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Abstract

A frequent step in metagenomic data analysis comprises the assembly of the sequenced reads. Many assembly tools have
been published in the last years targeting data coming from next-generation sequencing (NGS) technologies but these
assemblers have not been designed for or tested in multi-genome scenarios that characterize metagenomic studies. Here
we provide a critical assessment of current de novo short reads assembly tools in multi-genome scenarios using complex
simulated metagenomic data. With this approach we tested the fidelity of different assemblers in metagenomic studies
demonstrating that even under the simplest compositions the number of chimeric contigs involving different species is
noticeable. We further showed that the assembly process reduces the accuracy of the functional classification of the
metagenomic data and that these errors can be overcome raising the coverage of the studied metagenome. The results
presented here highlight the particular difficulties that de novo genome assemblers face in multi-genome scenarios
demonstrating that these difficulties, that often compromise the functional classification of the analyzed data, can be
overcome with a high sequencing effort.
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Introduction

Metagenomics is an emergent field aimed at studying the

genomic material recovered directly from samples either

environmental or from living beings. Its main goal is to provide

a detailed view of the organism composition and functional

properties at different levels of the communities, particularly

bacterial ones, under study. Many microbial communities from

different environments have been studied during the last decades

using these techniques [1,2]. Recent development of high parallel

sequencing technologies has provoked a profound impact in this

field and has put metagenomic experiments within the range of

many microbiological laboratories in terms of budget, time and

work. The classic 16S rRNA surveys to quantify microbial

diversity has given way to metagenomic studies where the full

genomic content of the communities is sequenced to obtain the

bacterial composition and functional repertoire present in the

environment of interest. Because of this expansion of metage-

nomic research many tools to facilitate the taxonomical and

functional classification of these experiments have been devel-

oped in recent years (see for example, [2,3,4,5,6,7,8,9,10,11,12]

and the review in [13]).

The catalog of de novo genome assembly algorithms has been

adapted and expanded with the advent of the so-called next

generation sequencing (NGS) platforms. The higher amount of

DNA obtained, the shorter length of the produced reads, the

higher error rates in the sequences obtained compared with the

classical Sanger method and the particular characteristics of those

errors have prevented an easy adaptation of classic assembly

algorithms to work with NGS data (for a comprehensive review see

[14] and [15]). Almost all the assembly tools developed so far use

variations of three fundamental assembly strategies. The greedy

algorithm used by CAP3 [16], Phrap [17] and TIGR assembler

[18] is conceptually the simplest solution to genome assembly and

new tools tailored to NGS data have been developed recently like

SSAKE [19], SHARCGS [20] or VCAKE [21]. But maybe the

most popular algorithmic solution is the Overlap-Layout-Consen-

sus (OLC) algorithm used in the Celera Assembler [22], Arachne

[23,24], PCAP [25] or Mira to name a few. With the consolidation

of the NGS platforms, new tools based on this algorithm have

also emerged like Newbler, Minimus [26] or Edena [27]. More

recently, new strategies based on Eulerian paths (and in particular,

deBruijn graphs) have become popular hampered by the high

computational demanding imposed by the NGS data. The most

notable examples are Velvet [28], Euler [29], SOAPdenovo [30],

ABySS [31] and ALLPATHS [32].

All the abovementioned software targets the assembly of single

genomes where the fundamental problem is the presence of

repeated DNA fragments in the target sequence. This problem is

far from trivial and converts the assembly problem in unsolvable

without additional data like mate pair information. These

computational difficulties have lead to the adoption of many

different heuristic assemblers that convert them in very specialized

tools for the tasks they are conceived (the assembly of individual
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genomes) preventing an easy or direct adaptation to different

scenarios like metagenomic or cDNA analysis.

Although it has been shown that it is possible to reconstruct

almost complete genomes from very simple metagenomic samples

[33] the rationale behind metagenome assembly is to obtain

contigs to boost the accuracy of their functional and taxonomical

classification. But metagenome assembly has to face particular

difficulties, such as: i) the co-existence of related species and

multiple strains of the same species; ii) the particular restrictions of

the genome-oriented assemblers, for example uniform coverage is

usually expected by most of the assembly tools; iii) horizontal gene

transfer (HGT) events between co-existence species or iv) the high

diversity of starting genomic material to sequence that requires

a high sequencing effort. Despite these difficulties metagenomic

data is often assembled to improve its annotation (see for example

[34,35]) but the trade-off between the noise of the resulting contigs

(specially when short reads are used) and the gain in sequence

length has not been attended enough.

