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Abstract

It is difficult for learning models to achieve high classification performances with imbalanced

data sets, because with imbalanced data sets, when one of the classes is much larger than

the others, most machine learning and data mining classifiers are overly influenced by the

larger classes and ignore the smaller ones. As a result, the classification algorithms often

have poor learning performances due to slow convergence in the smaller classes. To bal-

ance such data sets, this paper presents a strategy that involves reducing the sizes of the

majority data and generating synthetic samples for the minority data. In the reducing opera-

tion, we use the box-and-whisker plot approach to exclude outliers and the Mega-Trend-Dif-

fusion method to find representative data from the majority data. To generate the synthetic

samples, we propose a counterintuitive hypothesis to find the distributed shape of the minor-

ity data, and then produce samples according to this distribution. Four real datasets were

used to examine the performance of the proposed approach. We used paired t-tests to com-

pare the Accuracy, G-mean, and F-measure scores of the proposed data pre-processing

(PPDP) method merging in the D3C method (PPDP+D3C) with those of the one-sided selec-

tion (OSS), the well-known SMOTEBoost (SB) study, and the normal distribution-based over-

sampling (NDO) approach, and the proposed data pre-processing (PPDP) method. The

results indicate that the classification performance of the proposed approach is better than

that of above-mentioned methods.

1. Introduction

Imbalanced data set problems are the issue in the real world and present challenges to both

academics and practitioners. It should be noted that the imbalanced dataset is quite common

in medical fields due to the imbalance of their class labels. In addition, the high risk/target

patients tend to appear in the minority class of the medical dataset. The risk/cost of miss-
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classification in the minority class is much higher than that in the majority class in medical

fields. Most existing classification methods do not have the required qualities in the perfor-

mance of classification especially when the dataset is extremely imbalanced. For example,

Murphey et al. [1], Cohen et al. [2], Sun et al. [3], Sun et al. [4], Li et al. [5, 6], Song et al. [7],

Wang et al. [8], and Zou et al. [9] have shown that when limited training data are available, the

small size of the minority data will significantly affect the accuracy of medical diagnoses. With

imbalanced datasets, when some classes are much larger than the others, most machine learn-

ing and data mining classifiers are overly influenced by the larger classes and ignore the

smaller ones. As a result, the classification algorithms often exhibit poor learning perfor-

mances due to slow convergence in the minority classes [3, 4, 10, 11].

A number of solutions for dealing with class imbalance problems have been proposed to

handle classification problems in various fields. These approaches can be divided into two

types. One creates new algorithms or modifies existing algorithms; example of this type can

be found in Hong et al. [11], Peng and King [12], Nguwi and Cho [13], and Lo et al. [14]. For

certain types of data sets, this approach can be highly effective for specific classifiers, but the

performance of those classifiers is still less than optimal with data sets that have varied charac-

teristics because it is usually difficult to transform the modification procedures from one algo-

rithm to another. The other type of approach in the literature utilizes sampling techniques;

these include undersampling and oversampling to adjust the sizes of data to balance the data

sets [2–5, 15–18]. The undersampling method reduces the size of data by eliminating samples

from the majority class, thus decreasing its degree of influence. However, eliminating data

raises the risk of partially removing the complete characteristics that may be represented in the

majority class samples. Researchers have discussed various undersampling methods such as

the random and directed approaches. These approaches include Kubat and Matwin [19] pre-

sented a method called one-sided selection (OSS) that randomly eliminates examples from

majority class data sets until the amount of data for the majority class is equal to that of the

minority class. Yen and Lee [20] proposed a cluster-based undersampling approach to select

representative examples from the majority data to avoid the loss of crucial information.

As for undersampling approach, this study differs from other approaches that randomly

draw data from the majority data, raising the probability of imprecisely characterizing the

majority data due to the increased influence of noise or outliers in the samples set [21, 22].

Therefore, we propose a systematic procedure using the box-and-whisker plot approach to

exclude outliers and the Mega-Trend-Diffusion (MTD) method proposed by Li et al. [23] to

construct the distribution of the majority data. The MTD which is a data expansion method

used in this study is to reasonably evaluate the domain range of the observed data. Within the

estimated domain range, it includes both the reasonable/fitting data and the outliers. MTD is

used to construct the membership function of the observed data and to calculate the member-

ship degree of them. The smaller value the membership degree of the data, the more likely an

outlier. This study uses theα-cut based on the MTD method to keep the suitable data and to

eliminate the outliers. Further, under the estimated distribution of data, this paper takes repre-

sentative samples from the majority data by settingα-cut values, providing a suitable value

forα-cut to determine an appropriate amount of the majority data.

With regard to oversampling, direct resampling is a widely used strategy to balance a class

distribution by duplicating minority class examples. Many researchers have adopted oversam-

pling techniques such as those described in Piras and Giacinto [24], Xie and Qiu [21], Tahir

[22], and Fernández-Navarro et al. [25]. However, these approaches may suffer from the over-

fitting problem. In Chawla et al. [26], rather than duplicate examples from a data set, the

authors proposed the synthetic minority oversampling technique (SMOTE) to generate syn-

thetic samples in a feature space. Many subsequent studies such as AdaBoost [27] and

Synthetic samples generation to improve imbalanced data set diagnosis
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SMOTEBoost (SB) [28] have adopted this method, and all have confirmed the effectiveness of

this approach with regard to enhancing the classification accuracy of minority class data.

Unfortunately, these oversampling methods focus on resampling from rare minority class

data. Therefore, when the ratio of the minority data to the overall samples is decreasing, the

resampling will be too conservative to behave realistically with imbalanced data sets.

Other oversampling methods consider the underlying minority class data distributions. For

instance, working in a feature space, Zhang and Wang [29] proposed a normal distribution-

based oversampling (NDO) approach to generate normal-synthetic samples with characteris-

tics that are close to those of the raw minority class data with regard to the expected mean and

variance. However, with the imbalanced data sets, when there are very few data in the minority

class, it is difficult to know whether the data follow a normal distribution.

Therefore, in this paper, based on a two-parameter Weibull distribution, we propose a new

oversampling method for generating representative synthetic samples to extend the minority

class data. One reason for this is that the distribution used can appropriately characterize the

shape of a data set through various shape parameters of the density function [30–32]. Conse-

quently, the method presented in this work is more flexible with regard to the shape of small

data sets. Moreover, in our approach, a uniquely counterintuitive hypothesis-testing procedure

is constructed to evaluate the shape parameter of the Weibull distribution by choosing the

maximal p-value of a small data size.

This paper uses four real data sets, Wisconsin Diagnostic Breast Cancer (WDBC) and

Parkinson’s Disease (PD), Vertebral Column (VC) with two categories: normal and abnor-

mal, and Haberman’s Survival (HS), to illustrate the performance of the proposed method.

Although accuracy is an appropriate criterion for measuring classification performance, it

is not adequate for imbalanced data sets due to the impact of the minority class. As a result,

the three criteria including Accuracy (ACC), Geometric Mean (G-mean), and F-measure

(F1) are recommended to measure the performance of learning with imbalanced data sets

[33]. For the learning tool, we tested the support vector machine (SVM) with a linear kernel

function (SVM-linear), Naïve Bayes (NB), k-nearest neighbor (KNN), and another type of

SVM with a polynomial kernel function (SVM-poly). The experiments show that the SVM

with the polynomial kernel function has the best classification performance for raw imbal-

anced data sets; thus, it is chosen as the learning tool in the subsequent performance com-

parison among the OSS method, the SB method, the NDO method, the proposed data pre-

processing (PPDP) method, the D3C method, and PPDP+D3C method. The D3C is a new

hybrid model which combines the ensemble pruning based on k-means clustering and

dynamic selection and circulating combination. The D3C model was proposed by Lin et al.

[34] to improve the learning of imbalance dataset. It is noted that our proposed method

mainly focuses on data pre-processing and the D3C is an ensemble method. Hence, the

study proposes the concept of combination of PPDP with LibD3C (PPDP+D3C), that is,

the imbalanced datasets are pre-processed by PPDP+D3C, and then are trained by D3C

method. The four classifiers set in D3C includes NB, KNN(K = 3), SVM-linear, and SVM-

poly. The results show that the combination of PPDP with LibD3C (PPDP+D3C) method

has the best classification performance for imbalanced data sets.

The remainder of this paper is organized as follows: Section 2 reviews the literature on the

related criteria for evaluating classification performance, the box-and-whisker plot method,

and the MTD method. Section 3 introduces the detailed procedure of the proposed method.

