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Abstract: Pharmacogenomics is based on the understanding of the individual differences in drug
use, the response to drug therapy (efficacy and toxicity), and the mechanisms underlying variable
drug responses. The identification of DNA variants which markedly contribute to inter-individual
variations in drug responses would improve the efficacy of treatments and decrease the rate of the
adverse side effects of drugs. This review focuses only on the impact of polymorphisms within
drug-metabolizing enzymes on drug responses. Anticancer drugs usually have a very narrow
therapeutic index; therefore, it is very important to use appropriate doses in order to achieve the
maximum benefits without putting the patient at risk of life-threatening toxicities. However, the
adjustment of the appropriate dose is not so easy, due to the inheritance of specific polymorphisms in
the genes encoding the target proteins and drug-metabolizing enzymes. This review presents just a
few examples of such polymorphisms and their impact on the response to therapy.
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1. Introduction

Pharmacogenomics is based on the understanding of individual differences in drug
use, the response to drug therapy (efficacy and toxicity), and the mechanisms underly-
ing variable drug response with the use of genomics, proteomics, transcriptomics, and
metabolomics [1,2]. Genome sequencing and mutations analysis are crucial tools in phar-
macogenomics [3]. Pharmacogenomics involves the study of both the patient’s and the
tumour’s genome, as variations in both have been observed to exert an impact on the
transport, efflux, retention, and penetration of the anti-cancer drug [3]. We all have a
different genetic makeup; therefore, we respond in different ways to drugs and environ-
mental factors, and we have a diverse risk of developing diseases [4]. Variations in the
human genome occur approximately every 300–1000 nucleotides, and there are more than
14 million single nucleotide polymorphisms (SNPs) spread throughout the entire human
genome [4]. The rapid development of technology enabled a better understanding of the
differences between individuals in terms of one or more traits, behaviours, or characteristics.
One group of patients administered with the same drug in the same dose may respond
well to the treatment, in another group the treatment would not elicit adequate responses,
while in the third group the drug will cause serious side-effects or even death. There-
fore, the identification of the DNA variants which markedly contribute to inter-individual
variations in drug responses would improve the efficacy of treatments and decrease the
rate of the adverse side effects of drugs. Numerous studies have indicated that there are
many causative factors which are responsible for variations in drug response, and which
exert a direct or indirect impact [2]. Apart from inherited genetic factors, environmental
factors (exposure to radiation and some chemicals), lifestyle factors (smoking, drinking,
and exercise) and physiological factors (age, sex, kidney and liver function, and pregnancy)
may be of importance [5]. Currently, it is known that the drug response depends on the
pharmacokinetic and pharmacodynamic properties of the prescribed drugs and the indi-
vidual patient’s polymorphisms within drug-metabolizing enzymes and transporters [2].
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Increasing evidence suggests that such variants can directly impact the function of drug-
metabolizing enzymes and transporters, which translate into altered efficacy and/or the
occurrence of adverse drug reactions (ADRs) [1]. Owing to growing scientific data, the
United States Food and Drug Administration (FDA) and the European Medicines Agency
(EMA) listed over 120 drugs for which genomic biomarkers should be determined in order
to adjust the dosing and assess the safety risk or efficacy [6–8]. Among the FDA-approved
biomarkers for anti-cancer drugs, there are: cytochrome P450 2D6 (CYP2D6) for tamox-
ifen; rucaparib and dihydropyrimidine dehydrogenase (DPYD/DPD) for fluorouracil and
capecitabine; and thiopurine S-methyltransferase (TPMT) for cisplatin, mercaptopurine,
and thioguanine.

