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Abstract

In comparative genomics, the rearrangement distance between two genomes (equal the minimal number of
genome rearrangements required to transform them into a single genome) is often used for measuring their
evolutionary remoteness. Generalization of this measure to three genomes is known as the median score (while a
resulting genome is called median genome). In contrast to the rearrangement distance between two genomes
which can be computed in linear time, computing the median score for three genomes is NP-hard. This inspires a
quest for simpler and faster approximations for the median score, the most natural of which appears to be the
halved sum of pairwise distances which in fact represents a lower bound for the median score.
In this work, we study relationship and interplay of pairwise distances between three genomes and their median
score under the model of Double-Cut-and-Join (DCJ) rearrangements. Most remarkably we show that while a
rearrangement may change the sum of pairwise distances by at most 2 (and thus change the lower bound by at
most 1), even the most “powerful” rearrangements in this respect that increase the lower bound by 1 (by moving
one genome farther away from each of the other two genomes), which we call strong, do not necessarily affect
the median score. This observation implies that the two measures are not as well-correlated as one’s intuition may
suggest.
We further prove that the median score attains the lower bound exactly on the triples of genomes that can be
obtained from a single genome with strong rearrangements. While the sum of pairwise distances with the factor
2/3 represents an upper bound for the median score, its tightness remains unclear. Nonetheless, we show that the
difference of the median score and its lower bound is not bounded by a constant.

Background
The number of large-scale rearrangements (such as rever-
sals, translocations, fissions, and fusions) between two gen-
omes is often used as a measure of their evolutionary
remoteness. The minimal number of such rearrangements
required to transform one genome into the other is called
rearrangement distance. Computing rearrangement dis-
tances between the genomes of interest is often a pre-
requisite for their comparative analysis (e.g., phylogeny
reconstruction).

Double-Cut-and-Join (DCJ) rearrangements [1,2] (also
known as 2-breaks [3]) represent a convenient model of
reversals, translocations, fissions, and fusions, which
allows one to compute the corresponding DCJ distance
between two genomes in linear time.
Phylogeny reconstruction for three given genomes

involves reconstruction of their median genome that
minimizes the total distance from the given genomes.
This minimal total distance, called the median score [4],
represents a natural generalization of the DCJ distance to
the case of three genomes. In contrast to DCJ distance
between two genomes, computing the median score of
three genomes is NP-hard [4,5]. While there exist exact
[6,7] and heuristic [8-10] algorithms for this problem,
they can hardly be used for large genomes. This inspires
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a quest for simpler and faster approximations for the
median score.
The simplest and easily computable approximation for

the median score of three genomes is given by the sum
of their pairwise DCJ distances, which we call the trian-
gle score. In this work, we study the tightness of this
approximation. In particular, we show that with the fac-
tor 1/2 it represents a lower bound and with the factor
2/3 it represents an upper bound for the median score.
We further prove that the lower bound is attained
exactly for the triples that can be obtained from a single
genome by strong rearrangements that increase the tri-
angle score by 2 (by moving one genome farther away
from each of the other two genomes). In other words,
strong rearrangements are those that increase the lower
bound by 1. From this perspective, it natural to expect
that strong rearrangements always increase the median
score. However, we disprove this expectation with a
counterexample.
While tightness of the upper bound remains unclear,

we remark that a better upper bound for the median
score may improve performance of algorithms for com-
puting median score based on the adequate subgraph
decomposition [6,7]. Still, we make an initial step in this
direction by proving that there is no upper bound equal
the lower bound plus a constant.

Methods
Breakpoint graphs and genome rearrangements
In this work, we focus on circular genomes consisting of
one or more circular chromosomes. A circular genome
on a set of n genes (say, {1, 2,..., n}) can be represented
as a perfect matching on 2n vertices [11,12] where each
gene is represented with a pair of vertices, correspond-
ing to the gene’s extremities: “head” and “tail"; while
each adjacency between two genes in the genome is
represented with an edge between respective extremities.
Breakpoint graph of genomes A1, A2,..., Ak, denoted BG
(A1,..., Ak) is defined as the superposition of k perfect
matchings representing given genomes, each of its own
color [12]. We refer to edges representing adjacencies in
the genome Ai as Ai-edges (i = 1, 2,..., k). When all gen-
omes A1, A2,..., Ak are identical, their breakpoint graph
is called an identity breakpoint graph. Every identity
breakpoint graph consists of trivial multicycles formed
by k parallel edges of all colors.
A DCJ rearrangement in genome A replaces a pair of