In Section 4, we present the four real data sets and the detailed experiment methodology, and

then compare the results derived from the OSS, SB, NDO, PPDP, D3C, and PPDP+D3C meth-

ods. Finally, we present conclusions in Section 5.

Synthetic samples generation to improve imbalanced data set diagnosis
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2. Related techniques

In this section, we review the literature on the evaluation criteria for classification perfor-

mance, the box-and-whisker plot method, and the MTD method.

2.1 Evaluation criteria

By convention, the minority class data is the positive class label, and the majority class data is

the negative class label. For imbalanced class distributions, the accuracy rate for the minority

class is frequently close to zero, which means that evaluations of learning results are not appro-

priate for use with minority class data. Consequently, the accuracy rate measure is not used to

consider the classification performance in this work; instead, other criteria are described in

this section. Table 1 shows a confusion matrix, which is used in this work to construct the rele-

vant criteria for a two-class classification problem.

The items in the confusion matrix are as follows: TP is the number of true positive exam-

ples; FN is the number of false negative examples; FP is the number of false positive examples;

and TN is the number of true negative examples. The three criteria used in this study are

defined as follows:

• Accuracy (ACC): ACC ¼ TPþTN
TPþTNþFPþFN;

• Geometric mean (G-mean): G � mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPR� TNR
p

, where TPR ¼ TP
TPþFN and

TNR ¼ TN
TNþFP;

• F-measure (F1): F1 ¼ 2� R�P
RþP, where P ¼ TP

TPþFP and R ¼ TP
TPþFN

2.2 Review of the box-and-whisker plot

The box-and-whisker technique was first proposed by Tukey [35] to show the distribution of

data, examine its symmetry, and indicate outliers. Box-and-whisker plots are used to exclude

outliers, where the box’s lower boundary is the lower quartile (Q1) of the data and the upper

boundary is the upper quartile (Q3). The length of the box is the interquartile range (IQR),

which is calculated by

IQR ¼ Q3 � Q1; ð1Þ

where Q3 and Q1 are the 75th and 25th percentiles of the samples, respectively. In addition,

Q2 is the median of the data set. There are two inner fences in a box plot: the lower inner fence

(LIF) and upper inner fence (UIF). When data are outside the [LIF,UIF], they are considered

suspected outliers. The calculations for this region are as follows:

LIF ¼ Q1 � 1:5� IQR; ð2Þ

UIF ¼ Q3þ 1:5� IQR: ð3Þ

Table 1. Confusion matrix.

Predicted class

Positive Negative

Actual class Positive TP FN

Negative FP TN

https://doi.org/10.1371/journal.pone.0181853.t001
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2.3 The MTD method

Li et al. [23] proposed the MTD method to construct the distribution of manufacturing data.

The MTD method which combines mega diffusion and data trend estimation is used to gener-

ate virtual samples to provide a strategy for the knowledge of small data set learning and obtain

a higher degree of classification accuracy.

As shown in Fig 1, a triangular membership function μA(x) is constructed from the MTD

method to calculate the domain range of observed/collected data x, which is the interval [a,b],
described mathematically as:

a ¼ uset � SL �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 2� s2x=NL � lnð10� 20Þ

q

; 1 < NL <1; and ð4Þ

b ¼ uset þ SU �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 2� s2x=NU � lnð10� 20Þ

q

; 1 < NU <1; ð5Þ

where S2
x ¼

XN

i¼1

ðxi � �xÞ2
.
ðN � 1Þ is the variance of observed data xi, i = 1,2,. . .,N, N is the

sample size. SL = NL/(NL + NU) is the left of the skewness degree of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 2� s2x=NL � lnð10� 20Þ

q

and SU =NU/(NL +NU) is the right of the skewness degree of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 2� s2x=NU � lnð10� 20Þ

q

.NL
andNU indicate the number of data less than and greater than uset that are equal to (min + max)/

2, respectively, and “min” and “max” are the actual minimum and maximum values in the

observed/collected data set. From Eqs (4) and (5), we can calculate the lower bound a and the

upper bound b. That is, the values of a and b are the estimated domain range of observed/col-

lected data set. Note that a = min/5 whenNL = 0 and b = max × 5 whenNU = 0. In addition, the

related parameter settings are: μA(uset) = 1, μA(a) = μA(b) = 0, μA(min) = 1/NU and μA(max) = 1/

NL.

3. The model structure

This section describes the proposed procedure to deal with imbalanced data set classification

problems. It describes the undersampling process and explains the oversampling technique to

find the shape of the data distribution with limited samples to generate synthetic samples for

learning the skewed class distribution.

Fig 1. Data trend estimation.

https://doi.org/10.1371/journal.pone.0181853.g001
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3.1 The proposed procedure

Fig 2 shows the detailed procedure of the proposed method, which contains three main steps.

In Step 1, the imbalanced data set is separated into two sets by class, where the majority

class hasM data and the minority class hasm data. In Step 2, based on the undersampling

strategy, we utilize the box-and-whisker plot to determine whether data are outliers in each

feature. Then, we delete the outliers in the majority class. The MTD method is then applied to

draw representative observations from the majority class. Regarding the oversampling strategy,

because the number of samples in the minority class is small and may follow an arbitrary prob-

ability distribution, we consider the two-parameter Weibull distribution recommended by

Little [36] to fit the data in the minority class and form various shapes of density functions,

including skewed and mound-shaped curves, thus achieving greater flexibility. Therefore, by

assuming that the minority class data are distributed into a two-parameter Weibull density

function, we propose a method to evaluate the two parameters of the Weibull distribution and

generate synthetic samples from that estimated distribution. In Step 3, given that these valuable

parameters have been found and the data size in the majority class has been reduced fromM
toM’, the size of synthetic data becomesM’−m, and we can then form the learning model by

inputting the new balanced data set.

3.2 The undersampling method

The following method is proposed to rebuild the model of the data in the majority class. First,

we employ the box-and-whisker plot to detect outliers and eliminate them from the majority

data. Second, we use the remaining data to compute the range of the data, that is, the interval

[a,b], as explained in Section 2.3. As shown in Fig 1, the triangular membership function μA(x)
is formed based on the interval [a,b], as follows:

mAðxÞ ¼

x � a
uset � a

; a � x � uset

b � x
b � uset

; uset � x � b

0; otherwise

; ð6Þ

8
>>>>><

>>>>>:

where X is assumed to be a universal set, and x is an element in X. The A set is a fuzzy set of X,

and the value of μA(x) is the membership function with regard to each x in [0,1].

Here, we apply theα-cut to draw the valuable data from the corresponding μA(x) in X,

where theα-cut of A is a crisp set that contains the total number of x in X that have values of

μA(x) greater than or equal toα-cut, denoted as follows:

Aa ¼ fx 2 XjmAðxÞ � a� cutg; a� cut 2 ½0; 1�;

where Aα can be derived from Eq (6) as

Aa ¼ ½ðuset � aÞ � a� cutþ a; b � ðb � usetÞ � a� cut�: ð7Þ

We then use the data set in which all the data belong to Aα as a learning model for the majority

class. In the majority class, when setting the value ofα-cut, we can implement this undersam-

pling process to find the representative majority data.

3.3 The oversampling method

In this section, we first describe some basic properties of a two-parameter Weibull distribu-

tion, and then present the proposed method for oversampling in detail.

Synthetic samples generation to improve imbalanced data set diagnosis
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3.3.1 Preparation for a two-parameter Weibull distribution. Given a data set x = {xi},
i = 1,2,� � �,N that can be denoted by a two-parameter Weibull distribution, the probability den-

sity function and cumulative distribution function of the Weibull distribution are respectively

expressed as follows:

f ðx; l;bÞ ¼
b

l

x
l

� �b� 1

exp �
x
l

� �b
� �

; x � 0 ; l > 0; b > 0; and ð8Þ

Fðx; l;bÞ ¼ 1 � exp �
x
l

� �b
� �

; x � 0; l > 0; b > 0; ð9Þ

where λ is the scale parameter and β is the shape parameter.

Fig 2. The proposed procedure for learning imbalanced data sets.

https://doi.org/10.1371/journal.pone.0181853.g002
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With regard to the shape parameter, Nelson et al. [37] demonstrated that the Weibull distri-

bution has some special expressions. For example, when the value of β is one or two, the Wei-

bull distributions are identical to the Exponential and Rayleigh distributions, respectively, and

the shape of the Weibull density function is close to a normal distribution when the value of β
is within [3,4]. The least square estimation (LSE) is widely utilized by researchers to estimate

the β and λ of Eq (8). The sum of squares error (SSE) can be derived from Eq (9) as

SSE ¼
XN

i¼1

½ln½� lnð1 � F̂ iðxÞÞ� � blnxðiÞ þ blnl�
2

ð10Þ

where x(i) is the observed data, i = 1,� � �,N, N is the sample size, and the Bernard’s median rank

estimator is F̂ iðxÞ ¼ ði � 0:3Þ=ðN þ 0:4Þ. This study executes the shape-first method to fit the

optimal value of β. Then the different values of b̂ are used to estimate λ based on the mini-

mized SSE, as Eq (10).

