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Abstract

It is known that methods to estimate the rate of adaptive evolution, which are based on the McDonald–Kreitman test, can be biased

by changes in effective population size. Here, we demonstrate theoretically that changes in population size can also generate an

artifactual correlation between the rate of adaptive evolution and any factor that is correlated to the strength of selection acting

against deleterious mutations. In this context, we have investigated whether several site-level factors influence the rate of adaptive

evolution in the divergence of humans and chimpanzees, two species that have been inferred to have undergone population size

contraction since they diverged. We find that the rate of adaptive evolution, relative to the rate of mutation, is higher for more

exposed amino acids, lower for amino acid pairs that are more dissimilar in terms of their polarity, volume, and lower for amino acid

pairs that are subject to stronger purifying selection, as measured by the ratio of the numbers of nonsynonymous to synonymous

polymorphisms (pN/pS). All of these correlations are opposite to the artifactual correlations expected under contracting population

size. We therefore conclude that these correlations are genuine.
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Introduction

The rate of adaptive evolution in protein coding genes

appears to vary at several different levels. First, the rate of

adaptive evolution appears to differ between species. Some

species, including many plants (Bustamante et al. 2002;

Barrier et al. 2003; Schmid et al. 2005; Gossmann et al.

2010; also see Strasburg et al. 2009; Ingvarsson 2010;

Slotte et al. 2010) and the yeasts of the genus

Saccharomyces (Gossmann et al. 2012), appear to go

through very little adaptive evolution, whilst many other spe-

cies, including Drosophilids (Smith and Eyre-Walker 2002;

Sawyer et al. 2003; Eyre-Walker and Keightley 2009;
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Haddrill et al. 2010), rodents (Halligan et al. 2010), and

many multicellular animals (Galtier 2016; Rousselle et al.

2020), go through extensive adaptive evolution. The reasons

for this variation remain unclear. It has been suggested that

population size might be a factor; if adaptation is mutation

limited, then one might expect species with large population

sizes to adapt faster because they will generate the required

mutations more rapidly. There is some evidence that species

with large population sizes do undergo significantly faster

adaptive evolution (Gossmann et al. 2012; Bataillon et al.

2015; Corbett-Detig et al. 2015; Rousselle et al. 2020;

though see Galtier 2016). However, it is unclear whether

species are ever limited by the supply of mutations—there

appears to be abundant genetic variation for most traits—

and even if they are limited, species with large population

sizes are predicted to be closer to their optimal fitness, and

hence they may not have to adapt as much as species with

small population sizes (Lourenço et al. 2013).

At the next level down, there appears to be variation in

the rate of adaptation between genes. This is in part due

to differences in function, with genes involved in immunity

(Clark et al. 2003; Chimpanzee Sequencing and Analysis

Consortium 2005; Nielsen 2005; Sackton et al. 2007; Obbard

et al. 2009), interaction with viruses (Enard et al. 2016), and

male reproductive success (Pröschel et al. 2006; Haerty et al.

2007) having higher rates of adaptive evolution. Other factors

also seem to be important, with the rate of adaptive evolution

being higher in genes that recombine frequently (Presgraves

2005; Betancourt et al. 2009; Arguello et al. 2010; Mackay

et al. 2012; Campos et al. 2014; Castellano et al. 2016;

Moutinho et al. 2019), are located in regions of the genome

with low functional DNA density (Castellano et al. 2016), have

high mutation rates (Castellano et al. 2016), and reside on the

X-chromosome (Langley et al. 2012; MacKay et al. 2012;

Campos et al. 2014). Genes that have lower expression levels

(P�al et al. 2001; Rocha and Danchin 2004; Subramanian and

Kumar 2004; Wright et al. 2004; Lemos et al. 2005) or shorter

coding sequence length (Zhang 2000; Lipman et al. 2002; Liao

et al. 2006), also seem to have higher rates of adaptation.

Finally, there appears to be variation at the site level. This

variation has been widely documented in site-level tests that

compare the rate of nonsynonymous with synonymous sub-

stitution (Liberles et al. 2012). A number of factors seem to

affect rates of adaptive evolution at the site level including

protein secondary structure (Goldman et al. 1998; Guo et al.

2004; Choi et al. 2006) and the relative solvent accessibility

(RSA) (Goldman et al. 1998; Choi et al. 2006; Lin et al. 2007;

Franzosa and Xia 2009); RSA is a measure of how buried an

amino acid is. In both Drosophila and Arabidopsis species, the

rate of adaptive nonsynonymous substitution is positively cor-

related to the RSA (Moutinho et al. 2019). This suggests that

amino acids on the surface of a protein have higher rates of

adaptive substitution than those that are buried (Perutz et al.