A-edges with another pair of A-edges forming matching
on the same four vertices. The DCJ distance between
genomes A and B on the same set of n genes, denoted
with ddcj(A, B), is defined as the minimal number of
DCJs required to transform one genome into the other.
The DCJ distance ddcj(A, B) is closely connected with
the number c(A, B) of alternating cycles (i.e., cycles with

edges of alternating colors) in the breakpoint graph BG
(A, B) by the formula: ddcj(A, B)= n - c(A, B). We
remark that c(A, B) may range from 1 to n, implying
that 0 ≤ ddcj (A, B) ≤ n - 1. A single DCJ in A or B can
change ddcj(A, B) by at most 1 [1,3,13].
Let A, B, C be genomes on a set of n genes. Their

breakpoint graph BG(A, B, C) is formed by A-edges,
B-edges, and C-edges so that each pair of genomes
define alternating cycles, called respectively AB-cycles,
AC-cycles, and BC-cycles (Figure 1). We further define
the triangle score ts(A, B, C) as the sum of pairwise DCJ
distances:

ts (A, B, C) = ddcj (A, B) + ddcj (A, C) + ddcj (B, C) .

Since a DCJ in one of the genomes can change each of
the two corresponding distances by at most 1, it can
change ts(A, B, C) by at most 2.
Lemma 1. Let A, B, C be genomes on the same set of n

genes such that ddcj(A, B) and ddcj(A, C) are less than n - 1.
Then in BG(A, B, C) there exists a pair of A-edges that
belong to two distinct AB-cycles and two distinct AC-cycles.
Proof. Since ddcj(A, B) <n - 1, there exist at least two

distinct AB-cycles in the breakpoint graph BG(A, B, C).
Therefore, the AB-cycles define a partition of the set of
A-edges SA into two or more nonempty subsets: SA = P1
∪ P2 ∪...
Similarly, since ddcj(A, C) <n - 1, there exist at least

two distinct AC-cycles in BG(A, B, C) so that the AC-
cycles define a partition of SA into two or more none-
mpty subsets: SA = Q1 ∪ Q2 ∪.... Intersecting the subsets
in the two partitions, we get a partition of SA into sub-
sets, each consisting of A-edges that belong to the same
AB-cycle and the same AC-cycle: SA = ∪i, j(Pi ∩ Qj).
Suppose that there is no required pair of A-edges,

implying that for any two non-empty intersections Pi ∩
Qj and Pi’∩ Qj’, we have either i = i’ or j = j’. Without loss
of generality, assume that P1 ∩ Q1 is non-empty. Then
for every i > 1 and j > 1, Pi ∩ Qj must be empty, implying
that Pi ⊂ Q1. In particular, P2 ∩ Q1 = P2 is non-empty
and by the same reasoning, we have P1 ⊂ Q1. Therefore,
Pi ⊂ Q1 for all i, implying that Q1 = SA, a contradiction to
non-emptiness of Q2. This contradiction proves that a
required pair of A-edges exists.
Theorem 2. If between three genomes A, B, C on the

same set of n genes at least two pairwise DCJ distances
are less than n - 1, then there exists a DCJ (called
strong) that increases ts(A, B, C) by 2.
Proof. Without loss of generality, we assume that ddcj

(A, B) <n - 1 and ddcj(A, C) <n - 1. By Lemma 1, there
are A-edges (x, y) and (u, v) that belong to distinct AB-
cycles and distinct AC-cycles in BG(A, B, C). Using any
DCJ on these edges (Figure 2), we decrease the number
of AB-cycles as well as the number of AC-cycles by 1.
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Figure 1 Breakpoint graph BG(A, B, C) of genomes A = (1)(2) (red edges), B = (1, 2) (blue edges), and C = (1, -2) (green edges), where
(1t - 1h - 2t - 2h - 1t) is an AB-cycle, (1t - 1h - 2h - 2t - 1t) is an AC-cycle, and (1t - 2h - 2t - 1h - 1t) is a BC-cycle.