3.3.2 The estimation of the two parameters. The proposed method utilizes the Gini sta-

tistic [38] in counterintuitive hypothesis testing to find the best-fitting shape parameter β of

the Weibull distribution. With a given level of significance α and a data size of N, the proposed

testing procedure is constructed as follows:

Step 1. The null hypothesis is set to

H0 : b ¼ b0:

Step 2. The alternative hypothesis is set to

H1 : b 6¼ b0:

Step 3. The testing statistic uses the Gini statistic as shown below:

GN ¼
XN� 1

i¼1

i�Wiþ1

.
ðN � 1Þ

XN

i¼1

Wi ð11Þ

whereWi ¼ ðN � iþ 1Þ � ðxb

ðiÞ � x
b

ði� 1ÞÞ ; i ¼ 1; 2; � � � ;N, and x(0)� 0.

Step 4. I. The rejection region for a sample size of N between 3 and 20 is set to

fGN > x1� a=2g and fGN < xa=2g;

where the critical value ξα/2 is the 100(α/2) percentile of the GN statistic. Moreover, the

p-value = P{|GN|> |gN||β = β0}, where gN indicates the estimated value of GN, as fol-

lows:

PðGN � xÞ ¼ x
N� 1

YN� 1

i¼1

ci

( )� 1

�
XN� 1

j¼mþ1

ðx � cjÞ
N� 1
� cj

YN� 1

k6¼j

ðck � cjÞ

( )� 1

ð12Þ

where cj = (N−j)/(N−1), andm is the largest index, such that x� cm. Note that the cor-

responding two-tailed percentiles ξα/2 of the Gini statistic GN are described in Gail and

Gastwirth [38].
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II. The rejection region for a sample size of N that is greater than 20 is set to

fGN > Z1� a=2g and fGN < Za=2g;

where gN is the observed value of [12(N−1)]1/2 (GN−0.5) which follows an approxi-

mately standard normal distribution (normal(0,1)) expressed as shown below:

PfjZj >
�
�
�½12ðN � 1Þ�

1=2
ðgN � 0:5Þ

�
�
�

�
�
�b ¼ b0g ð13Þ

Step 5. The decision rule of the statistical test is designed as follows:

When β = β0, the p-value has a maximal value, which means that there is strong evi-

dence that the null hypothesis,H0 should be accepted. The best-fitting shape parame-

ter β can be found based on this testing procedure. After β is estimated, we can

compute the scale parameter λ using the following equation:

l ¼ exp �
1

b
�

1

N
½
XN

i¼1
ðlnf� ln½1 � F̂ iðxÞ�g � blnxiÞ�

� �

; ð14Þ

where Bernard’s median rank estimator is F̂ iðxÞ ¼ ði � 0:3Þ=ðN þ 0:4Þ, i = 1,� � �,N.

3.3.3 Synthetic sample generation. As mentioned above, the minority class data are

assumed to fit a two-parameter Weibull distribution. For a given data set, we employ the inver-

sion method to derive the Weibull variate, which is the approach used here to create synthetic

samples. In the inversion method, a random variable X is distributed in a Weibull distribution

containing both a scale parameter λ and a shape parameter β (i.e., X* Weibull(λ,β)). Given

that F(x,λ,β) is the CDF of the data shown in Eq (9), it can be used to derive the formula of the

Weibull variate as follows:

x ¼ lf� ln½1 � Fðx; l; bÞ�g1=b
; ð15Þ

where x� 0, λ� 0, β> 0. Subsequently, in the generation of the synthetic samples

x̂1; x̂2; . . . x̂N 0 , Eq (16) is modified to

x̂ i ¼ l̂f� ln½1 � F̂ iðxÞ�g
1=b̂

ð16Þ

where the Bernard’s median rank estimator F̂ iðxÞ ¼ ði � 0:3Þ=ðN 0 þ 0:4Þ, a desired number

of N’, and the two estimators l̂ and b̂ are calculated by the proposed approach.

3.4 The detailed procedure

Assume that a training data set has N samples with Pmutually independent features denoted

as T = {(X1,y1),(X2,y2),. . .,(XN,yN)}, and the two-class data set where each sample Xi, i = 1,. . .,N
has P features (means Xi = (xi1, xi2,. . .xiP)), and yi 2 {+,−} is the target value of Xi. Note that the

class label of the minority class is positive (+), and the negative (−) label is for the majority data

set. To explain the proposed procedure in detail, we provide the following steps:

Step 1. Separate the data set T into minority and majority data by the corresponding target

value, denoted as T ¼ ft
*

þ; t
*

� g, where t
*

j ¼ fIðyi ¼ jÞðX1; jÞ; Iðyi ¼ jÞ
ðX2; jÞ; . . . ; Iðyi ¼ jÞðXN ; jÞg, j = {+,−} and I(�) is an indicator function that is selected

if the condition in I holds and excluded otherwise.
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Step 2. Use the box-and-whisker plot and the MTD method as the undersampling methods

to exclude outliers and select the valuable data to reduce the data size of the majority

class t
*

� fromM toM’. Note that the number of items in the majority class becomes

M’, which can be calculated asM−Sbox−Smtd, where Sbox and Smtd are the quantity of

outliers and valueless samples, respectively. Sbox is the sample quantity that lies outside

of [LIF,UIF], they are considered suspected outliers. LIF and UIF are shown as Eqs (2)

and (3). Smtd is the sample quantity that exceeds the value of Aα, Aα = [(uset−a) × α-cut

+ a,b−(b−uset) × α-cut], given anα-cut. That means the data which exceeds the range

of Aα will be removed.

Step 3. Utilize the oversampling method to increase the data size in the minority class t
*

þ

fromm tom’, where the number of synthetic samples in t
*

þ isM’−m.

Step 4. The reduced t
*

� and extended t
*

þ sets are merged into a new training data set to

establish a learning model.

For every data set, we can implement the above steps to balance the raw data set from (M +

m) × P into (M’ +m’) × P dimensions. Besides, the remainder of the raw data set functioned as

the testing data set. As for the testing procedure, this study will use the testing data and iterate

the experiment 50 times concerning all of the scenarios given anα-cut to compare the result

with that of the OSS, SB, NDO, PPDP, D3C methods. The testing procedure is shown as Fig 3.

4. Experiments

To demonstrate the classification performance of the PPDP+D3C method, we used four real

data sets and compared the result with that of the OSS, SB, NDO, PPDP, D3C methods. Fur-

thermore, paired t-tests were used in the comparison among them to examine the significance

of the results with various sets of imbalanced data.

4.1 Four real data sets and classifier selection

In this section, we employ four real data sets (WDBC (available at: https://archive.ics.uci.edu/

ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29), PD (available at: https://archive.

ics.uci.edu/ml/datasets/parkinsons), VC (available at: http://archive.ics.uci.edu/ml/datasets/

vertebral+column), and HS (available at: https://archive.ics.uci.edu/ml/datasets/Haberman’s

+Survival), downloaded from the UCI Machine Learning Repository database [39]) to demon-

strate the performance of the PPDP+D3C with regard to the imbalanced two-class classifica-

tion problems. The details of these four data sets are summarized in Table 2, where “r”
indicates the percentage of minority classes in the samples.

This study applied four different classifiers including NB, KNN, and two types of SVM to

the raw data of these four data sets. In KNN, the parameter of k was set to 3. The kernel func-

tions in the two SVMs were linear and polynomial (notated as SVM-linear and SVM-poly,

respectively); the cost parameter was set to 1 and the degree in kernel function set to 2 in the

linear and polynomial kernel functions. The algorithms of the NB and KNN classifiers were

implemented in Matlab, using the Statistics Toolbox. The SVM-linear and SVM-poly classifi-

ers use LIBSVM [40] as the analysis tool. We selected the best classifier among the four classifi-

ers in the imbalanced scenario (r = 5), using G-mean and F1 as the criteria for assessing

classification performance with an imbalanced data set. Using the four raw data sets, we ran

the experiment 50 times, set the training data size (N) as 60. The percentage of the minority

classes was 5%, and the results, including ACC, G-mean, and F1, are shown in Table 3. The

results show that the SVM-poly has a greater G-mean and F1 than NB, 3-NN, and SVM-linear.
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The bold values indicate that the SVM-poly achieved the best classification performance on

both the WDBC, PD, VC, and HS data sets; it has the best G-mean and F1 scores.