1965; Overington et al. 1992; Goldman et al. 1998;

Bustamante et al. 2000; Dean et al. 2002; Choi et al. 2006;

Lin et al. 2007; Conant and Stadler 2009; Franzosa and Xia

2009; Ramsey et al. 2011). It has also been shown that amino

acids that differ substantially in their physio-chemical proper-

ties, have lower rates of adaptive evolution than those that

are more similar (Bergman and Eyre-Walker 2019; though see

Gojobori et al. 2007; Chen et al. 2019). Finally, Bergman and

Eyre-Walker (2019) also showed that amino acids pairs that

are subject to high levels of negative selection have lower

rates of adaptive substitution; they measured the level of neg-

ative selection using the ratio of the number of nonsynony-

mous to synonymous polymorphisms, pN/pS.

Many of the analyses discussed above used methods based

on the McDonald–Kreitman test (McDonald and Kreitman

1991) to infer the rate of adaptive evolution (Boyko et al.

2008; Eyre-Walker and Keightley 2009; Galtier 2016). In these

methods, evolution at sites subject to selection is compared

with that at putatively neutral sites, using both polymorphism

and divergence data; the site frequency spectrum (SFS), de-

rived from the polymorphism data, is used to infer the distri-

bution of fitness effects (DFE), and the DFE is then used to

predict how many neutral or deleterious substitutions are

expected at the selected sites between the two species. If

more divergence is observed than expected, then adaptive

evolution is inferred and quantified. It has however, been

appreciated for a long time that population size change can

lead to biased estimates of the rate of adaptive evolution

(McDonald and Kreitman 1991; Eyre-Walker 2002). If the

current effective population size, from which the polymor-

phism data are sampled, is larger than that during divergence,

then rates of adaptive evolution will be overestimated (Eyre-

Walker 2002). This is because slightly deleterious mutations,

which might have been fixed during the divergence phase, no

longer segregate because selection is more effective in the

current larger population size. If the effective population

size during the divergence phase is greater than the current,

the rate of adaptive evolution tends to be underestimated.

Population size change might also affect the relationship be-

tween the estimated rate of adaptive evolution and a genomic

variable. Here, we explore this possibility theoretically and show

that population size change induces an apparent correlation

between the rate of adaptive evolution and any genomic vari-

able that is correlated to the mean strength of selection acting

against deleterious mutations, even when no adaptive evolution

has occurred. Hence, some of the correlations that have been

observed between the rate of adaptive evolution and another

variable could in fact be an artifact of population size change.

Humans and chimpanzees present an interesting case

because both ancestral and current effective population

sizes have been estimated, and these two species appear

to have undergone a substantial decrease in their effective

population size since they diverged (Hobolth et al. 2007;

Burgess and Yang 2008; Prado-Martinez et al. 2013;

Schrago 2014). Here, we consider whether the rate of

Soni et al. GBE

2 Genome Biol. Evol. 14(2) https://doi.org/10.1093/gbe/evac022 Advance Access publication 10 February 2022



adaptive evolution between humans and chimpanzees is

correlated to several site level factors previously shown to

be particularly important in other species—RSA and various

measures of the difference between amino acids—and we

investigate whether the apparent correlations could be an

artifact of the decrease in effective population size. What

we discover is the opposite. The decrease in effective pop-

ulation size is predicted to generate correlations that are

contrary to those we observe, suggesting that the rate of

adaptive evolution is genuinely correlated to a number of

different genomic variables at the site level.

Results

Theory

It is well established that MK-type methods lead to biased

estimates of the rate of adaptive evolution if the effective

population size differs between the divergence and polymor-

phism phases (McDonald and Kreitman 1991; Eyre-Walker

2002). Could changes in effective population size also artifac-

tually affect the relationship between the rate of adaptive evo-

lution and another genomic variable, such as the difference in

physico-chemical properties between two amino acids?

Let us assume that synonymous mutations are neutral and

nonsynonymous mutations are neutral or subject to negative

selection. The ratio of the nonsynonymous to synonymous

substitution rates x ¼ xa þ xna, where xa and xna are the

rate of adaptive and nonadaptive nonsynonymous substitu-

tion relative to the rate of synonymous substitution, which is

an estimate of the mutation rate under this model. Hence,

xa ¼ x� xna: (1)

If we assume that all nonsynonymous are deleterious with

effects drawn from a gamma distribution then:

x � k

Nd�sð Þb
(2)

(Welch et al. 2008, equation 23) where Nd is the effective

population size during the divergence phase, k is a constant, b
is the shape parameter of the gamma distribution, and�s is the

mean absolute strength of selection acting against deleterious

mutations.