Figure 2 A-edges (red) that belong to distinct AB-cycles and distinct AC-cycles, denoted by dashed blue lines and dashed green lines,
respectively (left panel). A DCJ on these A-edges merges these AB-cycles and AC-cycles into a single AB-cycle and a single AC-cycle, and thus
increases ts(A, B, C) by 2 (right panel).
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Since BC-cycles remain intact, this DCJ increases ts(A,
B, C) by 2.
Theorem 3. Let (p, q, r) be a triple of integers from the

interval [0, n - 1], satisfying the triangle inequality.
There exist three genomes on a set of n genes whose pair-
wise DCJ distances are (p, q, r). Moreover, these gen-
omes can be obtained with

⌊ p+q+r
2

⌋
strong DCJs and

possibly one other DCJ (when p + q + r is odd) from a
single genome.
Proof. Without loss of generality, we assume that p ≤

q ≤ r and that p = ddcj(A, B), q = ddcj(A, C), and r = ddcj
(B, C) where A, B, C are the genomes being constructed.
If p + q + r is even, we start with A, B, C being the

same genome and notice that

(
p, q, r

)
=

p + q − r
2

· (1, 1, 0) +
p + r − q

2
· (1, 0, 1) +

q + r − p
2

· (0, 1, 1)

where by the triangle inequality all coefficients are non-

negative. This identity instructs us to apply
p + q − r

2
strong DCJs to the genome A (increasing both ddcj(A, B)

and ddcj(A, C)),
p + r − q

2
strong DCJs to genome B, and

q + r − p
2

strong DCJs to genome C. Existence of such

strong DCJs is guaranteed by Theorem 2.
If p + q + r is odd, then we have p > 0 as otherwise the

triangle inequality would imply q = r and thus even p +
q + r. In this case we start with A, B, C being three gen-
omes with pairwise DCJ distances (1, 1, 1) such that BG(A,
B, C) consists of trivial multicycles, except for the vertices
1t, 1h, 2t, and 2h connected as in Figure 1. It is easy to see
that these genomes can be obtained from the same

genome by one strong DCJ and one non-strong DCJ. We
further increase the pairwise DCJ distances between gen-

omes A, B, C by (p’, q’, r’) = (p - 1, q - 1, r - 1) with p′+q′+r′
2

strong DCJs as above (notice that p’ + q’ + r’ is even and
(p’, q’, r’) satisfies the triangle inequality). Therefore, the
total number of strong DCJs in this case is

1 +
p′ + q′ + r′

2
=

p + q + r − 1
2

=
⌊

p + q + r
2

⌋
.

While all triples of pairwise DCJ distances are achiev-
able with strong DCJs, not all breakpoint graphs of
three genomes can be constructed from an identity
breakpoint graph this way. In particular, Figure 3 gives
an example of breakpoint graph BG(A, B, C) such that
ts(A, B, C) cannot be decreased by 2 with a DCJ. In this
example, we have ts(A, B, C) = 6 but there is no
sequence of three DCJs that would produce BG(A, B, C)
from an identity breakpoint graph.
In the next section we demonstrate how DCJs on

three genomes can affect their median score.

Strong rearrangements and median score
Median genome problem for given genomes A, B, C is to
find a genome (which is called median genome and may
not be unique) that attains the median score [4]:

ms (A, B, C) = min
M

ddcj(A, M) + ddcj(B, M) + ddcj(C, M).

The median problem can be alternatively posed as
finding the minimal number (equal ms(A, B, C)) of
DCJs required to transform the genomes A, B, C into a
single (median) genome (or, vice versa, to obtain A, B, C

Figure 3 Breakpoint graph BG(A, B, C) of genomes A = (1)(2)(3)(4) (red edges), B = (1, 2)(3, 4) (blue edges), and C = (1, -2)(3, -4) (green
edges) with the property that no DCJ can decrease ts(A, B, C) by 2.
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from a single genome). In fact, this formulation further
generalizes and becomes particularly useful for phylo-
geny reconstruction of a larger number of genomes [12].
From perspective of this formulation, it becomes

important to realize what triples of genomes can be
obtained from a single genome with strong DCJs. We
start with proving a helpful lemma and bounds on the
median score in terms of the triangle score.
Lemma 4. For three genomes on the same set of genes,

a DCJ in one of the genomes may change their median
score by at most 1.
Proof. Let A, B, C be genomes of the same set of

genes. Consider a DCJ in a genome A and denote the
resulting genome by A’. Let M be a median genome of
the genomes A, B, C so that

ms (A, B, C) = ddcj (A, M) + ddcj (B, M) + ddcj (C, M) .

Clearly, ddcj(A, M) ≥ ddcj(A’, M) - 1 and thus

ms (A, B, C) = ddcj (A, M) + ddcj (B, M) + ddcj (C, M)

≥ ddcj
(
A′, M

)
+ ddcj (B, M) + ddcj (C, M) − 1 ≥ ms

(
A′, B, C

) − 1,

i.e., ms(A’, B, C) - ms(A, B, C) ≤ 1. Symmetrically, we
also have ms(A, B, C) - ms(A’, B, C) ≤ 1 and thus |ms
(A, B, C) - ms(A’, B, C)| ≤ 1.
Theorem 5. For genomes A, B, C on the same set of

genes, we have

1
2

· ts (A, B, C) ≤ ms (A, B, C) ≤ 2
3

· ts (A, B, C) .