2. Variations in Individual Drug Response

As we mentioned above, individuals vary considerably in their clinical responses
to administered drugs and their outcomes [2]. Such inter-individual dissimilarities fre-
quently pose a challenge to the optimization of a dosage regimen because, according to
estimations, most drugs are efficacious in only 25–60% of patients [9]. Many patients do
not fully respond to and benefit from the initial recommended drug treatment. Even as
many as 75% of patients who have cancer show no response to the first therapy [10]. The
response to the same drug and dose can also be different in various patients. The same
dose may be ineffective in a group of patients due to a too-low drug concentration, while
in other group it can lead to the occurrence of serious side effects or even be lethal [2].
In order to avoid unexpected and undesirable outcomes, patients taking drugs with nar-
row therapeutic indexes should be carefully monitored [11]. The situation worsens if the
patient is also administered other drugs as a result of possible drug–drug interactions.
The presence of comorbidities can lead to the occurrence of adverse drug–disease interac-
tions [12]. Based on twin studies aiming to analyse the genetic component contributing to
response variation, Kalow et al. [13] hypothesized that different genetic factors determined
approximately 20–95% of the inter-individual variability in drug responses. Moreover, it
was found that dizygotic twins displayed more metabolic variability than monozygotic
twins for isoniazid metabolism [14]. Furthermore, the metabolism of antipyrine, halothane
and phenytoin was demonstrated to be associated with genetic factors and exposure to
a disease-favouring environment [15,16]. Whilst the individual differences in responses
related to genetic factors are mostly permanent, those associated with other factors are
frequently transient [17]. This is in agreement with the observation of Vesell et al. [18], who
found a relatively higher variability of a drug response in the population compared to the
intra-individual response variability at different times. This review focuses only on the
impact of polymorphisms within drug-metabolizing enzymes on drug response. In general,
drug-metabolizing enzymes can be divided into two main categories: phase I metabolizing
enzymes, which are involved in the addition or removal of functional groups via reduction,
oxidation or hydrolysis, and phase II metabolizing enzymes, which are responsible for the
transfer of moieties from a cofactor to a substrate [19]. Polymorphisms within the genes
of phase-1 drug-metabolizing enzymes or transporters can alter drugs’ pharmacokinetics
(drug absorption, distribution, metabolism, and excretion), pharmacodynamics (the in-
teraction of drugs with targets, including enzymes, receptors and ion channels), or both,
resulting in differences in drug responses [20–22]. Enzymes from both categories display
genetic polymorphisms, some of which may prove clinically relevant. Phase I metabolizing
enzymes participate in the reduction of nicotinamide adenine dinucleotide phosphate
(NADPH)-cytochrome P450 reductase and reduced cytochrome P450, the oxidation of
cytochrome P450, dihydropyrimidine dehydrogenase, aldehyde dehydrogenase, alcohol
dehydrogenase, flavin-containing monooxygenase, and monoamine oxidase, as well as the
hydrolysis of amidases, epoxide hydrolase and esterases [19]. Drug-metabolizing CYPs are
mostly located in the liver and intestinal mucosa [23]. It appears that variations in the cy-
tochrome P450 (CYP) superfamily exert the most important clinical effect, as these enzymes
not only take part in the transformation of most of the clinically used drugs (90%) but also
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toxins and carcinogens [19]. It is estimated that CYPs 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 3A4,
and 3A5 are involved in the metabolism of the top 200 prescribed drugs in the USA [24]. The
results of studies have indicated that human CYP genes are highly polymorphic, and these
mutations can result in the complete abolition, reduction, lack of effect or enhancement of
enzyme activity [19]. For example, inter-individual differences in CYP1A2 expression and
activity in the human liver range from 10- to 200-fold, while hepatic CYP2B6 expression
varies 250-fold among individuals [23,25,26]. CYP2D6, CYP2C19, and CYP2C9 are the most
common CYP enzymes which are susceptible to polymorphisms. The following four phe-
notypes have been determined based on CYP enzyme activity: poor metabolizers (activity