We can also write a simple expression for xna. This is esti-

mated in MK type approaches from polymorphism data, us-

ing the SFS at synonymous and nonsynonymous sites, to

estimate the DFE at nonsynonymous sites. This DFE is then

used to infer xna. Hence,

xna ¼
k

Np�s
� �b ; (3)

where Np is the effective population size pertaining to the

polymorphism data.

Substituting equations (2) and (3) into (1), we get an ex-

pression for the estimated value of xa,

x
0

a ¼
k

Nd�sð Þb
� k

Np�s
� �b ¼ k Np�s

� �b � Nd�sð Þb
� �

Np�s
� �b

Nd�sð Þb

¼
k Np=Nd

� �b � 1
� �

Np�s
� �b: (4)

From this equation, it is evident that x
0
a > 0 if Np > Nd, and

x
0
a < 0 if Np < Nd as we expect. However, of more interest is

the fact that the over- or under-estimation of xa depends on
�s, the mean strength of selection acting against deleterious

mutations. With population size expansion, we predict that

xa will be overestimated but that the magnitude of this over-

estimation will decrease as the mean strength of selection

increases. Conversely, with population size contraction, xa

will be under-estimated and this underestimation will diminish

as the mean strength of selection increases. Hence, under

population size expansion, we expect a negative correlation

between x
0
a and any variable that is correlated to the mean

absolute strength of selection acting against deleterious

mutations and a positive correlation with population contrac-

tion, if there is no adaptive evolution.

If we note that,

pN

pS
¼ m

Np�s
� �b (5)

(Welch et al. 2008, equation 26), where m is a constant which

depends on how many chromosomes have been sampled

and a scaling factor, then equation (4) can be rewritten as:

x
0

a ¼ k
Np=Nd

� �b � 1

m

 !
pN

pS
(6)

.Hence, we expect x
0
a to be positively and linearly correlated to

pN/pS if there was population size expansion and negatively

correlated if there has been contraction and there is no adap-

tive evolution occurring.

An alternative measure of the rate of adaptive evolution is

the proportion of substitutions that are fixed by positive se-

lection. Under our model, this becomes:

a
0 ¼ xa

x
¼ 1� Nd

Np

� �b

(7)

.As expected, if Np > Nd then a0 > 0, and if Np < Nd

then a0 < 0, however the magnitude of this bias is indepen-

dent of the strength of selection acting upon deleterious

mutations.

What do we expect if there has been adaptive evolution?

Let the rate of adaptive evolution, relative to the mutation

rate, potentially be a function of the mean strength of

Changing Population Size in McDonald–Kreitman Style Analyses GBE
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selection acting against deleterious mutations, A �sð Þ: Then

equation (2) becomes:

x � k

Nd�sð Þb
þ A �sð Þ; (8)

which leads to a revision of equations (4) and (6):

xa ¼
k Np=Nd

� �b � 1
� �

Np�s
� �b þ A �sð Þ

xa ¼
Np=Nd

� �b � 1

m

 !
pN

pS
þ A �sð Þ:

Thus, if the rate of adaptive evolution is independent of the

mean strength of selection acting against deleterious muta-

tions, that is, A �sð Þ ¼ a; then it is evident that our predictions,

derived under the assumption of no adaptive evolution,

hold—that is, population contraction will induce an artifactual

positive correlation between x
0
a and a variable that is corre-

lated to the mean strength of selection against deleterious

mutations. If the rate of adaptive evolution is correlated to

the mean strength of selection, then this will tend to either

increase or decrease the strength of the relationship.

Data Analysis

Given the theoretical predictions derived above, is it of interest

to examine patterns of adaptive evolution in the divergence of

humans and chimpanzees, two species for which we know a

substantial amount about their long-term demographic his-

tory; they appear to have undergone a population size con-

traction since they split. We have investigated whether several

site-level factors affect the rate of adaptive and nonadaptive

evolution in hominids—RSA, and measures of physico-

chemical dissimilarity (volume and polarity) and an estimate

of the average level of negative selection acting on mutations

between two amino acids (pN/pS). We measure the rates of

adaptive and nonadaptive evolution using the statistics xa

and xna, which are respectively estimates of the rate of adap-

tive and nonadaptive evolution relative to the mutation rate.

Both statistics were estimated using an extension of the

McDonald–Kreitman method (McDonald and Kreitman

1991) taking into account the influence of slightly deleterious

mutations. We use the method implemented in GRAPES

(Galtier 2016), which is a maximum likelihood implementa-

tion of the second method proposed by Eyre-Walker and

Keightley (2009).