Proof. Consider a transformation of each of the gen-
omes A, B, C into a median genome with DCJs. The total
number of DCJs in this transformation is ms(A, B, C).
Since each DCJ decreases ts(A, B, C) by at most 2, we
have ts(A, B, C) ≤ 2 · ms(A, B, C), implying that 1/2 · ts
(A, B, C) ≤ ms(A, B, C).
On the other hand, the number of DCJs in any transfor-

mation of the genomes A, B, C into the genome A is at
least ms(A, B, C), implying that ddcj(B, A)+ddcj(C, A) ≥ ms
(A, B, C). Similarly, we have ddcj(A, B)+ ddcj(C, B) ≥ ms(A,
B, C) and ddcj(A, C)+ddcj(B, C) ≥ ms(A, B, C). Summing up
these three inequalities, we get 2 · ts(A, B, C) ≥ 3 · ms(A,
B, C) and thus ms(A, B, C) ≤ 2/3 · ts(A, B, C).
We remark that the lower bound and a slightly better

upper bound ms(A, B, C) ≤ min{ddcj(A, B) + ddcj(A, C),
ddcj(A, B) + ddcj(B, C), ddcj(A, C) + ddcj(B, C)} was also
used in [7].
The following theorem classifies all triples of genomes

for which the median score coincides with its lower
bound and links them with the genomes constructed in
Theorem 3.
Theorem 6. For genomes A, B, C on the same set of

genes, ms(A, B, C)= 1/2 · ts(A, B, C) if and only if A, B, C
can be obtained from a single genome with strong DCJs.

Proof. Suppose that ms(A, B, C)= 1/2 · ts(A, B, C). Let
M be a median genome of the genomes A, B, C. Then
A, B, C can be obtained from M with ms(A, B, C)= 1/2 ·
ts(A, B, C) DCJs. This transformation increases the tri-
angle score from ts(M, M, M) = 0 to ts(A, B, C). Since
each of 1/2 · ts(A, B, C) DCJs can increase the triangle
score by at most 2, they all must be strong.
Vice versa, suppose that A, B, C are obtained from a

single genome with strong DCJs. Lemma 4 implies that
a strong DCJ does not increase the difference between
the median score and its lower bound. Since the trans-
formation starts with the median score equal its lower
bound (i.e., their difference is 0), they further remain
equal along the whole transformation, resulting in ms(A,
B, C)= 1/2 · ts(A, B, C).
It remains unclear how tight is the upper bound given

in Theorem 5, while a better upper bound may improve
performance of algorithms for computing median score
based on the adequate subgraph decomposition [6,7].
Below we prove however that the upper bound cannot
be equal to the lower bound plus a constant.
Theorem 7. The difference ms(A, B, C) - 1/2 · ts(A, B,

C) of the median score and its lower bound is not
bounded from above by a constant.
Proof. To prove the theorem, for every n = 1, 2,..., we

will construct three genomes An, Bn, Cn on the same 4n
genes for which ms(An, Bn, Cn) - 1/2 · ts(An, Bn, Cn)= n.
We start with genomes A1 = (1) (2) (3) (4), B1 = (1, 2)

(3, 4), and C1 = (1, -2) (3, -4). The breakpoint graph BG
(A1, B1, C1) consists of two strongly adequate subgraphs
(Figure 3). We have ms(A1, B1, C1)= 4 and ts(A1, B1, C1) =
6, resulting in ms(A1, B1, C1) - 1/2 · ts(A1, B1, C1) = 1.
To construct BG(An, Bn, Cn) we take n copies of BG(A1,