4.2 The suggested value ofα-cut

In the majority class, the value ofα-cut is important because it creates a region that controls the

amount of representative data. To find an appropriate parameter setting forα-cut, we examined

Table 2. Data set description.

Data Set No. Instances No. Features Feature Characteristics r

WDBC 569 30 Numeric 37.26

PD 195 22 Numeric 24.62

VC 310 6 Numeric 32.22

HS 306 3 Numeric 26.47

https://doi.org/10.1371/journal.pone.0181853.t002

Fig 3. The testing procedure for imbalanced data sets.

https://doi.org/10.1371/journal.pone.0181853.g003
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the classification performances of variousα-cut settings for both the WDBC, PD, VC, and HS

data sets. According to the classifier selection results in Section 4.1, we utilized the SVM-poly

classifier to analyze data based on the same parameter settings. Considering the imbalanced

data set at (r,N) = (5,60) and performing the experiment 50 times, the results of the classifier’s

performance on ACC, G-mean, and F1 for different values ofα-cut are given in Table 4. As

shown in Table 4, we can achieve better classification performance when the values of α-cut are

0.4 or 0.5. In our opinion, with a smallerα-cut, the data in the created region do not effectively

represent the majority class, and the nature of the minority class gradually becomes fuzzy

because of the corresponding increase in the number of synthetic samplesM’−m. For other,

higherα-cut values, the learning model may experience overfitting because the total amount of

data (M’ +m’) becomes smaller. For this reason, we suggest that the value of α-cut should be set

to 0.5.

4.3 Experiment design

To create imbalanced scenarios, this experiment drew samples from a raw data set according to

the percentage of the minority class, which was variously set to 5%, 10%, 15%, and 20% (r =

{5,10,15,20}). The training data size,N, was set to 60, 80, 100 and 150 (a total of 16 scenarios).

For example, when r = 5 andN = 60, there are four scenarios (M,m) = {(57,3),(76,4),(95,5),

(142,8)}. The remainder of the raw data set functioned as the testing data set. Note that the

minority class size must be at least three due to the limitation with regard to sample size

described in Step 4 in Section 3.3.2. To comply with this restriction, any value of r(%)×N less

than three was changed to three. Using the four data sets (WDBC, PD, VC and HS), we iterated

this experiment 50 times (16 scenarios at one time) at α-cut = 0.5. The results in Tables 5, 6, 7

and 8 are the averages of the values of ACC, G-mean and F1 for the imbalanced data sets taken

from the WDBC, PD, VC and HS data sets. We used the paired t-test to examine whether the

PPDP+D3C achieved statistically significant superiority compared with those methods such as

Table 3. The results of four classifiers for the WDBC, PD, VC, and HS data set.

Data set WDBC

classifiers NB 3-NN SVM-linear SVM-poly

ACC 61.39 59.63 62.20 61.12

G-mean 53.68 47.88 53.29 66.19

F1 49.71 44.14 49.34 64.85

Data set PD

classifiers NB 3-NN SVM-linear SVM-poly

ACC 66.31 67.73 53.91 55.41

G-mean 51.71 10.13 37.30 40.70

F1 42.72 6.73 27.52 31.80

Data set VC

classifiers NB 3-NN SVM-linear SVM-poly

ACC 63.77 62.25 49.15 48.56

G-mean 30.55 15.98 44.61 46.66

F1 20.56 7.32 37.21 40.83

Data set HS

classifiers NB 3-NN SVM-linear SVM-poly

ACC 68.88 68.32 43.86 41.46

G-mean 18.57 7.62 28.75 32.46

F1 10.05 2.71 14.97 19.92

https://doi.org/10.1371/journal.pone.0181853.t003
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OSS, SB, NDO, PPDP, and D3C based on the ACC, G-mean and F1 measures. The statistical

test results are listed in Tables 5, 6, 7 and 8. In these tables, the bold values indicate the highest

values among the six methods, the values in the parentheses represent the P-value of paired t-test

for PPDP+D3C and other mentioned methods. It shows PPDP+D3C had strong statistical sig-

nificance (P-value< 0.05) with regard to its classification performance.

4.4 Experiment results

The experiment results are listed in Tables 5, 6, 7 and 8 for the 16 scenarios (r = {5,10,15,20}

and N = {60,80,100,150}). For instance, with (r,N) = (5,60) in the WDBC data set, the PPDP

+D3C achieved a better classification performance than the D3C method; the differences of

the G-mean and F1 are 87.98–85.85 = 2.13(%) and 86.63–84.05 = 2.58(%) with a group of class

sizes (M,m) = (57,3), respectively, and the P-values based on the G-mean and F1 are smaller

than 0.05. From Tables 5, 6, 7 and 8, the comparative results of above-mentioned methods are

as follows:

Table 4. The results for differentα-cut values.

Data set α-cut 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

WDBC ACC 71.57 72.41 73.69 72.28 75.24 71.28 73.21 74.06 74.47

G-mean 64.73 66.51 68.77 65.85 71.28 64.16 66.85 69.36 69.65

F1 58.82 61.05 64.01 60.33 67.11 58.10 61.51 64.57 64.91

Sbox 13 13 13 13 13 14 13 13 13

Smtd 13 13 13 13 13 14 15 17 25

M’-m 41 41 41 41 41 40 39 37 29

M’+m’ 88 88 88 88 88 86 84 80 64

Data set α-cut 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

PD ACC 67.25 67.61 64.84 67.21 68.48 64.53 67.62 67.70 67.64

G-mean 60.03 61.08 58.60 59.19 62.23 57.46 60.81 59.72 60.35

F1 50.27 51.54 48.00 49.21 52.73 46.60 51.11 50.03 50.61

Sbox 10 10 10 10 11 11 10 10 10

Smtd 10 10 11 10 12 12 14 19 29

M’-m 44 44 43 44 42 42 40 35 25

M’+m’ 94 94 92 94 90 90 86 76 56

Data set α-cut 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

VC ACC 58.66 59.50 59.38 58.61 59.85 56.70 57.82 56.28 53.90

G-mean 56.47 54.88 56.72 55.44 57.82 55.62 57.76 57.42 54.84

F1 47.91 45.76 48.36 46.80 49.79 47.49 50.38 50.44 48.51

Sbox 3 3 3 3 3 3 3 3 3

Smtd 8 9 12 14 18 23 29 35 46

M’-m 46 45 42 40 36 31 26 19 8

M’+m’ 98 96 90 86 78 68 58 44 22

Data set α-cut 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

HS ACC 57.51 57.11 55.30 58.23 57.67 57.84 55.49 54.63 52.35

G-mean 51.39 51.11 49.46 53.32 51.71 51.87 50.64 50.18 48.04

F1 38.29 38.18 36.54 40.70 38.92 39.08 37.93 37.37 36.66

Sbox 6 7 6 6 6 6 6 6 6

Smtd 16 18 22 24 27 31 37 40 50

M’-m 38 36 32 30 27 23 17 14 4

M’+m’ 82 78 70 66 60 52 40 34 14

https://doi.org/10.1371/journal.pone.0181853.t004
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Table 5. The results of the six methods on WDBC dataset.

r = 5 N

Method 60 80 100 150

ACC OSS 74.98 (0.00) 74.58 (0.00) 73.23 (0.00) 71.74 (0.00)

SB 69.83 (0.00) 70.15 (0.00) 68.77 (0.00) 67.17 (0.00)

NDO 74.01 (0.00) 74.87 (0.00) 73.19 (0.00) 71.21 (0.00)

PPDP 73.51 (0.00) 74.37 (0.00) 72.38 (0.00) 71.42 (0.00)

D3C 88.28 (0.00) 89.20 (0.03) 89.54 (0.09) 91.03 (0.03)

PPDP+D3C 89.83 - 89.95 - 90.30 - 91.85 -

G-mean OSS 68.01 (0.00) 68.89 (0.00) 68.33 (0.00) 69.40 (0.00)

SB 59.53 (0.00) 62.13 (0.00) 61.27 (0.00) 63.19 (0.00)

NDO 68.07 (0.00) 70.37 (0.00) 68.76 (0.00) 69.08 (0.00)

PPDP 67.91 (0.00) 70.74 (0.00) 68.97 (0.00) 70.67 (0.00)

D3C 85.85 (0.02) 87.37 (0.06) 88.29 (0.13) 90.91 (0.05)

PPDP+D3C 87.98 - 88.28 - 89.14 - 91.76 -

F1 OSS 63.44 (0.00) 64.70 (0.00) 64.10 (0.00) 65.56 (0.00)