Recently, Mavromatis et al have studied the problem of me-

tagenomic assembly using simulated datasets of Sanger reads [36].

In the present study we address the problem of de novo short

read metagenome assembly using simulated data to provide a

comprehensive assessment of the current assembly technologies

and how this process affects the functional classification of the

assembled contigs.

Results

Simulations
In Mavromatis et al, Sanger reads from different genomes were

mixed to form three different simulated metagenomics datasets of

different complexity (low, medium and high, named as LC, MC

and HC respectively). In the LC dataset, a sizeable portion of the

reads belongs to a dominant organism, the MC dataset has a few

dominant organisms (some of them taxonomically related) and in

the HC dataset no dominant organism is present in the mix. These

datasets were used to assess the fidelity of different tools commonly

used for metagenomics analysis [36]. We have adapted these

artificial metagenomes to the typical length of current next-

generation sequencing technologies. The genomes present in our

simulated microbiomes were selected by picking up the same

species described in Mavromatis et al from the set of complete

genomes available at the NCBI repository. When one particular

strain was not found, we picked up a close relative (usually a

different strain). From these genomes we randomly sampled DNA

fragments maintaining the same genome coverage specified in

Mavromatis et al, but adapting the number of reads and their

length to meet the characteristics of current 454 and Illumina

technologies (400 bp and 110 bp, respectively). It is important to

note that the number of sequences and the taxonomical

distribution of these datasets (LC, MC and HC) are almost

identical and what really differs them is the relative abundance of

each organism in each simulated community (Table 1 and Figure

S1). To evaluate the sequencing effort in metagenome assembly

we also re-sampled the HC dataset with the coverage of each

genome ten times higher than in the original dataset (HChc

dataset). A total of 3,270,435 400 bp and 11,891,463 110 bp

fragments were generated for approximately 1,3 Gb of total

sequence of each type. All this sampling information is sum-

marized in Table 1 and the individual composition of each dataset

is presented in Dataset S1.

It is well known that one of the higher drawbacks of 454 and

Illumina technologies is their high rate of sequencing errors

compared to the Sanger technology [37,38]. In addition, the kind

of errors committed is characteristic of each technology. For 454

reads, problems in the determination of homopolymer lengths as

well as other more subtle biases (like carry forward and incomplete

extension events) have been described [37]. Some of these errors (in

particular, homopolymer length determination problems) can be

modeled and simulated in silico [38]. In real datasets, though, it has

been observed that more than 80% of the reads are error-free,

with most of the errors accumulating in the remaining 20% [39].

The error rate of the Illumina platform has been described to

be around 0.5–1% over the entire read, most of them being

substitution errors with a low number of insertions and deletions

[40]. The frequency of errors in Illumina reads is position

dependent and most of them accumulating at the 39 end of the

reads (.3% of errors). These kinds of errors have been previously

modeled following a fourth degree polynomial [41]. We applied

these errors models to our datasets (see methods) to test the

assemblers both in error-free simulations and with datasets

containing typical NGS errors.

Assembly
The metagenomes were assembled using different de novo short

read genomic assemblers. For the 400 bp simulations Newbler (the

‘‘official’’ 454 assembler from Roche) and Celera Assembler [22]

were used while for the 110 bp simulations we used SSAKE [19]

and Velvet [28]. Newbler is probably the most popular assembler

for 454 data, while the Celera Assembler has been used in big

genomic [22,42] and metagenomic projects [43,44] and has been

recently adapted to work with 454 sequences [45]. Both are based

on the OLC strategy. SSAKE follows a greedy algorithm and has

been also used to assembly metagenomic sequences while Velvet is

one of the most popular deBruijn based assemblers. All these

assemblers were run with options that allowed the traceability of

each read in the final contigs. This strategy allowed us to identify

and quantify misplaced reads in the final set of contigs. Basic

statistics for these assemblies are summarized in Tables 2 and S1.