is abolished), intermediate metabolizers with decreased enzyme activity, extensive metabo-
lizers characterized by normal activity, and finally ultrarapid metabolizers with increased
activity [19]. Poor metabolizers would display higher concentrations of a drug which is
metabolized by a polymorphic enzyme, and such a concentration would be maintained for
a longer time; therefore, it appears that such patients should be administered lower doses in
order to avoid the occurrence of adverse reactions. In turn, ultrarapid metabolizers should
be treated with higher doses of a drug in order to reach optimal efficacy, as in this case
the drug is metabolized too fast, and sometimes its therapeutic concentration in plasma
is not obtained. The opposite situation is observed when the patients is administered a
prodrug which must undergo metabolic activation. In this situation, poor metabolizers may
not respond to treatment due to a low drug concentration, while ultrarapid metabolizers
may face drug toxicity. Uridine diphosphate glucuronosyltransferase (UGT), glutathione
S-transferases (GST), sulfotransferase (SULT), N-acetyltransferase (NAT) and thiopurine
methyltransferase (TPMT) are the most significant phase II enzymes [27]. Genetic polymor-
phisms within the UGT gene were found to be able to modify the function or expression of
the protein, possibly changing the enzyme glucuronidation capacity. As a result of multiple
GST biological activities, functional polymorphisms within its gene may alter the cancer
susceptibility, therapeutic response, and prognosis [28,29].

3. The Impact of Genetic Variations on Anticancer Treatment Efficiency
3.1. 5-Fluorouracil (5-FU)

Today, 5-fluorouracil remains one of the most frequently prescribed anticancer drugs
for the therapy of gastrointestinal tract malignancies (e.g., colorectal and gastric cancer) [19].
This drug has a narrow therapeutic window, which means that there is a small difference
between the minimum efficacious and maximum tolerable dose [30]. Approximately 80%
of the administered dose is degraded and subsequently excreted in the urine, while 1–3% of
the 5-fluorouracil is metabolized to cytotoxic metabolites. The 5-FU is administered in the
form of a prodrug (fluoropyrimidine analogue) which is converted to the active metabolite
(5-fluoro-2-deoxyuridine monophosphate) (FdUMP) via three pathways: oratate phos-
phoribosyltransferase (OPRT), uridine phosphorylase (UP), and thymidine phosphorylase
(TP). The active drug inhibits thymidylate synthase (TS), which results in the inhibition of
DNA synthesis [31]. The 5-fluorouracil is mainly (~80–85%) metabolized by the enzyme
dihydropyrimidine dehydrogenase (DPD) in the liver; this is a rate-limiting enzyme [3].
Following the transformation to the inactive form (dihydrofluorouracil) (FDHU), it is ex-
creted in the form of a fluoro-β-alanine. The results of studies have demonstrated that
the expression of DPD is associated with the tolerance and the response to 5-FU-based
chemotherapy [19]. Roughly 10–40% of fluoropyrimidine-treated patients suffer from se-
vere and sometimes life-threatening toxicity, including vomiting, nausea, severe diarrhoea,
mucositis, stomatitis, and neutropenia hand–foot syndrome [32–34]. Variations in the
expression and levels of DPD are related to the presence of genetic aberrations. According
to estimations, 3–5% of the population is partly or totally deficient in DPD enzyme activ-
ity [35]. Some polymorphisms in the DPD gene have been confirmed to prolong the half-life
of drugs, which results in substantial toxicity, including myelosuppression, mucositis, and
hand–foot syndrome, etc. [3]. According to studies, four DPYD variants are of principal
importance, taking into consideration their population frequency and recognised impact
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on enzyme function and toxicity risk: c.1905+1G>A (rs3918290, also known as DPYD*2A,
DPYD:IVS14+1G/A), c.1679T/G (rs55886062, DPYD*13, p.I560S), c.2846A/T (rs67376798,
p.D949V), and c.1129–5923C/G (rs75017182, HapB3) [30]. In particular, c.1905+1G/A and
c.1679T/G exert the greatest deleterious impact on DPD activity; in turn, the impact of
c.2846A/T and c.1129–5923C/G is moderate. Low levels of this enzyme translate into the
accumulation of 5-FU, and a subsequent increased risk of severe toxicities [36]. The absence
of the enzyme can even result in lethal toxicities when receiving 5-FU-based chemother-
apy. In turn, the high expression of DPD leads to a poor response to the treatment [37].