SB 52.70 (0.00) 56.04 (0.00) 55.07 (0.00) 57.77 (0.00)

NDO 63.12 (0.00) 66.29 (0.00) 64.42 (0.00) 65.18 (0.00)

PPDP 62.66 (0.00) 66.50 (0.00) 64.46 (0.00) 66.98 (0.00)

D3C 84.05 (0.01) 86.05 (0.04) 87.20 (0.13) 90.51 (0.05)

PPDP+D3C 86.63 - 87.14 - 88.17 - 91.41 -

r = 10 N

Method 60 80 100 150

ACC OSS 75.08 (0.00) 74.85 (0.00) 75.22 (0.00) 73.72 (0.00)

SB 71.30 (0.00) 71.34 (0.00) 71.61 (0.00) 70.03 (0.00)

NDO 74.82 (0.00) 74.99 (0.00) 75.14 (0.00) 72.81 (0.00)

PPDP 73.96 (0.00) 75.02 (0.00) 74.63 (0.00) 74.36 (0.00)

D3C 90.85 (0.03) 90.66 (0.08) 92.11 (0.58) 92.35 (0.00)

PPDP+D3C 91.77 - 91.33 - 92.31 - 93.62 -

G-mean OSS 69.00 (0.00) 70.00 (0.00) 71.54 (0.00) 71.92 (0.00)

SB 63.50 (0.00) 64.92 (0.00) 66.66 (0.00) 67.40 (0.00)

NDO 69.66 (0.00) 70.79 (0.00) 72.05 (0.00) 71.22 (0.00)

PPDP 69.41 (0.00) 72.23 (0.00) 72.87 (0.00) 74.60 (0.00)

D3C 89.57 (0.05) 89.48 (0.08) 91.55 (0.36) 92.26 (0.00)

PPDP+D3C 90.66 - 90.24 - 91.91 - 93.69 -

F1 OSS 64.63 (0.00) 66.00 (0.00) 67.92 (0.00) 68.65 (0.00)

SB 57.46 (0.00) 59.51 (0.00) 61.76 (0.00) 63.05 (0.00)

NDO 65.12 (0.00) 66.82 (0.00) 68.47 (0.00) 67.81 (0.00)

PPDP 64.55 (0.00) 68.25 (0.00) 69.15 (0.00) 71.74 (0.00)

D3C 88.20 (0.04) 88.29 (0.08) 90.69 (0.41) 91.85 (0.00)

PPDP+D3C 89.48 - 89.15 - 91.05 - 93.36 -

r = 15 N

Method 60 80 100 150

ACC OSS 76.83 (0.00) 76.37 (0.00) 75.61 (0.00) 75.23 (0.00)

SB 74.31 (0.00) 73.27 (0.00) 73.23 (0.00) 73.13 (0.00)

NDO 77.10 (0.00) 76.42 (0.00) 75.04 (0.00) 75.22 (0.00)

PPDP 75.99 (0.00) 75.62 (0.00) 75.41 (0.00) 76.45 (0.00)

D3C 92.07 (0.03) 91.82 (0.13) 91.98 (0.02) 92.51 (0.00)

PPDP+D3C 92.78 - 92.45 - 92.81 - 93.67 -

(Continued )
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1. For a fixed N and r, the OSS, SB, NDO, PPDP methods have very close ACC values, and

there are no statistically significant differences between the other five methods and PPDP

+D3C.

2. For a fixed N, when r is increasing, the values of G-mean and F1 increase for all six meth-

ods, and the improvement in ACC is not significant.

3. For a fixed N, when r has become large, the PPDP+D3C consistently achieves better G-

mean and F1 scores than the other five methods do, although this superiority is not statisti-

cally significant with regard to D3C in a few scenarios.

4. For a fixed r, when N is increasing, the PPDP+D3C consistently achieves higher G-mean

and F1 scores than D3C does in the most scenarios.

5. For a small r and N, the results of the paired t-tests between PPDP+D3C and D3C are sig-

nificant with regard to G-mean and F1 in the some scenarios.

Table 5. (Continued)

G-mean OSS 71.89 (0.00) 72.43 (0.00) 72.12 (0.00) 73.67 (0.00)

SB 68.32 (0.00) 67.77 (0.00) 69.10 (0.00) 71.04 (0.00)

NDO 72.93 (0.00) 72.84 (0.00) 71.83 (0.00) 73.98 (0.00)

PPDP 72.55 (0.00) 73.18 (0.00) 73.55 (0.00) 76.74 (0.00)

D3C 90.82 (0.00) 91.07 (0.04) 91.03 (0.01) 92.24 (0.00)

PPDP+D3C 91.98 - 92.03 - 92.21 - 93.68 -

F1 OSS 68.27 (0.00) 68.83 (0.00) 68.55 (0.00) 70.73 (0.00)

SB 63.52 (0.00) 63.01 (0.00) 64.74 (0.00) 67.49 (0.00)

NDO 69.22 (0.00) 69.29 (0.00) 68.11 (0.00) 71.09 (0.00)

PPDP 68.40 (0.00) 69.36 (0.00) 69.90 (0.00) 74.18 (0.00)

D3C 89.73 (0.01) 89.91 (0.06) 90.18 (0.01) 91.70 (0.00)

PPDP+D3C 90.88 - 90.88 - 91.37 - 93.22 -

r = 20 N

Method 60 80 100 150

ACC OSS 76.11 (0.00) 77.48 (0.00) 76.61 (0.00) 77.16 (0.00)

SB 73.97 (0.00) 75.14 (0.00) 75.08 (0.00) 74.11 (0.00)

NDO 76.25 (0.00) 77.70 (0.00) 76.97 (0.00) 75.64 (0.00)

PPDP 75.76 (0.00) 77.13 (0.00) 77.17 (0.00) 76.17 (0.00)

D3C 91.48 (0.00) 92.35 (0.00) 92.46 (0.07) 93.78 (0.03)

PPDP+D3C 92.78 - 93.05 - 92.99 - 94.33 -

G-mean OSS 71.33 (0.00) 74.26 (0.00) 73.61 (0.00) 75.98 (0.00)

SB 68.60 (0.00) 70.90 (0.00) 71.75 (0.00) 71.92 (0.00)

NDO 72.25 (0.00) 74.79 (0.00) 74.44 (0.00) 74.10 (0.00)

PPDP 72.84 (0.00) 75.66 (0.00) 76.16 (0.00) 76.22 (0.00)

D3C 90.22 (0.00) 91.45 (0.00) 91.65 (0.00) 93.57 (0.00)

PPDP+D3C 92.42 - 92.77 - 92.79 - 94.42 -

F1 OSS 67.27 (0.00) 71.01 (0.00) 70.20 (0.00) 73.36 (0.00)

SB 63.73 (0.00) 66.66 (0.00) 67.82 (0.00) 68.41 (0.00)

NDO 68.25 (0.00) 71.45 (0.00) 71.15 (0.00) 71.08 (0.00)

PPDP 68.67 (0.00) 72.23 (0.00) 72.94 (0.00) 73.39 (0.00)

D3C 88.82 (0.00) 90.38 (0.00) 90.73 (0.01) 93.06 (0.01)

PPDP+D3C 91.07 - 91.59 - 91.71 - 93.87 -

https://doi.org/10.1371/journal.pone.0181853.t005
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Table 6. The results of the six methods on PD dataset.

r = 5 N

Method 60 80 100 150

ACC OSS 69.31 (0.00) 65.85 (0.00) 64.66 (0.00) 47.76 (0.00)

SB 67.28 (0.00) 64.17 (0.00) 62.07 (0.00) 44.96 (0.00)

NDO 67.47 (0.00) 66.74 (0.00) 65.17 (0.00) 53.40 (0.00)

PPDP 67.86 (0.36) 65.92 (0.09) 63.93 (0.03) 51.53 (0.00)

D3C 71.35 (0.00) 70.78 (0.01) 68.67 (0.01) 62.98 (0.03)

PPDP+D3C 73.73 - 72.71 - 70.82 - 66.76 -

G-mean OSS 55.09 (0.00) 54.39 (0.00) 58.89 (0.00) 62.99 (0.00)

SB 50.31 (0.00) 50.62 (0.00) 54.79 (0.00) 59.97 (0.00)

NDO 60.54 (0.00) 61.18 (0.00) 62.50 (0.00) 64.91 (0.00)

PPDP 58.88 (0.00) 61.61 (0.00) 61.86 (0.00) 66.24 (0.00)

D3C 62.84 (0.01) 65.02 (0.02) 65.54 (0.00) 69.75 (0.02)