Our results show that, as expected, the most affecting variables in

the assembly process are the complexity of the metagenome and

the read length (although the coverage between 110 bp and

400 bp datasets is the same). We compared this result with the

assembly of a real 454 oral microbiota dataset and found that both

the N50 and the length of the longest contigs are in accordance

with the assemblies of simulated data. This real population can be

considered of low complexity because it is dominated by a rather

small number of organisms that are highly represented (Belda P.

et al, under review). In all cases, the introduction of typical se-

quencing errors had a negative impact in the assembly process

Table 1. Summary of the simulated and real datasets used in
this study.

Number of
reads

Dataset
Number of
species

Number of
base pairs 400 bp 110 bp

LC 112 88 Mb 220288 801062

MC 110 107 Mb 269583 980312

HC 113 101 Mb 252754 919099

HC-hc 113 1,01 Gb 2527540 9190990

Oral ? 203 Mb 464594* -

*Mean length of reads of 438 bp.
doi:10.1371/journal.pone.0019984.t001
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(Table S1). Interestingly, Newbler seems to deal particularly well

with 454 homopolymeric length determination errors. For

Illumina datasets, the introduction of positional dependent errors

has a similar negative impact in both assemblers used.

Taxonomical analysis of contigs
The resulting contigs were assigned to the organism that

contributed the majority of its constituent reads. We then

calculated the proportion of reads miss-assembled in contigs as-

signed to another organism. As can be seen in Table 2, in the

error-free datasests, this proportion increases notably with the

complexity of the metagenome, ranging from 0.22% (LC as-

sembled with SSAKE) to 12.57% (HC assembled with Newbler).

Interestingly, we have not found differences in chimericity between

400 bp and 110 bp assemblies. These results are not affected by

changes in basic parameters of the assemblers like the kmer length

in SSAKE and VELVET and the minimum percentage identity

for unitigs in Celera and Newbler as explained in Methods (data not

shown). The assemblies using datasets with sequencing errors can

be considered worse based on N50 and length of the longest

contig, but, interestingly, only a modest increase in chimericity is

observe, suggesting that reads with errors are more likely to be left

out by the assembler instead of being used and misplaced in

chimeric contigs (Table S1).

We also calculated for each chimeric contig the taxonomic

lower common ancestor (LCA) of their reads. As can be seen in

Figure 1, most of the chimeric contigs formed by the Celera

Assembler and SSAKE are composed by species belonging to the

same genus or species while chimeric contigs formed by Newbler

and Velvet are composed by species belonging the the same family

or a deeper taxonomic rank. It is also noteworthy that for the LC

and MC datasets a sizeable number of chimeric contigs were

composed by organisms belonging to the same species or strain.

This is true regardless the length of the fragments (400 bp and

110 bp). For the HC dataset, though, the taxonomic relationship

of most of reads forming chimeric contigs raises to the genus level,

even when a high coverage sampling was used (HChc dataset).

This result shows the inherent difficulty of assembling complex

metagenomic populations even when the sequence space of the

population is exhausted. Similar results were obtained when the

datasets with induced errors were used (Figure S2) suggesting that

sequencing errors may have a small effect in the formation of

trans-chimeric contigs.

As can be seen in Figure S3 not all the taxonomically related

organisms are equally presented in the chimeric contigs. There

seem to be ‘‘hot spots’’ or groups of organisms that are the major

contributors to chimericity. Also, genomic coverage seems not to

be a relevant factor in the definition of these ‘‘hot spots’’ since they

are formed by high coverage organisms but also by low or medium

coverage organisms as well. The same ‘‘hot spots’’ covering the

same species can be reproduced when the clustering is done based

on whole-genomic sequence similarity instead of taxonomic

relationship (Figure S4), suggesting that sequence similarity is the

main cause of contig chimericity.