Morel et al. [38] stated that three SNPs (IVS14+1G/A, 2846A/T, 1679T/G) were associated
with grade 3 to 4 toxicity. Patients who are homozygous for the IVS14+1G/A allele are
completely lacking DPD activity; therefore, 5-FU-related toxicities can be life-threatening,
or sometimes even fatal [39,40]. The authors suggested the pre-treatment analysis of three
DPYD SNPs in order to avoid severe toxic side effects. Moreover, they stated that even
in the case of dihydropyrimidine dehydrogenase deficiency, 5-FU can be safely adminis-
tered, but an individual dose must be determined. Another study of solid-tumour patients
demonstrated that SNPs c.1905G/A (rs3918290; IVS14+1 G/A), c.1679T/G (rs55886062),
and c.2846A/T (rs67376798)—with frequencies of 3%, 0.3%, and 26%, respectively—were
associated with toxic effects, i.e., grade 3 and 4 toxicities on treatment with 5-FU [41].
A meta-analysis of data from eight cohort studies (n = 7365 patients) revealed that the
relative risks for toxicity in the case of the polymorphisms c.1905+1G/A (*2A), c.2846A/T,
c.1679T/G (*13), and c.1129–5923C/G (HapB3) were 2.9 (95%CI: 1.8–4.6), 3.0 (2.2–4.1),
4.4 (2.1–9.3), and 1.6 (1.3–2.0), respectively [32]. Nie et al. [42] also demonstrated that
the presence of c.1905+1G/A and c.1679T/G translated to a 50% and 68% reduction in
heterozygous carriers, respectively, while c.2846A/T and c.1129–5923C/G were associated
with a 30% and 35% decrease in activity, respectively, in heterozygous carriers. In turn,
other studies found that the homozygous expression of c.1905+1G/A and c.1679T/G re-
sulted in severely diminished DPD activity below 25% of wild-type activity, while in case of
c.2846A/T the DPD activity was 39–59% of the wild-type activity [43,44]. The appropriate
dose for patients with polymorphisms within DPD can be adjusted on the basis of the
calculated DPD activity score (DPD-AS). However, such recommendations take into consid-
eration only the known SNP, and therefore it seems that, in some cases, it may be not ideal.
DPD-homozygous patients with reduced or abolished DPD activity should be administered
with a decreased starting dose. Deenen et al. [45] demonstrated that the 50% reduction of
dose in heterozygous carriers of no-function variant c.1905+1G/A enabled the reduction of
severe toxicity to levels comparable to non-carriers. However, there is only limited evidence
on the optimum degree of dose reduction in carriers of decreased-function variants. Due
to the fact that some carriers of variants with reduced or no activity tolerate the standard
dose of 5-FU, the drug doses should be increased in successive cycles in order to preserve
efficiency in those experiencing no or clinically acceptable toxicity during the first cycles
of chemotherapy [30]. On the other hand, the doses should be reduced in patients who
cannot tolerate the starting dose. In general, the avoidance of 5-fluorouracil-containing
regimens is recommended in DPD poor metabolizers, unless no other fluoropyrimidine-free
regimens are considered. At that time the initial drug dose should be considerably reduced
and therapeutic monitoring ought to be early implemented. However, no evidence of
successful treatment with 5-FU in DPD poor metabolizers has been reported so far. It has
been suggested that the starting dose of 5-FU in patients with reduced or no DPD function
should be no higher than 25% of the normal dose. The warning concerning the use of
5-fluorouracil in DPD-deficient patients has been added to the drug label by the US Food
and Drug Administration (FDA) and the Health Candida Sante Canada (HCSC) [30].