Relative Solvent Accessibility

Previous studies have shown that amino acid residues at the

surface of proteins evolve faster than those at the core

(Goldman et al. 1998; Choi et al. 2006; Lin et al. 2007;

Franzosa and Xia 2009). These studies do not distinguish

whether this higher substitution rate is due to reduced selec-

tive constraints on exposed residues or an increased rate of

adaptive substitutions (or both). Moutinho et al. (2019) dis-

entangled these effects by estimating both the rates of adap-

tive and nonadaptive evolution across several RSA categories

in Drosophila and Arabidopsis, finding positive correlations

between RSA and the rates of both adaptive and nonadaptive

substitution. Their findings suggest that both reduced nega-

tive selection and a higher rate of adaptive evolution operate

on more exposed residues. We find a significant correlation

between the rate of adaptive evolution and RSA (r¼ 0.486,

P< 0.001) when we use a weighting by the reciprocal of the

variance of the rate of adaptive or nonadaptive evolution.

However, the correlation with the rate of nonadaptive evolu-

tion is nonsignificant (r¼ 0.001, P¼ 0.324) (fig. 1). To check

that our grouping scheme did not adversely affect our results,

we repeated our analysis randomly allocating genes to RSA

bins, estimating the rate of adaptive evolution and re-

estimating the slope of the relationship between xa and

xna; in none of 100 randomized data sets did we see a cor-

relation as strong as that observed for xa in the real data.

Amino Acid Dissimilarity

To investigate whether the rates of adaptive and nonadaptive

evolution are affected by amino acid dissimilarity, we

FIG. 1.—Estimates of xa and xna plotted against mean relative solvent

accessibility. Data binned into 20 RSA bins of roughly equal number of

sites. For each analysis, a weighted linear regression is fitted to the data.

The respective significance of each correlation is shown in the plot legend

(*P<0.05; **P<0.01; ***P<0.001; “.” 0.05� P<0.10). Regression is

weighted by the reciprocal of the variance for each estimate of xa and

xna, which were estimated by bootstrapping the data by gene 100 times

for each data point.
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estimated xa and xna between all 75 pairs of amino acids that

are separated by a single mutational step in hominids.

Bergman and Eyre-Walker (2019) found negative correlations

between measures of amino acid dissimilarity (differences in

volume and polarity) and xa between Drosophila species. We

find that the rate of adaptive substitution is significantly neg-

atively correlated to Dvolume (r¼�0.290, P¼ 0.018) and

Dpolarity (r ¼�0.269, P¼ 0.027) (fig. 2a and b) when we

fit a weighted linear regression to the data, suggesting that

the rate of adaptive evolution is higher between more phys-

iochemically similar amino acids. Similar negative correlations

are observed for the rate of nonadaptive evolution (Dvolume:

r¼�0.545, P< 0.001; Dpolarity: r¼�0.170, P< 0.001);

these correlations remain highly significant (P< 0.001 in

both cases) even if the four datapoints in the top left-hand

corner are removed. The slopes are significantly steeper for

xna than xa (table 1); however, this appears to be simply

because rates of nonadaptive evolution are greater than rates

of adaptive evolution; when we divide xa and xna by their

means, the slopes are not significantly different (table 1).

The difference in polarity and volume are not significantly

correlated to each other (r¼ 0.122, P¼ 0.258), so it seems

likely that both Dvolume and Dpolarity have an influence over

the rate of adaptive and nonadaptive evolution. A multiple

regression confirms this for xna with both factors being highly

significant and of similar influence, as judged by standardized

regression coefficients (Dvolume bs¼�0.29, P¼ 0.015;

Dpolarity bs¼�0.31, P¼ 0.008). For xa, only Dpolarity is sig-

nificant (Dvolume bs¼�0.19, P¼ 0.14; Dpolarity bs¼�0.27,

P¼ 0.036); the loss of significance for Dvolume is probably

due to a loss of power due to lack of data; in multiple

regression, we are effectively holding one variable constant

and testing whether the other remains significant.

Volume and polarity reflect only two of the multiple ways

in which amino acids differ. As an alternative measure of

amino acid dissimilarity, Bergman and Eyre-Walker (2019)

suggest using the ratio of nonsynonymous to synonymous

polymorphism; pN/pS is expected to decrease as the strength

of selection against deleterious mutations increases. We find

that hominids are consistent with this expectation as pN/pS is

negatively correlated with both amino acid volume difference

(r¼�0.456, P< 0.001) and polarity difference (r ¼�0.269,

P¼ 0.047). Polymorphism data are used to estimate both

the rates of adaptive and nonadaptive substitution, meaning

that pN/pS is not statistically independent of either measure.