Sequence divergence
The presence of miss-assembled reads in a contig doesn’t

necessarily mean a significant divergence between the contig and

the reference sequence. To see to what extend miss-assembled

reads distort the consensus sequence of chimeric contigs with

respect to the original reference we compared all the contigs with

the genomes used for sampling and for the best hit, we calculated

their sequence divergence. In Figure 2, the number of errors per

base for each contig obtained with the Newbler (400 bp samples)

(Figure 2A) and Velvet (110 bp samples) (Figure 2B) assemblers is

plotted against the contig length showing that most of the errors

accumulate on short contigs. Again, this is highly dependent on

metagenome complexity, with the HC dataset having more errors

in its longer contigs.

Functional analysis
In metagenomics, it is widely assumed that longer contigs also

permits a better functional classification than the individual

reads, but the noise accumulated in chimeric contigs may act in

the opposite direction hiding real homologies and lowering the

sensitivity of homology searches. To study the impact of the

assembly process on functional classification of metagenomic data

we annotated the sampled ‘‘reads’’ and the assembled contigs

using the COG database [46] as described in Methods. For each

read we compared i) its COG classification reported in its geno-

me of origin (we call this the ‘‘real annotation’’), ii) its COG

classification using the read sequences as BLAST input (the

annotation at the read level) and iii) its COG classification using

the contig sequences as BLAST input and inferring their

annotation from their coordinates in the contig (the annotation

at the contig level) (see Methods). Following this approach, for

each read we compared the annotation of each fragment derived

from the genomic sequence, its annotation using the read sequence

itself and its annotation as being part of a contig. As can be seen in

Figure 3, in accordance to the assembly goal, a significant set of

reads can only be correctly annotated at the contig level and not at

the read level. There is, however, another set of reads that are

correctly annotated at the read level but can not be annotated at

the contig level probably due to assembly errors that may be

hiding real homologies.

Table 2. Summary of the assembly statistics of the simulated datasets.

Assembler LC MC HC HChc

N50
(bps)

Longest
contig
(bp)

% of
reads in
chimeras

N50
(bps)

Longest
contig
(bp)

% of
reads in
chimeras

N50
(bps)

Longest
contig
(bp)

% of
reads in
chimeras

N50
(bps)

Longest
contig
(bp)

% of
reads in
chimeras

400 bp Newbler 3685 31468 3.88 1883 23915 9.75 608 2848 12.57 1433 39814 5.74

Celera 5700 48060 1.65 1978 16971 4.71 588 3038 11.85 1676 46528 3.11

110 bp SSAKE 190 2011 0.22 181 4193 2.33 128 1822 6.02 129 6313 3.02

Velvet 181 3019 4.11 170 4210 7.15 141 2201 8.34 182 5925 5.49

Only contigs longer than the read size were considered.
doi:10.1371/journal.pone.0019984.t002
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For the 400 bp datasets it is surprising that the proportion of

reads that lose their annotation due to the assembly process is

similar (if not higher) than the proportion of reads that benefits

from the assembly process to be annotated. For instance, for the

MC dataset, the assembly with Newbler allow to annotate 10,672

reads that cannot be annotated at the read level, while 3,510 reads

that can be correctly classified at the read level, loses their

annotation at the contig level. For the HC dataset, the number of

reads that at the contig level lost their correct annotation is much

higher than the number of reads that benefits from the assembly

process to get their correct annotation. Interestingly, the increase

in coverage solves this problem as can be seen in the annotation of

the HChc dataset where most of the reads are correctly annotated

at the contig level.

When errors in the sequences were induced we didn’t observe a

significant increase in the proportion of mis-annotated reads

(neither at the read nor at the contig level). The number of

correctly annotated reads is slightly decreased both at the read

level and at the contig level, while the number of unassembled

reads is moderately increased. This result suggests that sequencing

errors affects more dramatically the assembly process than the

downstream functional classification of the contigs and this effect is

largely alleviated by the increase in coverage (Figure S5).

The majority of miss-annotated reads are in chimeric contigs

(71%) and these have a higher degree of chimericity (18%) than

correctly annotated contigs (0.4%). This result confirms that contig

chimericity is the main factor for miss-annotation of contigs. From

these results it also follows that there are also some miss-annotated

contigs that are not chimeric suggesting that other factors may be

contributing to this effect, for example miss-assemblies where all

the reads come from the same genome. Contigs that lead to miss-

annotation have similar mean length (3,216 bp) than contigs

correctly annotated (4,712 bp).