Indeed, a pharmacokinetically-based dosing of 5-fluorouracil has been found to bring
about effects because it increases the amount of patients treated with the optimal dose, and
decreases 5-FU’s adverse effects [46,47].

A further stratification of DPD risk variant carriers will possibly by owing to the iden-
tification of a polymorphism (rs895819 A/G) in the DPYD-regulatory microRNA miR-27a,
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which is associated with lower DPD activity [48]. However, no combined pharmacokinetic
studies are available; therefore, dosing recommendations cannot be made on the basis of the
MIR27A genotype. Moreover, it should be kept in mind that apart from genetic variations,
patient characteristics—including age, sex, disease and treatment regimens—have also
been associated with 5-fluorouracil toxicity [30].

What is interesting is that homozygous carriers of inactivating variants of DPYD
not only have problems with the metabolism of fluorouracil and capecitabine but also
suffer from complete dihydropyrimidine dehydrogenase deficiency, which is a clinically
heterogeneous autosomal recessive disorder of pyrimidine metabolism characterized by a
variety of clinical presentations, even involving severe convulsive disorders with motor
and mental retardation [49,50].

The individual efficacy of 5-FU- based therapy may also depend on genetic variations
within molecules which are responsible for the transport of this drug and/or activated
compounds [51]. The ATP-binding cassette subfamily G member 4 (ABCC4) participates in
the transport of numerous endogenous and exogenous organic anions out to the cell [51].
This protein was found to confer cells with a resistance to cytotoxic complexes, prevent the
aberrant biological damage of vital tissues, and exert an impact on drug metabolism in cells,
leading to drug resistance. Chen et al. [51] reported the impact of rs3742106 polymorphism
in the 3′-UTR of the ABCC4 (multi-drug resistance-associated protein 4) gene on the efficacy
of 5-FU and capecitabine-based chemotherapy in colorectal cancer (CRC). The carriers of
the rs3742106 T/T genotype turned out to be much more sensitive to the therapy of 5-FU
compared with G/G genotype carriers. The presence of the T allele is associated with
the formation of a binding-site for miR-3190-5p which results in reduced ABCC4 protein
expression and higher levels of intracellular 5-FU, as well as the enhanced sensitivity of CRC
cells to 5-FU chemotherapy [51]. The results of studies have suggested that the miRNAs
miR-124a, miR-125a, miR-125b, miR-143, and miR-506 may attenuate the expression of
variant ABCC4 [52,53]. Indeed, miR-3190-5p was demonstrated to directly recognize the
rs3742106 T-allelic 3′-UTR of ABCC4, and to reduce its expression in a dose-dependent
manner [51]. In turn, increased ABCC4 expression was observed in 5-FU-resistant cells [54].
Apart from ABCC4, genetic variations in ABCG2—i.e., C421A—could also affect the protein
expression and individual efficacy of antineoplastic drugs resulting from the regulatory
role of hsa-miR-519c and hsa-miR-32816.

3.2. Irinotecan

Irinotecan (a semisynthetic analogue of camptothecin) is the topoisomerase I inhibitor.
