p < 0.05; also no single significant time
point between —250 and 500 ms; p < 0.05 uncorrected).

In sum, while the moving dot stimuli were shown to affect
gaze position at a later time window during the localizer runs, we
found no evidence that systematic eye movements could explain
the effects of interest here.
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Discussion

There has recently been much debate as to whether expectations
can alter early sensory processing (Summerfield and de Lange,
2014; De Lange et al.,, 2018) or instead only modulate later deci-
sion-making processes (Rao et al., 2012; Rungratsameetaweemana
et al,, 2018). Here, we find that implicit prior expectations can
modulate sensory representations at an early stage, in line with
suggestions that expectations play a fundamental role in sensory
processing (Friston, 2005; Summerfield and de Lange, 2014). The
latency of the effect (~150 ms) suggests that this modulation may
not affect the initial feedforward sweep of sensory processing, but
rather occur once some recurrent processing has taken place in
the visual system. However, importantly, the modulation is low
level and sensory in nature, challenging proposals that expecta-
tions only modulate decision-making stages (Rao et al, 2012;
Rungratsameetaweemana et al., 2018).

Perceptual reports of the direction of the moving dots were
biased toward the direction predicted by the auditory cues. This
is in line with previous studies (Chalk et al., 2010; Kok et al.,
2013) as well as with theoretical work that casts perception as
Bayesian inference, wherein the final percept is an integration of
the prior expectations and perceptual input (Knill and Richards,
1996; Kersten et al., 2004). It is notable that expectations affected
perception, although participants were not consciously aware of
them (Chalk et al., 2010; Kok et al., 2013).

The effect of the predictive cues depended on the presented
direction: expectations affected perception more strongly when
the presented direction was oblique than when it was vertical or
horizontal (Fig. 2). This may be because vertical and horizontal
directions occur more frequently in natural environments, giving
rise to “hyperpriors”™: lifelong-learned expectations that these
directions are likely to occur (Berkes et al., 2011; Girshick et al.,
2011). Therefore, at directions closer to the cardinal directions,
the experimentally induced priors may have interacted with
hyperpriors, whereas at directions nearer 45° only the cue-related
priors had an effect (Hu and Rahnev, 2019).

The primary motivation of this study was to establish whether
expectations modulated the information content of early sensory
signals. Predictive cues modulated the motion direction repre-
sented in the MEG signal as early as ~150 ms poststimulus, as
revealed by a decoder trained on early (~100 ms) MEG signals
evoked by task-irrelevant moving dots in separate runs.

The relatively early time point at which modulation occurs
and the sensory nature of the signal are striking. The expectation
signals were revealed by a decoder trained on task-irrelevant
stimuli, isolating sensory processes common between the local-
izer and main task (Kok et al., 2014, 2017). This, together with
the fact that the decoders were trained on early poststimulus
time points, suggests that these expectation signals reflect sensory
processing, rather than being related to later decisional, atten-
tional, or motor processes (Mostert et al., 2015).

It should be noted that the latency at which expectation sig-
nals occurred (starting at 135 ms, peaking at 150 ms) is later than
the first feedforward sweep of sensory information, which occurs
within 50-80 ms (Clark et al., 1994; Alilovi¢ et al., 2019). The ini-
tial feedforward sweep of sensory information may therefore
be model free, with expectations being integrated into the repre-
sentation soon after (Marzecova et al., 2018; Alilovic et al., 2019).
Interestingly, many studies have found prestimulus effects of
expectations (Kok et al., 2017; Samaha et al., 2018; Alilovi¢ et al.,
2019) and attention (Myers et al., 2015), which do not seem to
translate into subsequent modulations of the first feedforward
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sweep. The reason for this is not yet clear, but it has been sug-
gested to be because of the fact that feedforward and feedback
signals involve different neuronal populations (Bastos et al,
2012; Kok et al., 2016; Alilovi¢ et al., 2019).

Alternatively, the lack of an earlier modulation by expecta-
tions may have resulted from the type of stimulus used. Using
motion rather than static stimuli means the accumulation of evi-
dence takes inherently longer—indeed, within the localizer task,
direction could not be decoded until 90 ms after stimulus onset,
whereas studies using static stimuli have shown significant
decoding in the localizer just 40-60 ms poststimulus (Cichy et
al., 2014; Mostert et al., 2015; Kok et al., 2017). Furthermore, the
decoding procedure used here aimed to distinguish several direc-
tions of motion within an ~70° range (9° to 81°), rather than, for
instance, decoding orthogonal orientations (Kok et al., 2017),
which may have led to decreased signal-to-noise ratio, preclud-
ing successful decoding at earlier latencies.