As for the 110 bp datasets, the percentage of reads annotated at

the read level is very low (for the HC dataset, only 52,317 out of

919,099 110 bp reads can be assigned to a COG category). This

makes that for all cases the annotation is always improved by the

assembly process. This improvement decreases with the complex-

ity of the metagenome, while the increase in coverage helps

substantially in the annotation of the reads at the contig level. In

particular, when the HChc dataset is assembled with SSAKE, only

1,911 reads (out of 9,190,990) are miss-annotated, while 1,932,014

reads not annotated at the read level are correctly annotated at the

contig level.

The incorporation of errors to the 110 bp datasets has a similar

impact than that observed for the 400 bp datasets with the

number of correctly annotated reads at the read and contig levels

being lowered.

We next investigated if the functional assignment of these

datasets accurately represents the functional content of the

genomes of origin. To achieve this we represented the deviation

between the functional distribution obtained for samples (based on

Figure 1. Taxonomic level of the lowest common ancestor of the chimeric contigs. (A) 400 bp and (B) 110 bp datasets respectively. N
stands for Newbler, C for Celera Assembler, S for SSAKE and V for Velvet.
doi:10.1371/journal.pone.0019984.g001
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the current annotation of the genomes), reads and contigs (based

on BLAST homologies against the COG database) with the

functional content of these entire genomes (Figure 4). In this

figure, the nearer the points are to the X axis (lower Y values), the

closer the tested functional distribution is from the functional

distribution of the genomes of origin. We observed that for the

400 bp datasets (Figure 4A), the functional analysis at the read

level (yellow dots) represents more accurately the COG distribu-

tion of the genomes sampled (red dots) than the assembled data

(green and blue dots) except for the HChc dataset, where the

fidelity of the annotation is slightly higher for the assemblies than

for the set of individual reads. Interestingly, the oversampling

doesn’t contribute to a better annotation at the read level (yellow

dots in HC and HChc), but it does affect dramatically the

annotation of the assembled contigs (green and blue dots).

As expected given the small percentage of reads that are

assembled or can be assigned to any functional category we obtain

higher divergences for the 110 bp datasets (Figure 4B). For the LC

and MC datasets the annotation at the read and contig level (yellow,

green and blue dots) are similar to the annotation of the samples (red

dots). For the HC dataset, though, there are substantial differences

between the BLAST annotations (reads and contigs) and the

annotation of the samples. As with the 400 bp datasets, over-

sampling does not affect the annotations at the read level, although

it has a dramatic effect in the annotation of the contigs as can be

seen in the HChc dataset where the overall COG annotation of

contigs is far more precise than the annotation at the read level.

When the datasets containing errors where analyzed (Figure S6)

a slightly higher discrepancy between the annotations and the real

distribution of COGs is observed.

All these results suggest that metagenome assembly is in some

cases of little help or even counterproductive in functional

annotation and that the sequencing effort may be crucial when

facing this kind of projects.