This drug exerts a potent antitumor activity against a wide range of tumours; as such, it
is one of the most commonly administered chemotherapy agents [55]. It is widely used
in the treatment of metastatic colorectal cancer, either in combination with 5-fluorouracil
as the first-line therapy, or as a monotherapy in the second-line treatment [56]. Irinotecan
is a prodrug which is transformed by human carboxylesterase 1 and 2 (hCE1 and hCE2)
into active 7-ethyl-10-hydroxycamptothecin (SN-38). SN-38 has been shown to be 100- to
1000-fold more cytotoxic than irinotecan [57]. SN-38 is then detoxified by UDP glucurono-
syltransferase family 1 member A1 (UGT1A1) (the glucuronidation of SN-38) to form the
less toxic, inactive metabolite/β-glucuronide derivative of SN-38G, which is excreted into
the bile [58]. Apart from UGT1A1, irinotecan also undergoes deactivation via CYP3A4-
mediated oxidation to form two inactive metabolites: 7-ethyl-10-(4-N-(5-aminopentanoic
acid)-1-piperidino) carbonyloxycamptothecin (APC) and 7-ethyl-10-(4-amino-1-piperidino)
carbonyloxycamptothecin (NPC) [59,60]. CYP3A4 is expressed in intestinal enterocytes;
therefore, it contributes significantly to the first-pass metabolism of orally administered
drugs [61,62]. The observed inter-individual variability in hepatic CYP3A4 expression is
very high (>100-fold); however, the presence of none of the already-identified 43 variant
alleles cannot explain this variability [23,63]. The dose-limiting toxicities of irinotecan (di-
arrhoea and myelosuppression) restrict the optimal utilization of this drug. Such toxicities
of irinotecan are frequently related to higher SN-38 levels. The observed significant inter-
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patient variability in SN38G formation suggested the crucial role of genetic variations in
UGT1A1 [64]. Genetic polymorphisms in the metabolic enzymes and transporters involved
in irinotecan disposition are partly responsible for the considerable variability in its phar-
macokinetics, efficacy, and toxicity profiles [65]. Patients who are genetically predisposed
to reduced UGT1 activity (e.g., in Gilbert’s syndrome) show a higher susceptibility to the
development of severe toxicity when treated with irinotecan [66]. The results of studies
have indicated that UGT1A1*6 and *28 polymorphisms lead to increased systemic exposure
to irinotecan and SN-38 in homozygous patients, thus enhancing the risk of irinotecan-
associated adverse events [67,68]. The polymorphic (TA)n repeat in UGT1A1 affects its
basal transcription [69]. The prevalence of UGT1A1*28 alleles differs considerably among
different ethnic groups, even reaching 35% in Caucasians and African Americans [69,70].
Moreover, Innocenti et al. [70] suggested that the haplotype structure of the promoter may
be different between Caucasians and African-Americans because, in African-Americans,
only marginal levels of significance were found between (TA)n and −3279 (p = 0.02), and
between −3279 and −3156 (p = 0.04). The results of studies have demonstrated that the
genetic variant UGT1A1*28 (an extra TA repeat in the TATA promoter sequence of the
UGT1A1) translates to diminished SN-38 glucuronidation and a subsequent increased
susceptibility to irinotecan-induced gastrointestinal and haematological toxicity [71–73].
Patients who are homozygous for this variant (UGT1A1*28/*28) show decreased enzymatic
activity, and are predisposed to the development of myelosuppression and severe diarrhoea
when treated with irinotecan [74,75]. Patients who are homozygous for the UGT1A1*28
allele should be administered with a reduced initial dose. Prospective studies have revealed
that the recommended dose of 180 mg/m2 of irinotecan in the FOLFIRI regimen appears
to be markedly lower than the dose tolerated by non-UGT1A1*28/*28 mCRC patients [76].
