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INTRODUCTION

Environmental exposures often show a time-lagged association with outcomes [1–3]. Distributed lag
models have been used to capture such lag patterns by incorporating time-lagged values of exposures,
with the corresponding of the lag structure approximated by polynomials or splines [1, 4]. These
models require the correct input of cut-off time, or pre-specified window (hereafter termed lag
length), after which the association diminishes to a constant level, typically zero [5, 6]. However, lag
length is often unknown [5–7]. To fit distributed lag models without specifying lag length, we revisit
transfer functions (TFs), a method to specify time-lagged associations commonly used in
econometrics and introduced to epidemiology in 1991 [8–10]. We provide a case study to
capture the time-lagged association between weekly purchasing outcome of sugar-sweetened
drinkable yogurt and weekly-varying display promotion of these beverages, which is an
obesogenic food environmental exposure in supermarkets.

METHODS

TFs capture a time-lagged exposure-outcome association using a structural variable, denoted Et,
which summarizes the current association (at time t) and cumulative association (up to time t)
between the outcome variable Yt and time-lagged exposure variable Xt−1 + Xt−2 + Xt−3+... [8, 11]
(Supplementary Appendix S1). We illustrate a simple form of TF to capture a commonly observed
shape of lag pattern, a monotonically decreasing association of outcome and lagged exposure, often
called the Koyck decay [12]. Using the decay coefficient of lagged association λ up to lag h, the
decreasing associations are represented as

Et � βXt + λ1βXt−1 + λ2βXt−2 +/ + λhβXt−h,

which recursively reduces to

Et � βXt + λEt−1,
E0 � 0

The coefficient β captures the immediate association at time t, and the value of decay coefficient λ
closer to 1 implies a more persistent association over time (i.e., slower decay), while a value closer to
zero indicates a shorter lag [12, 13]. Constraining λ to be 0 < λ < 1 ensures the association
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monotonically decaying towards zero when the value of β is
positive (Supplementary Figure S1A), and previous studies also
imposed the decay towards zero [14, 15]. The variable Et is added
to a time-series regression for the outcome Yt to estimate β and λ
as Yt = Et + Ztγ + εt, where Zt represents a set of covariates and
intercept with coefficients γ, and εt represents the error term
[10, 13].

A visual interpretation of a lagged association combining these
coefficients is provided by an impulse response function (IRF),
representing the change of the outcome Yt+0 + Yt+1 + Yt+2 + . . . +
Yt+h to an impulse (one-unit increase of x at time t only), while
holding other variables constant [16]. The IRF of the Koyck decay
is β + βλ1 + βλ2 + . . . + βλh, visualized in Figure 1.

The general specification of the TF capturing various shapes of
lag structure is

Et � β0Xt−0 + β1Xt−1 . . . βpXt−p + λ0Et−0 + λ1Et−1 + . . . + λqEt−q

(1)
where the Koyck decay is captured by p = 0, q = 1 in Eq. 1 above.
More complex shapes are specified by higher values of p and q
(Figure 2; Supplementary Appendix S2), allowing
generalization to classical lag models, such as the Almon
polynomial [10, 17].

Unlike commonly used distributed lag models, TF models
obviates pre-specification of a lag length h, but require prior

biological and epidemiological knowledge to help select plausible
shapes of the lag (values of p and q). Deciding among candidate
shapes is facilitated by model selection using fit metrics such as an
information criterion [11].

CASE STUDY

The exposure is the weekly within-store display promotion of
sugar-sweetened food items that potentially exhibits time-lagged
association with the number of these items sold (outcome).
Display promotion is the temporary placement of items in
prominent locations to increase sales of (typically) ultra-
processed food [18]. Our food of interest is sugar sweetened
(not plain) drinkable yogurt, a hidden and important source of
dietary sugar among children [19, 20]. A time series of weekly
proportion of display-promoted sugar-sweetened drinkable
yogurt items (continuous exposure) and weekly sum of the
sales quantity of these items (continuous outcome) are
recorded from a large supermarket in Montreal, Canada over
T = 311 weeks (6 years). Supplementary Appendix S3 and
Supplementary Figures S2, S3 elaborate the definition of the
exposure and outcome.

The time-series regression used in this study is a dynamic
linear model [21, 22]. We added the structural variable, Et,
covariates, a seasonal term, and an intercept. We selected the

FIGURE 1 | Hypothetical impulse response function of the Koyck lag transfer function, with the rate and extent of decay being controlled by the value of the lag
parameter λ: (A) aweak decay returning to the baseline with a short lag (λ = 0.2): (B) amore persistent lag, i.e., slower decay (λ = 0.8). The value of the immediate effect, β,
at the time of exposure (x = 0) is 2.0 in both plots (Hypothetical function, 2022).

FIGURE 2 | Hypothetical impulse response function of (A) short-term negative association (a “dip” below zero) following the decay of positive association and (B)
delayed peak of positive association (Hypothetical function, 2022).
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Koyck lag TF (p = 0, q = 1) for Et, since the promotion exposure is
likely to have a monotonically decaying association with
purchasing [6]. The model was fit under the Bayesian
framework as described in Supplementary Appendix S4.

The estimated immediate effect of the TF β was 0.68 (95%
Posterior Credible Interval [CI]: 0.39–0.96), implying two-
fold increase in sales at week t, if all yogurt items were
display- promoted in the same week. The point estimate of
the decay coefficient λ was moderately strong: 0.47 (95% CI
0.20–0.72), as shown by the distinct lag in the estimated IRF
(Figure 3). Residual diagnostics indicate the absence of
temporally autocorrelated residuals (Supplementary
Figure S4).

DISCUSSION

Time-lagged exposure-outcome associations are of critical
interest in time-series analysis. We described TF modeling to
estimate lagged associations when lag length is unknown a priori.
Previous applications of TFs include environmental time-series
analysis to capture decaying associations between arbovirus
incidence and temperature [23] and interrupted time-series
analysis to capture the persistent effect of interventions [11,
24]. TF modeling requires pre-specification of the shape of a
lag structure from investigators’ prior knowledge followed by
their selection based on model fit. When such knowledge is
lacking, existing distributed lag models such as those using
splines allow data-driven estimation of the shape of lag. They
require the specification of lag length by model selection applied
to plausible lag lengths [25], by setting a long enough length to
cover the unobserved true lag window with a potential sacrifice of
precision [4], or alternatively estimating the lag length from data

[26, 27]. Limitations of TFs include challenges in selecting the
most appropriate shape of lag, when competing shapes show
similar model fit. Finally, a comprehensive evaluation of TFs to
capture lagged associations from simulated environmental health
data is warranted, including their capacities to capture non-linear
exposure-outcome associations by making β time-varying
(dynamic) or imposing non-linear structure to Et [17, 28].
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FIGURE 3 | The estimated impulse response function of display
promotion on the (natural log) sales of sugar-sweetened drinkable yogurt,
based on the lag parameters β and λ learned from the time-series of sales data
from a single store (Montreal, Canada, 2008–2013). The grey band
indicates pointwise 95% posterior credible interval. The immediate
association is displayed at lag 0 and is 0.68 (95% Posterior Credible Interval:
0.39–0.96), indicating that the immediate impact of display promotion is a
doubling of sales, since exp(0.68) = 1.97.
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