Discussion

The field of metagenomics is reaching important milestones

thanks to the new sequencing technologies appeared in the last

years. Specific tools and algorithms designed to aid in the

functional and taxonomical description of many different mi-

crobiomes have been actively developed during the last years

[2,6,8,10]. The 454 platform from Roche is being extensively used

in the characterization of many microbial communities (see for

example [47,48,49]) and more recently Qin et al have published

the most comprehensive resource to date of the human gut

metagenome from 124 individuals using the Illumina platform

[34]. Unfortunately metagenome assembly still relies largely on

tools targeting single microbial projects. As a result, metagenomic

sequences are often subject to further analysis as a collection of

short reads [13]. The only attempt to develop specific strategies to

deal with metagenomic data we are aware of is the MetaORFA

pipeline that relies on the EULER assembler [50] and the very

recently published Genovo tool [51] based on a probabilistic

model of read generation. Also, at the time of writing of this

manuscript we had notice of the development of a still unpublished

modified version of the Velvet assembler specially designed to

deal with metagenomic sequences (MetaVelvet, Namiki T et al,

unpublished). Not only the development of new algorithms for

metagenomic assembly has been elusive but also the assessment of

genomic assemblers with metagenomic data has been overlooked

systematically. Recently, Charuvaka et al have evaluated the

assembly of short (36 bp) reads using simulated datasets similar to

those used in our study. In their work, the authors assembled their

data with the ABYSS assembler, but no functional characteriza-

Figure 2. Sequence divergence degree of contigs with respect to the reference genomes. (A) Newbler (400 bp datasets) and (B) Velvet
(110 bp datasets) assemblies.
doi:10.1371/journal.pone.0019984.g002
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tion of the contigs was attempted [52]. This work seeks to throw

some light on the difficult and sometimes unpredictable process of

assembly metagenomic data sequenced with NGS technologies.

In the present study we used simulated reads obtained from

already complete sequenced genomes (see Methods). This strategy

allows us not only to know the origin of each read without

being worried about contamination but also to use the genome

annotations already available. In this way, we were able to

compare the functional annotation of individual reads and contigs

with that obtained from the completely assembled and anno-

tated genomes. We have used a mixed strategy analyzing sets

of sequences with and without the typical sequencing errors

produced by different platforms. The error-free datasets may seem

to provide an optimistic scenario although it has been reported

that the majority of sequences coming from these platforms (more

than 80% in the case of the 454 platform) are error-free with

sequencing errors accumulating in a small proportion of the reads

[39]. Moreover, quality filtering of the reads can increase

substantially the proportion of perfect reads. By using the same

datasets both with and without errors we are also able to analyze

the impact of these errors in the assembly process and in their

functional annotation. Interestingly, the Newbler assembler seems

to deal particularly well with typical 454 errors and this is more

pronounced when the assembler is fed in the native SFF format

from Roche (data not shown).

It has also been proposed several strategies to alleviate typical

problems in metagenomic assembly, like the pre-binning of the

metagenomic reads based on sequence characteristics (for example

frequency of n-mers) but to our knowledge this has not been

rigorously tested to date. Rusch et al [53] have also proposed

an ‘‘extreme assembly’’ method similar to a ‘‘greedy’’ algorithm

where overlaps that allow the extension of the contigs are favored,

but recruitment analysis to known genomes reveals the high

amount of chimeric contigs obtained with this method. In viral

metagenomes, it has been proposed the use of low-stringency

assemblies to accommodate the genomic heterogeneity inherent in

viral populations [54] reducing the number of viral types between

three and five times.

Our results highlight some of the major problems of

metagenome assembly. The degree of chimericity surpasses the

10% of the sampled ‘‘reads’’ in complex cases and because of the

close taxonomical distance of the reads that forms these chimeric

Figure 3. Functional annotation of the reads at different levels. (A) 400 bp and (B) 110 bp datasets respectively. The first column of each
group differentiates between reads lacking (yellow) or having (green) a real functional annotation in the genome (see Methods). For each of these
two categories, the second column differentiates between reads that lack (yellow) annotation or that have correct (green) or incorrect (red)
annotation at the read level. For these categories, the third and fourth column differentiates between reads having correct (green), incorrect (red) or
no (yellow) annotation at the contig level. Reads that are no present in the contigs are represented in the white boxes.
doi:10.1371/journal.pone.0019984.g003
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constructs, the pre-binning of the reads in OTUs prior to assembly

is not expected to be an effective solution. Moreover, the assembly

errors could prevent from a correct annotation of the contigs by

lowering the sensitivity of homology searches. Annotation through

profile databases like PFAM [55] or TIGRfam [56] may give

better results and this possibility may be worth trying.

As expected, the factors that most influence the assembly quality

are sample complexity, coverage and read length. A similar

observation has been made before using shorter reads [52].

Sample complexity is inherent to the community under study and

hence is not a variable in metagenomic experiments. The other

two should be carefully revised when facing these kinds of pro-

jects. We have demonstrated that some of the problems in the

annotation of high complex communities can be surpassed with an

increase in the sequencing effort, while the use of longer reads will

also help in their annotation.