PPDP+D3C 66.71 - 67.62 - 68.72 - 73.54 -

F1 OSS 45.53 (0.00) 45.33 (0.00) 52.12 (0.00) 61.58 (0.00)

SB 39.48 (0.00) 40.69 (0.00) 46.84 (0.00) 59.19 (0.00)

NDO 50.83 (0.00) 53.39 (0.00) 56.97 (0.00) 67.40 (0.00)

PPDP 49.04 (0.00) 53.70 (0.00) 56.05 (0.00) 66.58 (0.00)

D3C 52.81 (0.00) 57.48 (0.02) 60.59 (0.00) 75.52 (0.03)

PPDP+D3C 57.52 - 60.56 - 64.36 - 78.80 -

r = 10 N

Method 60 80 100 150

ACC OSS 71.99 (0.05) 70.72 (0.00) 70.77 (0.32) 66.56 (0.46)

SB 69.67 (0.00) 69.66 (0.00) 68.33 (0.00) 62.33 (0.00)

NDO 69.68 (0.00) 70.93 (0.00) 68.47 (0.00) 63.22 (0.00)

PPDP 68.44 (0.76) 70.57 (0.03) 67.44 (0.44) 62.47 (0.90)

D3C 73.69 (0.95) 74.19 (0.30) 73.33 (0.01) 69.82 (0.03)

PPDP+D3C 73.73 - 73.60 - 71.64 - 67.64 -

G-mean OSS 62.29 (0.00) 66.01 (0.00) 67.92 (0.05) 72.66 (0.16)

SB 56.79 (0.00) 62.42 (0.00) 64.04 (0.00) 69.42 (0.35)

NDO 64.77 (0.00) 68.32 (0.01) 66.69 (0.00) 69.39 (0.37)

PPDP 63.78 (0.02) 69.02 (0.77) 66.90 (0.33) 69.94 (0.37)

D3C 66.25 (0.03) 70.41 (0.69) 71.49 (0.05) 73.84 (0.01)

PPDP+D3C 68.51 - 70.73 - 69.92 - 70.63 -

F1 OSS 53.30 (0.03) 58.55 (0.01) 62.64 (0.45) 74.34 (0.57)

SB 46.75 (0.00) 54.37 (0.00) 57.73 (0.00) 70.18 (0.00)

NDO 55.18 (0.09) 61.19 (0.37) 61.02 (0.04) 71.43 (0.00)

PPDP 53.72 (0.06) 61.75 (0.68) 61.16 (0.27) 71.68 (0.08)

D3C 56.22 (0.05) 62.78 (0.64) 66.35 (0.07) 77.70 (0.08)

PPDP+D3C 58.56 - 63.23 - 64.55 - 76.14 -

r = 15 N

Method 60 80 100 150

ACC OSS 72.63 (0.71) 71.24 (0.08) 73.48 (0.30) 71.04 (0.27)

SB 71.93 (0.32) 71.89 (0.27) 71.72 (0.49) 70.07 (0.66)

NDO 71.36 (0.09) 72.86 (0.96) 71.91 (0.61) 70.02 (0.67)

PPDP 69.81 (0.08) 69.68 (0.05) 70.22 (0.00) 67.76 (0.01)

D3C 75.39 (0.00) 75.72 (0.00) 74.88 (0.00) 71.91 (0.04)

PPDP+D3C 72.99 - 72.82 - 72.38 - 69.47 -
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As shown in Tables 5, 6, 7 and 8, we can see in the WDBC dataset the performance of

PPDP+D3C in ACC, G-mean and F1 is better compared to the other methods. In other

data sets, the D3C can achieve better performance concerning ACC, but less statistically

significant differences. While the PPDP+D3C method achieves excellent performance

concerning G-mean and F1 compared to the other methods and most of which have statis-

tically significant differences. These results show that the PPDP+D3C method achieves

higher classification performance on imbalanced data sets among the other five tested

methods. In other words, the results show that the proposed method can effectively

achieve better classification performance with small values of r and N. Thus, it is obvious

that when a data set includes imbalanced classes, the classification performance can be sig-

nificantly improved by using the PPDP+D3C method. In addition, for a fixed N, when r is

increasing, the number of generated synthetic samplesM’−m becomes smaller, as shown

in Table 9.

Table 6. (Continued)

G-mean OSS 67.38 (0.02) 66.92 (0.00) 71.74 (0.31) 73.79 (0.12)

SB 63.63 (0.00) 65.82 (0.00) 67.71 (0.02) 73.463 (0.18)

NDO 66.95 (0.00) 70.24 (0.29) 70.26 (0.83) 73.31 (0.19)

PPDP 66.96 (0.33) 68.59 (0.58) 70.17 (0.09) 71.74 (0.07)

D3C 71.41 (0.09) 72.27 (0.29) 72.30 (0.04) 74.65 (0.01)

PPDP+D3C 70.04 - 71.17 - 70.49 - 71.60 -

F1 OSS 57.45 (0.91) 58.32 (0.08) 65.81 (0.02) 73.38 (0.28)

SB 53.55 (0.01) 57.57 (0.01) 61.07 (0.42) 73.78 (0.42)

NDO 56.56 (0.40) 62.36 (0.19) 63.93 (0.18) 74.03 (0.30)

PPDP 56.14 (0.73) 59.74 (0.90) 63.47 (0.07) 73.10 (0.22)

D3C 60.71 (0.04) 63.63 (0.17) 65.56 (0.03) 74.96 (0.33)

PPDP+D3C 58.63 - 61.91 - 63.24 - 73.62 -

r = 20 N

Method 60 80 100 150

ACC OSS 74.05 (0.62) 74.70 (0.18) 74.96 (0.14) 73.67 (0.08)

SB 73.40 (0.83) 74.65 (0.10) 74.39 (0.32) 75.40 (0.00)

NDO 72.30 (0.20) 74.20 (0.26) 74.28 (0.34) 74.96 (0.01)

PPDP 70.51 (0.09) 71.92 (0.00) 72.28 (0.00) 73.22 (0.00)

D3C 76.19 (0.00) 77.63 (0.00) 78.51 (0.00) 75.64 (0.00)

PPDP+D3C 73.59 - 73.41 - 73.58 - 71.20 -

G-mean OSS 70.97 (0.33) 71.78 (0.80) 73.88 (0.05) 75.35 (0.04)

SB 67.11 (0.00) 70.04 (0.15) 72.14 (0.90) 77.12 (0.00)

NDO 69.92 (0.06) 72.02 (0.51) 73.90 (0.02) 76.59 (0.00)

PPDP 69.12 (0.40) 71.44 (0.04) 73.12 (0.00) 75.89 (0.00)

D3C 72.21 (0.85) 73.70 (0.01) 76.01 (0.00) 76.52 (0.00)

PPDP+D3C 72.05 - 71.47 - 72.03 - 72.23 -

F1 OSS 60.67 (0.12) 63.03 (0.03) 66.56 (0.00) 74.97 (0.01)

SB 56.65 (0.16) 61.43 (0.12) 64.59 (0.02) 76.80 (0.00)

NDO 58.89 (0.80) 63.03 (0.00) 66.23 (0.00) 76.51 (0.00)

PPDP 57.57 (0.98) 61.76 (0.01) 64.96 (0.00) 76.15 (0.00)

D3C 60.64 (0.34) 64.27 (0.00) 68.10 (0.00) 75.03 (0.00)

PPDP+D3C 59.53 - 60.51 - 62.71 - 71.28 -

https://doi.org/10.1371/journal.pone.0181853.t006
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Table 7. The results of the six methods on VC dataset.

r = 5 N

Method 60 80 100 150

ACC OSS 58.70 (0.00) 58.68 (0.00) 58.91 (0.00) 59.49 (0.00)

SB 58.92 (0.00) 60.89 (0.00) 60.62 (0.00) 62.34 (0.00)

NDO 62.76 (0.00) 63.30 (0.00) 64.56 (0.00) 66.84 (0.01)

PPDP 59.17 (0.00) 58.97 (0.00) 60.59 (0.00) 60.04 (0.00)

D3C 67.84 (0.65) 67.66 (0.37) 67.42 (0.85) 67.38 (0.15)

PPDP+D3C 67.36 - 66.90 - 67.26 - 68.73 -

G-mean OSS 52.71 (0.00) 55.49 (0.00) 57.71 (0.00) 61.88 (0.00)

SB 50.60 (0.00) 56.36 (0.00) 58.48 (0.00) 64.84 (0.00)

NDO 59.86 (0.00) 62.02 (0.00) 64.97 (0.05) 69.06 (0.54)