To account for this source of sampling error, we follow the

method of Bergman and Eyre-Walker (2019), resampling the

SFS using a hypergeometric distribution to generate two in-

dependent spectra. One of these is used to estimate pN/pS

(referred to as pN2/pS2) and the other is used to estimate xa

and xna, therefore removing the nonindependence between

pN/pS and xa and xna. We find that xa is positively correlated

to pN1/pS1 (r¼ 0.419, P< 0.001) in hominids, consistent with

previous findings in Drosophila (Bergman and Eyre-Walker

2019). Consistent with our physico-chemical dissimilarity cor-

relations, xna also shows a positive correlation with pN1/pS1.

The correlation is stronger and the slope steeper than we see

for xa (r¼ 0.882, P< 0.001) (fig. 2c and table 1); however, if

we divide xa and xna by their means, we find that the slopes

are no longer significantly different (table 1).

It is possible that the correlations between xa and xna and

various site level factors are interrelated; for example, the

FIG. 2.—The adaptive and nonadaptive substitution rate plotted against the difference in (a) volume, (b) polarity, and (c) the ratio of nonsynonymous to

synonymous polymorphisms, pN2/pS2, for 75 pairs of amino acids In (c), the polymorphisms are split by sampling from a hypergeometric distribution, with one

set used to calculate rates of adaptive and nonadaptive substitution and the other to estimate the polymorphism statistics. A weighted linear regression is

fitted to the data, weighted by the variance of each estimate. The respective significance of each correlation is shown in the legend (*P<0.05; **P<0.01;

***P<0.001; “.” 0.05� P<0.10).
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positive correlation between xa and RSA might be due to

amino acids that are found exposed on the surface of proteins

being one mutational step closer to similar amino acids.

However, there is no correlation between the average RSA

of an amino acid and the average difference in volume or po-

larity to its one mutation step neighbors (RSA-Dvolume:

r ¼�0.171, P¼ 0.471; RSA-Dpolarity: r¼ 0.059, P¼ 0.803—

supplementary fig. S1, Supplementary Material online).

Biased Gene Conversion

Biased gene conversion can potentially impact estimates of the

rate of adaptive evolution, since it increases the fixation prob-

ability of Weak (W) to Strong (S) alleles relative to S>W neu-

tral alleles, more than it increases levels of W> S

polymorphisms relative to S>W polymorphisms; a problem

exacerbated by differences in base composition between syn-

onymous and nonsynonymous sites (Galtier and Duret 2007;

Berglund et al. 2009; Ratnakumar et al. 2010; Rousselle et al.

2020). To investigate whether the correlation between the

rates of adaptive and nonadaptive evolution and our measures

of amino acid dissimilarity are due to BGC, we restricted the

analysis to polymorphisms and substitutions that involve nu-

cleotide changes that are unaffected by BGC—that is, A<>T

and G<>C changes. This reduces our data set substantially

by removing 80% of our substitutions and polymorphisms

and reducing the amino acid analysis to just 12 amino

acid pairs. However, we find that the correlations between

xa, RSA, Dvolume, and pN/pS all remain significant with

only the correlation to Dpolarity becoming nonsignificant

(RSA: r¼ 0.260, P< 0.05; Dvolume: r ¼�0.576, P< 0.01;

Dpolarity: r ¼�0.166, P< 0.1; pN2/pS2: r¼ 0.796,

P< 0.001); the correlations between the rate of nonadaptive

evolution, xna, and Dvolume and pN2/pS2 remain significant

(RSA: r¼ 0.011, P¼ 0.370; Dvolume: r¼ 0.513, P< 0.01;

Dpolarity: r¼ 0.115, P¼ 0.150; pN2/pS2: r¼ 0.804, P< 0.001).

Are the Correlations Artifactual?

In summary, we have shown that xa is significantly positively

correlated to RSA and pN/pS, and negatively correlated to the

difference in polarity and volume. Could these correlations

be explained as an artifact of population size contraction?

The method we have used to estimate xa generates an esti-

mate of the mean absolute strength of selection acting

against deleterious mutations. We find that log(j�sj) is posi-

tively correlated to Dvolume (r¼ 0.205, P¼ 0.08) and

Dpolarity (r¼ 0.310, P¼ 0.008) and significantly negatively

correlated to pN/pS (r ¼�0.880, P< 0.001) but there is no

correlation with RSA (r ¼�0.088, P¼ 0.704) (fig. 3). Thus,

if there was no adaptive evolution, or the rate of adaptive

evolution was independent of the variable being investigated

(e.g., the difference in polarity), then we would expect xa

to be positively correlated to the difference in volume and

polarity, and negatively correlated to pN/pS. In fact, we ob-

serve the opposite pattern in each case suggesting that these

correlations are not an artifact of population size contraction,

but are genuine.