Clinical evidence shows that premature drug suspension and dose reduction due to toxicity
can reduce antitumour activity. The results of studies have indicated that this common
(TA)n polymorphism is in linkage disequilibrium with other polymorphisms within the
promoter region: −3279 and −3156 (p < 0.0001) [70]. In Caucasians, these two promoter
variants (UGT1A1 −3263T/G and −3156G/A) were found to increase the prevalence of
irinotecan-induced grade 4 neutropenia or diarrhoea [71,77]. Irinotecan-related toxicity
is also related to the presence of other polymorphisms in the UGT1A1. For example, in
the East Asian population, UGT1A1*6 (Gly71Arg) polymorphism reducing UGT1A1 cat-
alytic activity by 60% in homozygotes is quite frequent (~12%) [78]. In a phase I study of
Korean patients genotyped for UGT1A1, the recommended doses were 300 for participants
with no defective alleles (DA), 270 for those with one DA, and 150 for those with two
DA mg/m2 [79]. Two other retrospective studies involving Asian patients confirmed that
patients with mCRC who had an initial dose of irinotecan adjusted on this basis could
achieve a more favourable response and outcome without a considerable rise in toxicity
(with a FOLFIRI-plus-bevacizumab regimen) [76,80]. The presence of at least one UGT1A1*6
allele has been demonstrated to increase the risk of neutropenia and diarrhoea in Asian
patients with gastrointestinal tumours or NSCLC; however, this relationship appeared not
to be dose-dependent [81,82]. However, these two SNPs appear not to influence the tumour
response to the treatment in Asian NSCLC or SCLC patients receiving irinotecan as first- or
second-line chemotherapy [81]. In turn, UGT1A1*93 (rs10929302; −3156G/A)—which is in
linkage disequilibrium with UGT1A1*28 and decreases UGT1A1 expression—was found to
be associated with elevated bilirubin concentrations in homozygous patients [71]. Moreover,
this variant increased SN-38 AUC and the incidence of hematologic toxicities (including
neutropenia), diarrhoea, grade 3 vomiting, and a diminished neutrophil count [83–85]. The
carriers of UGT1A7*3 and UGT1A7*4 polymorphisms have reduced enzyme activity and
SN-38 conjugation, which translate into a greater risk of adverse events during irinotecan
chemotherapy [86–88]. UGT1A1 genotyping should be performed in order to avoid the
unnecessary risk of serious side effects. It appears that patients with UGT1A1*1/*28 and
UGT1A1*28/*28 alleles would benefit from the reduction of the dose. Currently, there is no
evidence showing whether such a dose reduction would influence the tumour response.
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The United States of America Food and Drug Administration confirmed the importance of
UGT1A1 pharmacogenetics in the determination of the dose and the prediction of toxicity
to irinotecan. They recommended the reduction of this drug dose in homozygous patients;
however, they did not specify the exact dose reduction required to limit drug toxicity for
*28/*28 patients [67]. Prospective studies have revealed that the recommended dose of
180 mg/m2 of irinotecan in the FOLFIRI regimen appears to be markedly lower than the
dose tolerated by non-UGT1A1*28/*28 mCRC patients [89]. A further genotype-driven
phase I study of irinotecan administered in combination with fluorouracil/leucovorin in
patients with the same type of cancer demonstrated that 370 mg/m2 in the *1/*1 geno-
type and 310 mg/m2 in the *1/*28 genotype can be safely administered every 2 weeks in
patients undergoing first-line treatment [90]. In turn, in a multicentre phase II ERBIFORT
study, the combination of cetuximab and irinotecan 260 mg/m2 for UGT1A1*1/*1 and
*1/*28 genotypes, and 220 mg/m2 for UGT1A1*28/*28 genotypes was found to yield high
response rates, and enabled the complete resection of hepatic metastases in most patients
with resectable liver metastases of CRC [91]. Owing to dose adaptation, the administered
treatment was less toxic and effective. A clinical, randomised, phase II trial to evaluate
the efficacy and safety of FOLFIRI with high-dose irinotecan (HD-FOLFIRI) in metastatic
colorectal cancer patients according to their UGT1A1 genotype confirmed the safety of this
approach; it also demonstrated that despite not improving the survival, such treatment
enhanced the overall response rate [92]. Still, randomized III phase trials are required to
validate the benefits of irinotecan intensification according to UGT1A1 pharmacogenetics.