In a previous study, Wommack et al have reported that a

significant amount of short (100 bp–400 bp) sequences derived

from longer Sanger reads (,750 bp) missed distant homologies

found with their longer counterparts [57]. Our results show a

similar correlation between read length and functional annotation

(Figure 3) and this is observed at the read and at the contig level

with the longer contigs having better annotations than the shorter

ones.

Results showed in Figure 2 also suggest to use only longer

contigs for metagenome annotation since these have fewer errors

when they are compared to their reference sequences. These long

contigs, though, only account for a small proportion of the

taxonomic and functional diversity of the sample. For this reason

restricting the analysis to those long contigs could incur in

annotation biases. We therefore advise against using only the

longer contigs if a functional profile of the metagenome is the goal

of the experiment.

At the present moment, the Illumina platform has a higher

sequencing throughput than any pyrosequencing technology at a

cheaper price with the hiseq2000 platform starting to work in

genomic centers worldwide but apart from significant cases like the

MetaHIT Consortium [34], the Illumina sequencer has not been

extensively used in metagenomic projects. From our results it

follows that at high coverage 110 bp dataset produces longer

contigs with much less degree of chimericity than 400 bp datasets

at lower coverage and these contigs contain less annotation errors.

For instance, the 400 bp HC dataset produced 11.0 and 17.4 Mb

of correctly annotated contigs assembled with Newbler and Celera

respectively, while the 110 bp HChc dataset produced 171 Mbs

and 275 Mbs (with SSAKE and VELVET respectively). Never-

theless, our results also suggest that the functional annotation of

400 bp datasets represents more accurately the functional content

of the sampled genomes suggesting that coverage only may not

substitute read length in this type of analysis.

Methods

Creation of simulated datasets
For each simulated dataset DNA fragments of the specified

length were randomly selected from the complete set of 1012

completed genomes available at the NCBI site (as for February

2010). For each fragment different sampling information like the

organism and chromosome of origin and its coordinates were

recorded in a database for further traceability. Every fragment was

also searched for identical sequences in all the genomes sampled in

the same dataset. These identical alternative sites were also

recorded as possible coordinates for each read. The simulated

reads were reverse-complemented with a probability of 0.5.

Simulation of sequencing errors
Typical next-generation sequencing errors were simulated for

the metagenomes as follows. In the 454 error model, homopol-

ymer length errors were introduced for the reads assuming that

signals observed from a homopolymer of length n follow a

Gaussian distribution with mean n and a standard deviation

proportional to the square root of n with a coefficient of 0.15, while

the light intensities for a negative flow follows a lognormal

distribution with mean 0.23 and standard deviation of 0.15

[37,38]. With this error model, we generated full SFF files used as

input for the assembly process.

For the Illumina sequencing error, position dependent error

rates have been reported before [40]. To simulate this kind of

error, we approximate the average substitution rate using a model

involving a fourth degree polynomial as described elsewhere [41].

We also included insertions and deletions with a probability of

0.0001% [40].

All datasets used in the present study (with and without

sequencing errors) can be downloaded from the following URL:

http://metagenomics.uv.es/Supp/PONE2011_assemblers/

The program developed and used for the simulations (NGSfy)

has been deposited in the public GitHub repository and can be

obtained in the following url:

https://github.com/emepyc/NGSfy

Assembly
Newbler assembler (version 2.3) was used with the following

parameters ‘‘ml = 60 mi = 95 –ace’’. The assembler was run

Figure 4. Global functional analysis. (A) 400 bp and (B) 110 bp
datasets respectively. For each dataset, the COG category distribution of
the genomes used for sampling was compared with the distribution of
COGs categories obtained with the real (red) annotations and the
annotations at the read (yellow) and contig (green and blue) levels. This
comparisons are defined as the summatory of the differences of each
COG category.
doi:10.1371/journal.pone.0019984.g004
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several times with different values for ‘‘ml’’ (40 and 60) and mi (85,

90, 95 and 98) without impact in the conclusions described in this

work. Celera assembler (version 6.1) was used with the fol-

lowing configuration: ‘‘utgErrorRate = 0.05, createACE = 1, mer-

Size = 21, utgGenomeSize = 2000000, unitigger = BOG, overlap-

per = mer’’. Most of them were suggested in the assembler

documentation for metagenomic 454 data. Different values for

utErrorRate (0.15, 0.1, 0.05 and 0.02) were also used without

noticeable impact in the conclusions of the present work. Velvet

(vesion 0.7) and SSAKE (version 3.4) were run with a word length

of 23 nucleotides. Other values were also used (21 and 25) without

noticeable impact in the final conclusions.