Comparison to Drosophila

It is of interest to ask how the slopes of the relationships

between xa and each factor compares with those previously

estimated in Drosophila species (Bergman and Eyre-Walker

2019; Moutinho et al. 2019). We find that the slope is not

significantly different for RSA, Dvolume, and Dpolarity.

However, the slope between xa and pN/pS is much steeper

in Drosophilids than in hominids (table 2). This might be be-

cause of population contraction. For each genomic variable,

population size contraction is expected to reduce the slope of

the relationship between xa and the factor in the human–

chimp comparison, except for RSA which is not correlated to

the mean strength of selection. However, the relationship

between log(j�sj) and pN/pS is much stronger and steeper

than for the other variables; if we standardize the variables

by subtracting the mean and dividing by the standard devia-

tion the slopes between log(j�sj) and each factor are:

RSA¼�0.101, Dvolume b¼ 0.862, Dpolarity, b¼ 1.30, pN/

pS¼�3.90. Hence, we might expect population contraction

to have a disproportionate effect on the relationship between

xa and pN/pS.

Table 1

The Slope of the Relationship between xa and xna and the DVolume and DPolarity; Rescaled Values Are Where xa and xna Have Been Divided by Their

Means

xa xna

Statistic Rescaled Slope SE Slope SE Sig.

DVolume No �0.00027 0.000098 �0.00009 0.00026 0.012

DPolarity No �0.0064 0.0020 �0.0020 0.0054 0.010

pN/pS No 0.060 0.020 0.41 0.021 0.000

DVolume Yes �0.0054 0.0020 �0.0020t 0.0013 ns

DPolarity Yes �0.13 0.042 �0.042 0.027 ns

pN/pS Yes 1.3 0.41 2.0 0.10 ns

NOTE.—Significance was measured using an analysis of variance.
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Discussion

One of the main weaknesses of the methods that estimate

the rate of adaptive evolution using a McDonald–Kreitman

type approach is their sensitivity to changes in the effective

population size. With an expansion in population size, these

methods overestimate the rate of adaptive evolution, and

FIG. 3.—Log(meanS) plotted against (a) volume difference, (b) polarity difference, (c) pN2/pS2, (d) mean RSA. The respective significance of each

correlation is shown in the plot legend, (*P<0.05; **P<0.01; ***P<0.001; “.” 0.05� P<0.10) based on an unweighted regression fit to the data.

Table 2

Slopes of the Regressions between xa and Measures of Amino Acid Dissimilarity in Hominid and Drosophila Data Sets

Hominids (This Analysis) Drosophila (Bergman and Eyre-Walker 2019) Sig.

Data Set Independent

Variable

Slope SE of Slope Slope SE of Slope

Original RSA 0.13 0.029 0.078 0.0065 ns

Original DVol �0.00026 0.00010 �0.00027 0.000061 ns

Original DPol �0.0064 0.0020 �0.0047 0.0011 ns

Original pN/pS 0.061 0.019 0.29 0.029 <0.001

Rescaled RSA 1.6 0.36 1.6 0.13 ns

Rescaled DVol �0.0054 0.0020 �0.011 0.0024 ns

Rescaled DPol �0.13 0.042 �0.18 0.041 ns

Rescaled pN/pS 1.3 0.40 11 1.1 <0.001

NOTE.—In the rescaled analyses, the xa values have been divided by their mean. The slopes for the Drosophila analysis were obtained from the results supplied by Bergman
and Eyre-Walker (2019).
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with a contraction, they underestimate it (Eyre-Walker 2002).

Here, we demonstrate an additional problem. MK-style meth-

ods are also susceptible to producing artifactual correlations

between the rate of adaptive evolution, scaled relative to the

mutation rate, and another variable, such as amino acid dis-

similarity, if that variable is correlated to the mean absolute

strength of selection acting against deleterious mutations.

This then might call into question previous correlations of

this type. For example, it has been observed that pN/pS, for

pairs of amino acids separated by one mutational step, is

negatively correlated to the mean strength of selection in

Drosophilids (Bergman and Eyre-Walker 2019). Hence, the

positive correlation between xa and pN/pS across pairs of

amino acids in these species (Bergman and Eyre-Walker

2019) could simply be an artifact of population size expan-

sion, although there is no evidence that population size ex-

pansion has affected the species involved. There might be no

adaptive evolution, and if there is adaptive evolution, its rate

may not be correlated to pN/pS. In future, attempts should be

made to estimate the mean strength of selection acting

against deleterious mutations and investigate whether this is

correlated to the factor in question; for example, if we are

investigating whether the rate of adaptive evolution is corre-

lated to the rate of recombination, we should investigate

whether the mean strength of selection is correlated to the

rate of recombination. If it is, then we should be cautious

about interpreting our results unless we know something

about the demographic history of the species.
Humans and chimpanzees are potentially useful because

both their ancestral and current effective population sizes

have been estimated; analyses suggest that the human–chimp

ancestral population size was considerably larger than the cur-

rent effective population size of either species (Hobolth et al.