In revealing expectation modulations of the information con-
tent of sensory signals at ~150 ms poststimulus, our results
accord with previous studies that report modulations of the am-
plitude of sensory signals by expectation at ~100-150 ms (Bar et
al., 2006; Meyer and Olson, 2011; Todorovic et al, 2011;
Wacongne et al.,, 2011; Todorovic and de Lange, 2012; Stojanoski
and Niemeier, 2015; Aru et al., 2016; Samaha et al., 2018) or even
earlier (Keil et al., 2017). However, they conflict with experi-
ments reporting no effects of expectation on early sensory proc-
essing (Rao et al,, 2012; Rungratsameetaweemana et al., 2018).
An important difference between studies may be the extent to
which subjects form a perceptual expectation. For instance, in a
recent study in macaques (Rao et al., 2012), the expectation cue
predicted both which stimulus would appear, as well as the correct
response. Since accurate task performance was strongly incentiv-
ized, the cue may have induced a response bias, rather than a per-
ceptual bias. In the present study, to avoid strategic guessing or
response bias, participants were not informed of the predictive rela-
tionship between the cues and the motion direction. In a recent
study in humans using EEG that failed to find the effects of expecta-
tion on sensory processing (Rungratsameetaweemana et al., 2018),
the authors likely also predominantly manipulated task expecta-
tions, rather than perceptual expectations. That is, expectations per-
tained not so much to the statistics of the upcoming sensory inputs
per se, but more so to which features of the inputs were likely to
constitute a target. Therefore, this study more strongly manipulated
task set expectations than perceptual expectations.

A noteworthy aspect of our central finding is that the neural
motion direction signal induced by the predictive cues peaked at
~20°, rising to 26° when considering only participants with a posi-
tive perceptual bias. This difference is an order of magnitude
greater than the mean perceptual bias, being instead closer to the
angle difference between the directions predicted by the two cues
(63° vs 27°). This suggests that this early neural effect may reflect a
reactivation of the predicted direction, rather than the integration
of the predicted and presented directions. This is in line with the
fact that this neural expectation effect peaks at ~150 ms and then
reduces, perhaps reflecting the integration of an expectation tem-
plate (Kok et al., 2014, 2017) with incoming sensory evidence.

Intriguingly, a post hoc split of the participants based on their
perceptual bias indicated that, for the participants who showed a
perceptual bias toward the predictive cues (N=17), the neural
expectation effect reappeared at ~300 ms (Fig. 4B). One possibil-
ity is that this reflects periodic activation of top-down expecta-
tions during recurrent feedforward and feedback message
passing. Theoretical work that characterizes perception as
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predictive processing postulates cycles of processing alternating
between feedforward and feedback information, with the current
hypothesis being tested and then iteratively revised until the hy-
pothesis matches the incoming sensory information (Knill and
Pouget, 2004; Friston, 2005; Bastos et al., 2012). Such recurrent
message passing has recently been shown to occur at a frequency
of ~11 Hz during perception (Dijkstra et al., 2019).

Decoding analyses can reveal whether certain information is
present in the neural signal, but not whether this information is
part of the perceptual process or is merely epiphenomenal. One
way to address this inferential gap is to verify whether the decoded
signal is related to behavioral variation (de-Wit et al., 2016). We
found such a relationship both across and within participants.
Across participants, neural expectation signals were stronger in
participants with an expectation-induced perceptual bias. For par-
ticipants with such a perceptual bias, decoded and perceived direc-
tions were correlated across trials even before stimulus onset. This
finding is in line with previous work suggesting the prestimulus
state of the sensory cortex biases perception (Hesselmann et al,
2008; Pajani et al, 2015; Sherman et al, 2016; Han and
VanRullen, 2017; Kok et al.,, 2017; Gandolfo and Downing, 2019).
In short, the neural signal explained behavioral variation over and
above that explained by the physical stimulus (Kok et al., 2013; St
John-Saaltink et al., 2016). Given that both of these neural-behav-
ioral relationships were demonstrated in exploratory analyses in
which participants were split post hoc, future studies will need to
replicate these findings to ensure their robustness.

In summary, our results demonstrate that expectations mod-
ulate the information content of sensory signals early on in the
perceptual process. These findings concord with predictive proc-
essing theories of perception that posit that expectations are a
fundamental constituent of early sensory processing (Lee and
Mumford, 2003; Friston, 2005; Summerfield and de Lange, 2014;
Keller and Mrsic-Flogel, 2018).
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