B1, C1) and relabel their vertices appropriately. In particu-
lar, for n = 2 we get genomes A2 = (1) (2) (3) (4) (5) (6) (7)
(8), B2 = (1, 2) (3, 4) (5, 6) (7, 8), and C2 = (1, -2) (3, -4)
(5, -6) (7, -8). Since edges of a median genome do not con-
nect strongly adequate subgraphs of the breakpoint graph
[6,7], every copy of BG(A1, B1, C1) in BG(An, Bn, Cn) con-
tributes 4 to the median score. It is also clear that every
copy of BG(A1, B1, C1) contributes 6 to the triangle score,
implying that ms(An, Bn, Cn) - 1/2 · ts(An, Bn, Cn)= 4n -
3n = n.
We conclude our analysis with the last but not the

least observation about the lower bound 1/2 · ts(A, B, C)
≤ ms(A, B, C). According to Lemma 4, a DCJ in one of
the genomes A, B, C can either increase/decrease the
right hand side of this inequality (i.e., the median score)
by 1, or keep it intact. For a strong DCJ (moving one
genome farther away from each of the other two gen-
omes), the left hand side of the inequality is increased
by 1. From this perspective, it is very natural to expect
that a strong DCJ should also increase the median score
(e.g., it was so in the proof of Theorem 6). Surprisingly,
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this intuition fails: Figure 4 gives a counterexample of a
breakpoint graph of three genomes with a strong DCJ
that does not increase the median score.

Results and discussion
We studied two measures of evolutionary remoteness of
three genomes A, B, C: the triangle score ts(A, B, C) (equal
the sum of the pairwise rearrangement distances) and the
median score ms(A, B, C) (equal the minimum total rear-
rangement distance from a single genome). While com-
puting ts(A, B, C) takes linear time and computing ms(A,
B, C) is NP-hard, they are connected by the inequality
1/2·ts(A, B, C) ≤ ms(A, B, C) ≤ 2/3 · ts(A, B, C) (Theorem
5) giving the lower and upper bounds for the median
score in terms of the triangle score.
In view of the median genome problem as finding a

transformation of the given genomes into a single gen-
ome (or a reverse transformation of a single genome into
the given genomes) with the smallest number of genome
rearrangements, it is important to understand how rear-
rangements can change the median score and its bounds.
When A, B, C equal the same genome M, the median
score trivially coincides with its lower and upper bounds
as ts(M, M, M) = ms(M, M, M) = 0. Since each rearran-
gement may change the triangle score by at most 2 and

the median score by at most 1 (Lemma 4), we are parti-
cularly interested in strong rearrangements which
increase the triangle score by 2 (and thus increase the
lower bound by 1).
We showed that the median score attains its lower

bound (i.e., ms(A, B, C)= 1/2 · ts(A, B, C)) exactly on the
triples of genomes that can be obtained from a single
genome with strong rearrangements (Theorem 6). We
proved that strong rearrangements are common enough
to exist for any triple of genomes as soon as at least two
of their pairwise distances are smaller than the maximum
(Theorem 2) and to produce a triple of genomes with the
prescribed pairwise distances (Theorem 3). From this
perspective, it comes as a total surprise that strong rear-
rangements are not “powerful” enough to always increase
the median score as illustrated by the counterexample in
Figure 4. This counterexample implies that the median
score and the triangle score are not as well-correlated as
one’s intuition may suggest.
It remains unclear how tight is the upper bound for the

median score, while a better upper bound may improve
performance of existing algorithms for computing the
median score. Nonetheless, we made an initial step in
this direction by proving that there is no upper bound
equal the lower bound plus a constant (Theorem 7).

Figure 4 Left panel: Breakpoint graph of genomes A = (1, -6, -7, -8, -9, -10, -11)(2, 5, 4, 3) (red edges), B = (1, 8, 9, 10, 11)(2, 3, 4, 5, 6,
7) (blue edges), C = (1, -3, 4, 10, -8, 11, 9, 5, -7, 6, 2) (green edges), and their median genome M = (1, -6, -5, -2, -3, -4, -7, -10, -11, 8, 9)
(dashed edges) with ts(A, B, C) = 24 and ms(A, B, C) = 15. The pairwise DCJ distances are ddcj(A, B) = ddcj(A, C) = ddcj(C, B) = 8, ddcj(A, M) = 3,
ddcj(B, M) = 5, and ddcj(C, M) = 7. Right panel: Breakpoint graph of the same genomes A (red edges), C (green edges), and genome B’ = (1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11) (blue edges) obtained from B by a single fusion. The genomes A, B’, C have a different median genome M’ = (1, -3, -4, -5,
-2, -6, 7, -10, -11, 8, 9) (dashed edges) with the same median score ms(A, B’, C) = 15 and larger triangle score ts(A, B’, C) = 26. The pairwise DCJ
distances are ddcj(A, B’)= ddcj(C, B’) = 9, ddcj(A, C) = 8, ddcj(A, M’) = 4, ddcj(B’, M’) = 6, and ddcj(C, M’) = 5. The median genomes M and M’ were
computed with GASTS [14].
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