2007; Burgess and Yang 2008; Prado-Martinez et al. 2013;

Schrago 2014). Given the observed correlations between

each factor and the mean strength of selection, we predict,

under population size contraction, that the correlations should

be opposite to those observed. Hence, it seems that the corre-

lations between xa and RSA, Dvolume, Dpolarity, and pN/pS are

all genuine, in hominids at least, and this lends support to the

notion that similar correlations in Drosophila and Arabidopsis

species are also real. However, some caution should be exer-

cised because although we know something about the effec-

tive population of the ancestral and current populations of

humans and chimpanzees, we know little about the population

size in between these timepoints. For example, the ancestral

population may have contracted after the species diverged and

subsequently re-expanded toward the present. Under this sce-

nario, the effective population during the divergence phase

could have been lower than that during the polymorphism

phase. Furthermore, changes in Ne affect neutral and selected

mutations differently (Otto and Whitlock 1997). Since, human

population sizes have increased dramatically recently, the effec-

tive population size for deleterious genetic variation is greater

than for neutral variation, because the deleterious mutations

are younger on average. It is therefore possible that the slightly

deleterious genetic variation, which can potentially bias MK-

style methods, has not experienced a smaller Ne during the

polymorphism relative to the divergence phase. However, this

seems unlikely; the current Ne for neutral variation is estimated

to be between 5- and 10-fold lower than the population size of

human–chimpanzee ancestor (Hobolth et al. 2007; Burgess and

Yang 2008; Prado-Martinez et al. 2013; Schrago 2014), and

the mutations that are most likely to affect the method to es-

timate the rate of adaptive evolution are weakly selected.

Population contraction leads to an underestimate of the

rate of adaptive evolution when using MK-style methods

(McDonald and Kreitman 1991; Eyre-Walker 2002). As a con-

sequence, Zhen et al. (2021) have argued that the rate of

adaptive evolution between humans and chimpanzees has

been underestimated, and that they have undergone higher

rates of adaptive evolution than Drosophila species. In fact,

the average of xa across amino acid pairs is significantly

higher in hominids than Drosophila (hominids, mean

xa ¼ 0.0488 [SE ¼ 0.0072]; Drosophila mean xa ¼ 0.0258

[SE ¼ 0.0024]; t-test t¼ 3.01, P< 0.001), so hominids seem

to be adapting faster relative to the mutation rate even with-

out taking into account population contraction. What is per-

haps surprising is that xa is not negative even when we

correlate it against factors that appear to influence it. The

observed value of xa is expected to be equal to:

xa obsð Þ ¼ xa trueð Þ þ xaðpredictedÞ; (10)

where xa trueð Þ is the true value, and xaðpredictedÞ is the

value predicted in the absence of adaptive evolution from

equations (4) or (6); that is, it is the bias in the estimate due

to the differences in the effective population size between the

divergence and polymorphism phases. For example, xa is pos-

itively correlated to RSA, however, even those sites with very

low RSA, have a positive estimate of xa.This seems surprising

and suggests that adaptive evolution is more prevalent than we

thought in hominids. However, predicting how much is difficult

because we do not know how the effective population size has

changed during the divergence of humans and chimpanzees.

We confirm the findings of Moutinho et al. (2019) with

respect to RSA—more exposed amino acid residues have

higher rates of adaptive evolution. Moutinho et al. (2019)

also showed that the rate of nonadaptive evolution is positively

correlated to RSA. These observations are consistent with two

models of evolution; either the fitness landscape is relatively flat

for more exposed residues, or the mutational steps are rela-

tively small. It is difficult to differentiate between these models.