Assembly evaluation
For each contig obtained, we traced each read back to

determine all their possible positions in the reference genomes.

We considered chimeric those contigs for which there were not

possible to determine one single organism of origin. Those contigs

were annotated as belonging to the organisms more represented in

its reads solving ties by selecting one organism by random. For

each chimeric contigs we also calculated the lower common

ancestor (LCA) of its reads obtaining the level at which taxo-

nomical integrity was preserved.

We also compared the resulting contigs with the reference

genomes using the program BLAT [58] and calculated the

percentage of identity of each contig with each matching

reference.

Metagenomic clustering
For the taxonomical trees we used the iTOL software [59] using

the taxids of each sampled organism.

For the clustering based on whole-genome sequence similarity

(Figure S4) we aligned all pairs of genomes used for sampling with

the MAUVE software [60]. For each pair, we calculated the

coverage of maximum unique matches (MUMs) without gaps in

each genome of the pair and these values were used to construct a

dissimilarity matrix. A hierarchical clustering was performed based

on this matrix.

Functional assignment
The COG corresponding to each simulated read was

determined using the annotation of the genome from which the

fragment was sampled. We used the chromosomal coordinates of

each read to determine overlaps with annotated genes in the

genome. The functional category of the most overlapping gene

(with a minimum overlap of 40 bp with the read) was taken as the

category of the read. We called this the ‘‘real annotation’’ of the

read.

The functional category corresponding to each simulated read

was also determined using BLASTx searches against the COG

database [46] using an e-value cutoff of 10e23. Each read was

annotated with the functional category of the best hit. We called

this the annotation at the read level.

After assembly, the functional category of each contig was

determined using a similar strategy. Overlapping hits were merged

together taking the best as the reference hit. We compared the

contig coordinates of each read to assign them to a functional

category. The functional category of the most overlapping hit (with

a minimum overlap of 40 bp) was taken as the category of the

read. We called this the annotation of the read at the contig level.

Supporting Information

Figure S1 Taxonomical distribution of all organisms sampled in

the simulated datasets (LC, MC and HC respectively). The labels

indicate the taxid of each organism as represented in the NCBI

database. Font colors for the labels represent the relative coverage

of each genome.

(TIFF)

Figure S2 Taxonomic level of the lowest common ancestor of

the chimeric contigs with platform specific errors. (A) 400 bp and

(B) 110 bp datasets respectively. N stands for Newbler, C for

Celera Assembler, S for SSAKE and V for Velvet.

(TIFF)

Figure S3 For the Newbler assembly of the MC dataset,

heatmap representation of the percentage of reads of each pair

of organisms sharing chimeric contigs. The color strip below the

clusters indicates the relative coverage of each genome. The

cladogram represents taxonomical relationship (based on the

NCBI taxonomical classification) between the genomes sample for

dataset MC. r1 and r2 identifies clusters of genomes that tend to

form chimeric constructs during the assembly process and are also

identified in Figure S4.

(TIFF)

Figure S4 Same figure as S3 but clustering the genomes based on

whole-genome sequence alignments between each pair of genomes

as explained in methods. Clusters r1 and r2 are the same clusters

(i.e. formed by the same genomes) that were identified in Figure S4

although in this figure the resolution of r2 is much lower, probably

because of the lower sensitivity of the clustering process.

(TIFF)

Figure S5 Same figure as Figure 3 but using simulated platform-

specific sequencing errors.

(TIFF)

Figure S6 Same figure as Figure 4 but using simulated platform-

specific sequencing errors.

(TIFF)

Table S1 Summary of the assembly statistics of the simulated

datasets with platform-specific errors.

(DOC)

Dataset S1 Sampling information for the individual organisms

used for the simulated datasets.

(DOC)
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