PPDP 56.74 (0.00) 58.39 (0.00) 62.03 (0.00) 62.93 (0.00)

D3C 62.26 (0.24) 63.36 (0.44) 64.46 (0.06) 67.95 (0.47)

PPDP+D3C 64.07 - 64.53 - 66.68 - 68.61 -

F1 OSS 43.41 (0.00) 48.05 (0.00) 52.21 (0.00) 61.70 (0.00)

SB 40.49 (0.00) 48.56 (0.00) 52.49 (0.00) 64.65 (0.00)

NDO 51.99 (0.01) 55.91 (0.03) 61.16 (0.07) 70.62 (0.44)

PPDP 47.96 (0.00) 51.71 (0.00) 58.20 (0.00) 64.98 (0.00)

D3C 54.43 (0.24) 57.06 (0.30) 59.48 (0.00) 68.15 (0.00)

PPDP+D3C 56.54 - 59.00 - 64.12 - 72.24 -

r = 10 N

Method 60 80 100 150

ACC OSS 60.02 (0.00) 58.26 (0.00) 61.62 (0.00) 63.89 (0.00)

SB 60.74 (0.00) 60.33 (0.00) 64.40 (0.00) 67.36 (0.00)

NDO 63.68 (0.00) 65.34 (0.00) 67.30 (0.07) 68.93 (0.00)

PPDP 60.21 (0.00) 59.71 (0.00) 62.10 (0.03) 63.46 (0.00)

D3C 68.75 (0.48) 69.64 (0.45) 71.58 (0.00) 71.06 (0.97)

PPDP+D3C 68.33 - 69.00 - 68.42 - 71.09 -

G-mean OSS 58.13 (0.00) 57.56 (0.00) 62.70 (0.00) 65.72 (0.00)

SB 56.91 (0.00) 58.92 (0.00) 65.04 (0.00) 69.29 (0.04)

NDO 62.92 (0.00) 66.09 (0.01) 68.51 (0.77) 70.88 (0.95)

PPDP 59.55 (0.00) 60.65 (0.00) 64.03 (0.00) 65.93 (0.00)

D3C 63.92 (0.01) 64.19 (0.00) 69.08 (0.44) 71.12 (0.77)

PPDP+D3C 66.76 - 68.65 - 68.30 - 70.92 -

F1 OSS 49.84 (0.00) 50.80 (0.00) 58.84 (0.00) 66.99 (0.00)

SB 47.89 (0.00) 51.80 (0.00) 60.93 (0.01) 70.19 (0.00)

NDO 55.64 (0.00) 60.81 (0.06) 65.11 (0.26) 71.77 (0.11)

PPDP 51.57 (0.00) 54.40 (0.00) 60.34 (0.00) 68.06 (0.00)

D3C 55.85 (0.01) 57.07 (0.00) 64.34 (0.56) 69.64 (0.00)

PPDP+D3C 59.91 - 63.85 - 65.06 - 73.79 -

r = 15 N

Method 60 80 100 150

ACC OSS 59.06 (0.00) 61.15 (0.00) 63.71 (0.00) 65.56 (0.00)

SB 62.22 (0.00) 63.81 (0.00) 65.85 (0.00) 68.45 (0.00)

NDO 64.61 (0.00) 67.20 (0.00) 68.68 (0.22) 69.23 (0.03)

PPDP 60.26 (0.00) 62.42 (0.00) 62.49 (0.00) 63.59 (0.00)

D3C 71.95 (0.00) 72.88 (0.00) 73.46 (0.00) 72.91 (0.00)

PPDP+D3C 68.63 - 69.72 - 69.32 - 70.04 -
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4.5 Summary and discussion

Four data sets, the WDBC, PD, VC, and HS, were used in this research to show the perfor-

mance of the PPDP+D3C method with regard to learning with imbalanced data sets. Based

on the results of experiments, as shown in Tables 5, 6, 7 and 8, the findings can be summa-

rized as follows. The merging of the PPDP+D3C achieves better classification performance

than the other five methods, and this superiority is statistically significant. In a few scenar-

ios, when the value of r is 15 or 20 with a larger N, the PPDP+D3C has better G-mean and

F1 scores than those of the D3C method, although some comparisons of the results of the

paired t-test between the PPDP+D3C and the D3C showed no significant differences with

regard to the G-mean and F1 scores. This may be because the ratio of minority data to the

overall samples is rather large, and the amount of data in the minority part is thus sufficient

for learning to occur based on the minority class. For instance, in the VC data set, the P-

value of the paired t-test for F1 is 0.08, which is greater than 0.05 at (r,N) = (20,150). In fact,

the results in Tables 5, 6, 7 and 8 show that when the value of r(%)×N is smaller, the PPDP

Table 7. (Continued)

G-mean OSS 59.15 (0.00) 62.03 (0.00) 65.11 (0.00) 67.25 (0.00)

SB 60.95 (0.00) 63.50 (0.00) 66.87 (0.00) 70.23 (0.98)

NDO 65.34 (0.00) 67.95 (0.00) 70.17 (0.82) 71.04 (0.03)

PPDP 61.03 (0.00) 64.21 (0.00) 65.27 (0.00) 66.26 (0.00)

D3C 66.31 (0.16) 69.38 (0.66) 71.13 (0.19) 72.46 (0.00)

PPDP+D3C 68.31 - 69.71 - 70.04 - 70.24 -

F1 OSS 51.17 (0.00) 56.07 (0.00) 60.96 (0.00) 67.73 (0.00)

SB 52.63 (0.00) 56.95 (0.00) 62.35 (0.00) 70.36 (0.86)

NDO 58.20 (0.04) 62.32 (0.17) 66.16 (0.50) 71.34 (0.04)

PPDP 53.16 (0.00) 58.10 (0.00) 61.76 (0.00) 67.28 (0.00)

D3C 58.38 (0.06) 63.11 (0.19) 65.96 (0.42) 70.46 (0.22)

PPDP+D3C 61.36 - 64.34 - 66.77 - 71.46 -

r = 20 N

Method 60 80 100 150

ACC OSS 60.69 (0.00) 60.09 (0.00) 61.42 (0.00) 66.19 (0.00)

SB 63.57 (0.00) 63.83 (0.00) 66.00 (0.00) 69.40 (0.01)

NDO 65.23 (0.00) 66.46 (0.00) 67.76 (0.00) 70.69 (0.12)

PPDP 60.93 (0.00) 61.52 (0.00) 62.80 (0.00) 65.20 (0.03)

D3C 73.38 (0.00) 73.87 (0.00) 74.93 (0.00) 74.45 (0.00)

PPDP+D3C 69.34 - 69.59 - 70.68 - 71.51 -

G-mean OSS 62.23 (0.00) 62.24 (0.00) 63.57 (0.00) 68.06 (0.00)

SB 63.52 (0.00) 64.62 (0.00) 67.54 (0.00) 71.25 (0.30)

NDO 66.10 (0.00) 68.18 (0.00) 69.50 (0.00) 72.61 (0.27)

PPDP 62.63 (0.00) 64.14 (0.00) 65.57 (0.00) 68.04 (0.00)

D3C 68.62 (0.50) 69.93 (0.78) 72.53 (0.22) 72.91 (0.36)

PPDP+D3C 69.37 - 70.25 - 71.60 - 72.01 -

F1 OSS 54.73 (0.00) 56.57 (0.00) 59.05 (0.00) 67.68 (0.00)

SB 55.44 (0.00) 57.94 (0.00) 62.41 (0.00) 70.34 (0.57)

NDO 58.62 (0.01) 62.32 (0.05) 64.68 (0.00) 71.56 (0.14)

PPDP 54.72 (0.00) 57.94 (0.00) 60.76 (0.00) 67.45 (0.00)

D3C 60.83 (0.31) 63.19 (0.24) 66.96 (0.65) 69.69 (0.08)

PPDP+D3C 62.18 - 64.73 - 67.36 - 71.75 -

https://doi.org/10.1371/journal.pone.0181853.t007
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Table 8. The results of the six methods on HS dataset.

r = 5 N

Method 60 80 100 150

ACC OSS 59.46 (0.53) 56.78 (0.06) 56.48 (0.03) 52.44 (0.00)

SB 61.06 (0.54) 57.72 (0.35) 57.01 (0.04) 52.74 (0.01)

NDO 60.87 (0.62) 57.18 (0.11) 58.30 (0.28) 55.14 (0.27)

PPDP 56.25 (0.27) 54.05 (0.66) 54.90 (0.50) 50.35 (0.32)

D3C 66.07 (0.00) 63.62 (0.00) 64.72 (0.00) 58.86 (0.03)

