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ABSTRACT
In this study, we present the first representative complete Taphozous melanopogon mitochondrial gen-
ome from China. Its mitochondrial genome was assembled and annotated using MitoZ. The genome is
a circular molecule of 16,566bp in length, including 22 transfer RNA genes, 2 ribosomal RNA genes, 13
protein-coding genes, and a control region. Although maximum-likelihood and Bayesian inference
phylogenetic trees indicate that the super family Emballonuridea forms a sister taxon with
Noctilionidea instead of Vespertilionidea, mitochondrial genes provide only part of the phylogenetic
information, and phylogenetic inferences utilizing nuclear genes are needed in future toward resolving
phylogenetic relationship among Vespertilionidea, Noctilionidea, and Emballonuridea.
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Black-beard Tomb Bat Taphozous melanopogon Temminck,
1841 belonging to the superfamily Emballonuridea. It is one
of the widespread tomb bat species in Asia, including China,
Indonesia, Burma, Thailand, and Vietnam (Kitchener et al.
1993; Wilson and Mittermeier 2019). In China, it occurs in
tropical and subtropical regions including Guangdong,
Guangxi, Yunnan, Guizhou, Hainan, Macao, Beijing, and Hong
Kong (Jiang et al. 2017). Nowadays, the phylogenetic history
of Emballonuridea remains a conflict among Vespertilionidea
and Noctilionidea (Teeling et al. 2000; Teeling et al. 2002;
Van den Bussche and Hoofer 2004; Eick et al. 2005; Teeling
et al. 2005; Miller-Butterworth et al. 2007; Amador
et al. 2018).

In this study, a male individual of Taphozous melanopogon
(Voucher No. GZHU 15063) was sampled in a cave near
Longmen Town, Guangdong Province, China (23.59� N,
114.29� E) in 2015. The person in charge of the collection: Yi
Wu (email: wuyizhouq@263.net). The specimen is presently
deposited at Key Laboratory of Conservation and Application
in Biodiversity of South China, School of Life Sciences,
Guangzhou University (contact email: wuyizhouq@263.net).
Permission for field surveys and sampling was granted by the
Forestry Administration of Guangdong Province, China. The
identification of Taphozous melanopogon was confirmed by
phylogenetic analyses using datasets comprising cytb and
cox1 as well as morphological examinations (Corbet and Hill
1992; Dengis 1996; Colket and Wilson 1998; Bates et al.
2000). Total genome was extracted from liver tissue using
MiniBEST Universal Genomic DNA Extraction kit (TAKARA,
Dalian) and was further sequenced paired-end using

MGISEQ-2000 sequencing platforms, following a PE150 proto-
col. Based upon �5GB data a complete mitochondrial gen-
ome was assembled and annotated via MitoZ v2.4 which is
specialized for mitochondrial genome (Meng et al. 2019).

Our study represents the first mitochondrial report of
genus Taphozous. Mitochondrial genome of the Taphozous
melanopogon is 16,566 bp in length (Genbank accession No.
MZ286363), containing 13 protein-coding genes, 22 tRNA
genes, 2 rRNA genes, and a control region. Among the 13
protein-coding genes, atp8 and atp6 were overlapped by
43 bp, nad4L and nad4 were overlapped by 7 bp. Most start
codon of the protein-coding genes is ATG, except for
nad2(ATT) and nad3 (ATT), nad5 (ATA). Termination codon of
eight protein-coding genes were TAA (atp8, atp6, cox1, cox2,
nad1, nad4L, nad5, and nad6), while the rest genes were dif-
ferent, including, nad2 (TAG), nad3(TAG). Three genes end
with an incomplete stop codon TA- (cox3) and T– (cytb,
nad4), which can be modified by the polyadenylation after
transcript processing (Ojala et al. 1981). rrnS gene and rrnL
were separated by trnV, lengths of them were 970 bp and
1561 bp, respectively. Control region is between the trnF and
the trnP, and it is 1138 bp in length.

In phylogenetic analyses, we covered the sequence of rep-
resentatives from Emballonuridea, Noctilionidea,
Vespertilionidea, Rhinolophoidea, and Pteropodidae.
Yangochiroptera lineages (Rhinolophoidea and Pteropodidae)
were set as outgroup (Figure 1). The 37 genes were extracted
for phylogenetic inference using by PhyloSuite v1.1.2 (Zhang
et al. 2020). While the mitochondrial control region was elimi-
nated because of its high variability. We aligned our
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sequence matrixes using MUSCLE (Edgar 2004) and optimized
the alignments of protein-coding genes using MACSE v2
(Ranwez et al. 2018). Conserved blocks were further identified
of using Gblock (Talavera and Castresana 2007). ModelFinder
was adopted to determinate optimal model for each gene
partition (Kalyaanamoorthy et al. 2017). The maximum-likeli-
hood phylogenetic trees were inferred using IQ-Tree v2.0.3
with 1000 bootstraps setting (Minh et al. 2020), Bayesian
phylogenetic inference was using MrBayes v3.2.6. Monte
Carlo–Monte Carlo chains were simultaneously run for 10 mil-
lion generations, with sampling conducted every 1000 gener-
ations. The confidence values of the tree are presented as
Bayesian posterior probabilities. (Ronquist et al. 2012). Both
phylogenies depicted Emballonuridea as sister taxon to
Noctilionidea (Figure 1). Given the fact that mitochondrial
genes provide only part of the phylogenetic information.
Discordance between mitochondrial genes and nuclear genes
in animals (Toews and Brelsford 2012), phylogenetic inference
utilizing nuclear genes are needed in future toward resolving

phylogenetic relationship among Vespertilionidea,
Noctilionidea and Emballonuridea.
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Figure 1. Maximum likelihood (ML) and Bayesian inference (BI) phylogenetic trees inferred from 37 mitochondrial genes, node support values are shown above
branches as ML bootstrap values (before slash) and Bayesian posterior probabilities (after slash).
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