We also confirm the results of Bergman and Eyre-Walker

(2019)—rates of adaptive and nonadaptive evolution are

lower between more dissimilar amino acids. It seems likely

that these correlations are due to the mutational steps being

smaller and hence that adaptive evolution proceeds via small
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steps in this component of evolution. Chen et al. (2019) ap-

parently came to a different conclusion but their analysis

largely focused on a statistic that is related to the proportion

of substitutions that are adaptive, and hence conflates the

pattern of adaptive and nonadaptive evolution. In fact, con-

sistent with their findings and those of Bergman and Eyre-

Walker (2019), we find the proportion of substitutions that

are adaptive is uncorrelated to either the difference in volume

or polarity (Dvolume: r ¼�0.012, P¼ 0.707; Dpolarity:

r¼ 0.0003, P¼ 0.314); however, the proportion is signifi-

cantly positively correlated to both pN1/pS1 (r¼ 0.20,

P¼ 0.046) and RSA (r¼ 0.44, P¼ 0.027).

In summary, we demonstrate that population size change

can lead to an artifactual correlation between a measure of

adaptive evolution and any variable related to the mean

strength of selection against deleterious mutations. Our anal-

ysis in hominids suggests that there are genuine negative

correlations between xa and amino acid dissimilarity and pos-

itive correlations between xa and RSA and a measure of neg-

ative selection acting on mutations between pairs of amino

acid mutations, because under population size contraction we

would expect the opposite.

Materials and Methods

Data

We obtained gene sequences from Ensembl’s biomart (Yates

et al. 2019) for the human GRCh38 genome build and for the

Pan_tro_3.0 chimpanzee genome build. Orthologous genes

were aligned using MUSCLE (Edgar 2004). After filtering out

genes with gaps that were not multiples of three, we were left

with 16,344 pairwise alignments. Numbers of synonymous

and nonsynonymous substitutions per site were obtained us-

ing PAML’s codeml (Yang 2007) program. We used polymor-

phism data from the African superpopulation of the 1000

genomes data set (1000 Genomes Project Consortium

2015) to construct our SFS, with rates of adaptive and non-

adaptive evolution estimated using Grapes (Galtier 2016), un-

der the “GammaZero” model. We chose African data

because the African population is thought to have undergone

less complex demographic changes then other human pop-

ulations (Gutenkunst et al. 2009; Gravel et al. 2011). We fit-

ted a weighted regression to our estimates of the rate of

evolution, weighting by the reciprocal of the variance for

each estimate of xa and xna. The confidence interval and

variance on our estimates of xa and xna were obtained by

bootstrapping the data set by gene 100 times.

RSA Analysis

In order to obtain structural information for each protein se-

quence, we ran BlastP (Sch€affer et al. 2001) to assign each

protein sequence to a PDB structure, and respective chain, by

using the “pdbaa” library and an E-value threshold of 10�10.

In instances of multiple matches, the match with the lowest E-

value was kept. The corresponding PDB structures were fur-

ther processed to only keep the corresponding chain per poly-

mer. PDB manipulation and analysis were carried on using the

R package “bio3d” (Grant et al. 2006). Values for solvent

accessibility (SA) per residue were obtained using the “dssp”

program with default options. To map SA values to each

residue of the protein sequence a pairwise alignment be-

tween each protein and the respective PDB sequence was

performed with MAFFT, allowing gaps in both sequences in

order to increase the block size of sites aligned. The final data

set comprised a total of 7,984,041 sites with SA information.

We computed the RSA by dividing SA by the amino-acid’s SA

area (Tien et al. 2013), giving us a final data set of 3,505,615

sites for which we have RSA information. These sites were

grouped into 20 RSA bins of roughly equal size in terms of the

number of sites, with rates of adaptive and nonadaptive evo-

lution estimated for each bin. These rates were correlated

with the mean RSA of each bin.

Amino Acid Dissimilarity Analysis

For the amino acid dissimilarity analysis, we followed the

methodology outlined in Bergman and Eyre-Walker (2019),

with amino acid polarity and volume scores taken from data

available in the AAindex1 database (Kawashima et al. 2007).

We compared the SFS for a particular amino acid pair with

synonymous data from 4-fold degenerate codons separated

by the same mutational step. For example, alanine and glycine

are separated by a single nucleotide change (C<>G at sec-

ond position). Therefore, we used the SFS and divergence for

all 4-fold degenerate codons separated by a single C<>G

mutational step in estimating xa and xna. For amino acids

separated by more than one mutational step (e.g., a C<>G

or an A<>T mutational step), we used a weighted average

SFS from the SFSs for the mutational types at 4-fold sites,

weighting by the frequency of the respective codons as in

Bergman and Eyre-Walker (2019).

For the analysis involving pN/pS, we used a hypergeometric

distribution to resample the SFS, and generate two SFSs, one

used to estimate rates of adaptive and nonadaptive evolution,

and one used to estimate pN/pS.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.

Data Availability

The analysis uses publicly available data. Scripts used to pro-

cess the data are available at https://github.com/vivaksoni/

site_level_factors_affecting_rates_of_evolution_in_hominids.
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