PPDP+D3C 60.33 - 58.71 - 59.29 - 56.32 -

G-mean OSS 44.36 (0.00) 45.82 (0.00) 47.27 (0.00) 49.22 (0.00)

SB 42.20 (0.00) 43.56 (0.00) 46.20 (0.00) 49.24 (0.00)

NDO 48.43 (0.01) 49.08 (0.24) 50.67 (0.00) 52.88 (0.25)

PPDP 51.08 (0.98) 48.62 (0.67) 51.89 (0.34) 49.55 (0.03)

D3C 49.50 (0.08) 45.83 (0.00) 48.08 (0.00) 46.46 (0.00)

PPDP+D3C 53.05 - 51.28 - 55.21 - 54.41 -

F1 OSS 30.53 (0.00) 32.87 (0.01) 35.69 (0.00) 41.63 (0.00)

SB 28.27 (0.00) 30.27 (0.00) 34.16 (0.00) 41.37 (0.00)

NDO 35.42 (0.03) 37.08 (0.47) 39.90 (0.01) 46.32 (0.11)

PPDP 38.48 (0.82) 36.60 (0.56) 41.64 (0.17) 43.22 (0.01)

D3C 36.62 (0.05) 33.30 (0.00) 35.02 (0.00) 36.40 (0.00)

PPDP+D3C 40.90 - 41.69 - 45.98 - 49.93 -

r = 10 N

Method 60 80 100 150

ACC OSS 58.27 (0.08) 58.07 (0.00) 57.64 (0.00) 56.05 (0.00)

SB 59.21 (0.29) 58.88 (0.00) 58.58 (0.00) 57.94 (0.00)

NDO 60.10 (0.82) 60.74 (0.00) 60.76 (0.32) 58.79 (0.00)

PPDP 54.66 (0.46) 58.72 (0.62) 55.58 (0.16) 54.92 (0.00)

D3C 67.91 (0.00) 68.07 (0.00) 67.81 (0.00) 63.04 (0.09)

PPDP+D3C 60.33 - 64.05 - 61.63 - 61.82 -

G-mean OSS 46.66 (0.00) 50.16 (0.00) 52.19 (0.00) 53.26 (0.00)

SB 44.88 (0.00) 48.45 (0.00) 52.36 (0.00) 55.46 (0.00)

NDO 50.25 (0.00) 52.48 (0.00) 53.27 (0.00) 55.04 (0.00)

PPDP 50.51 (0.13) 54.72 (0.02) 53.86 (0.00) 54.34 (0.00)

D3C 48.38 (0.00) 47.88 (0.00) 49.70 (0.00) 49.68 (0.00)

PPDP+D3C 54.56 - 59.43 - 59.66 - 60.32 -

F1 OSS 32.53 (0.00) 37.41 (0.00) 40.86 (0.00) 45.44 (0.00)

SB 30.56 (0.00) 35.36 (0.00) 40.87 (0.00) 48.04 (0.00)

NDO 36.77 (0.01) 40.27 (0.00) 42.28 (0.00) 47.57 (0.00)

PPDP 37.05 (0.07) 42.58 (0.01) 43.17 (0.00) 47.23 (0.00)

D3C 35.10 (0.00) 36.60 (0.00) 37.98 (0.00) 39.37 (0.00)

PPDP+D3C 41.76 - 48.32 - 50.55 - 55.24 -

r = 15 N

Method 60 80 100 150

ACC OSS 56.58 (0.00) 57.30 (0.00) 57.14 (0.00) 58.88 (0.00)

SB 58.41 (0.00) 59.63 (0.00) 58.76 (0.00) 59.99 (0.00)

NDO 61.19 (0.03) 62.78 (0.71) 62.49 (0.00) 61.50 (0.00)

PPDP 55.55 (0.00) 54.75 (0.00) 56.96 (0.00) 55.58 (0.00)

D3C 70.77 (0.00) 69.88 (0.00) 69.91 (0.00) 65.47 (0.00)

PPDP+D3C 63.24 - 63.10 - 65.15 - 63.67 -

(Continued )

Synthetic samples generation to improve imbalanced data set diagnosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0181853 August 3, 2017 20 / 24

https://doi.org/10.1371/journal.pone.0181853


+D3C method improves significantly in classification performance with regard to the G-

mean and F1 measures.

5. Conclusion

Imbalanced data classification problems are common in the field of data mining, often leading to

low classification performances because the existing learning algorithms are more suitable for the

majority class data. In this work, we combined undersampling and oversampling to balance the

training data sets; the undersampling method uses the box-and-whisker plot and the MTD

method to reduce the size of the majority class data, while the oversampling method extends the

minority class data set by adding generated synthetic samples. Experiments were carried out

based on four imbalanced data sets. In particular, imbalanced data of a certain disease may differ

based on different region, era, and medical environment. It leads to the phenomenon of diverse

distribution concerning the certain disease. When the distributed condition of imbalanced data is

not severe, a good diagnostic model could be obtained using a general analysis method. Otherwise,

Table 8. (Continued)

G-mean OSS 50.50 (0.00) 50.18 (0.00) 51.19 (0.00) 56.49 (0.00)

SB 49.46 (0.00) 50.15 (0.00) 50.96 (0.00) 57.01 (0.00)

NDO 52.97 (0.00) 53.71 (0.00) 54.11 (0.00) 54.85 (0.00)

PPDP 51.48 (0.00) 51.44 (0.00) 54.50 (0.00) 54.99 (0.00)

D3C 49.46 (0.00) 45.30 (0.00) 49.54 (0.00) 49.69 (0.00)

PPDP+D3C 59.46 - 60.00 - 62.18 - 61.36 -

F1 OSS 35.99 (0.00) 36.65 (0.00) 38.59 (0.00) 48.09 (0.00)

SB 34.84 (0.00) 36.68 (0.00) 38.29 (0.00) 48.54 (0.00)

NDO 39.07 (0.00) 41.20 (0.00) 42.29 (0.00) 45.49 (0.00)

PPDP 37.32 (0.00) 38.16 (0.00) 42.59 (0.00) 46.62 (0.00)

D3C 31.54 (0.00) 32.47 (0.00) 37.52 (0.00) 38.64 (0.00)

PPDP+D3C 46.63 - 48.66 - 51.56 - 54.09 -

r = 20 N

Method 60 80 100 150

ACC OSS 56.25 (0.00) 58.23 (0.00) 57.41 (0.00) 59.78 (0.00)

SB 59.24 (0.00) 60.13 (0.00) 59.98 (0.00) 60.63 (0.00)

NDO 61.76 (0.01) 63.73 (0.01) 62.62 (0.00) 62.32 (0.00)

PPDP 55.72 (0.00) 58.63 (0.00) 57.33 (0.00) 57.32 (0.00)

D3C 71.11 (0.00) 71.09 (0.00) 70.59 (0.00) 67.53 (0.00)

PPDP+D3C 64.04 - 66.13 - 65.09 - 65.42 -

G-mean OSS 50.56 (0.00) 52.48 (0.00) 54.39 (0.00) 57.93 (0.00)

SB 50.65 (0.00) 51.28 (0.00) 55.97 (0.00) 57.28 (0.00)

NDO 53.80 (0.00) 54.26 (0.00) 55.56 (0.00) 55.63 (0.00)

PPDP 52.34 (0.00) 54.98 (0.00) 55.03 (0.00) 56.29 (0.00)

D3C 48.40 (0.00) 45.64 (0.00) 50.34 (0.00) 48.24 (0.00)

PPDP+D3C 60.68 - 61.23 - 61.89 - 62.05 -

F1 OSS 35.78 (0.00) 38.53 (0.00) 41.46 (0.00) 48.34 (0.00)

SB 35.83 (0.00) 37.15 (0.00) 43.20 (0.00) 47.40 (0.00)

NDO 39.72 (0.00) 41.23 (0.00) 43.02 (0.00) 45.39 (0.00)

PPDP 37.79 (0.00) 41.44 (0.00) 42.18 (0.00) 46.45 (0.00)

D3C 35.06 (0.00) 32.52 (0.00) 37.68 (0.00) 36.45 (0.00)

PPDP+D3C 47.19 - 48.68 - 49.97 - 53.02 -

https://doi.org/10.1371/journal.pone.0181853.t008
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the proposed method in this study can assist to obtain a more correct diagnostic model. The

results showed that our approach achieves a better classification performance than the other

methods. Thus our approach can be considered an effective way to enhance the analytical

performance for learning imbalanced class distributions. Our plans for future research

include exploring how to find better density functions to generate useful synthetic samples

to enhance classification performance for specific applications.
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