Apart from metabolizing enzymes, polymorphisms within transport proteins may
also affect the efficacy of irinotecan. The increased expression of ATP-binding cassette
subfamily B member 1 (ABCB1, P-glycoprotein (P-gp)) participating in the biliary excretion
of CPT-11 and SN-38 has been found to raise SN-38 secretion, which results in its dimin-
ished plasma levels and an enhanced risk of intestinal toxicity, decreasing at the same time
the risk of neutropenia [93–95]. Several ABCB1 variants—including rs1128503 (1236 C/T),
rs2032582 (2677 G>T/A), and rs1045642 (3435 C/T)—have been confirmed to affect P-
gp expression, SN-38 plasma concentrations, and renal clearance [96,97]. Riera et al. [93]
suggested the ABCB1 rs1128503 variant as a predictor of irinotecan-related severe gas-
trointestinal toxicity, especially diarrhea and mucositis. Moreover, the rs2032582 variant
also seems to increase the risk of severe mucositis. Population-related pharmacogenomics
revealed that the ABCB1 (C3435T) T/T genotype was related to irinotecan-plus-cisplatin-
induced diarrhea [98]. In turn, the study of genetic variations in metastatic colorectal cancer
patients revealed a marked relationship between the combined presence of ABCB1 1236C/T,
and SLCO1B1 521T/C polymorphisms, grade 3–4 toxicity, and grade 3–4 neutropenia [99].
Similar effects were obtained in the study of polymorphisms within UGT1A1, ABCB1,
ABCG2, ABCC4, ABCC5, and MTHFR in patients with metastatic colorectal cancer [100].
This study demonstrated higher hematological toxicity and overall toxicity in patients car-
rying the polymorphisms rs1128503, rs2032582, and rs1045642 in ABCB1 and rs1801133 in
MTHFR. However, the correction of the p values with the use of a false discovery rate
resulted in only ABCB1 variants being statistically significant. Furthermore, Salvador-
Martín et al. [100] indicated 11.3-fold and 4.6-fold higher risks of haematological toxicity
(95% CI, 1.459–88.622) and overall toxicity (95% CI, 2.283–9.386) associated with ABCB1,
respectively. They revealed that the analysis of three SNPs in ABCB1 enabled the prediction
of the overall and haematological toxicity with diagnostic odds ratios of 4.40 and 9.94,
respectively. In a Swedish and Norwegian population of patients with advanced colorarctal
cancer, polymorphisms in ABCB1 translated into early toxicity and a lower response to
treatment [101]. Patients with the 1236T-2677T-3435T ABCB1 haplotype were found to be
less responsive to treatment with irinotecan (43 vs 67%, p = 0.027), and their survival time
was shorter compared to carriers of a different haplotype; OR = 1.56 (95% CI = 1.01–2.45).

However, some other studies failed to demonstrate the relationship between these
polymorphisms and irinotecan-induced severe toxicity [102,103].
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3.3. Tamoxifen

Tamoxifen is a selective oestrogen receptor modulator which is commonly used for
the treatment and prevention of ER-positive breast cancer [19]. The growth of this type of
cancer usually depends on oestrogens; therefore, its treatment requires selective ER modu-
lators which block oestrogen binding via the attachment to the ligand-binding domain of
an ER. The binding of the modulator does not allow for conformational changes of ER and
the subsequent binding of the co-activators. As a result, the oestrogen-driven proliferation
of ER-positive tumours becomes reduced or abolished. The standard recommendation of
5 years of adjuvant therapy with tamoxifen was based on the results of the Early Breast
Cancer Trialists’ Collaborative Group [104]. Adjuvant tamoxifen has been demonstrated
to markedly reduce recurrence and breast cancer mortality in pre-and postmenopausal
patients with primary breast cancer, within 15 years after primary diagnosis. According to
the estimations, even 30–50% of patients administered tamoxifen adjuvant therapy cannot
benefit from the treatment [105]. In some cases, the patient did not react to therapy, while
in others cancer recurrence or adverse drug reactions (such as hot flashes, hyperhidrosis,
irregular menstruation and metastatic diseases) occurred [106,107]. Tamoxifen, following
administration, requires activation in order to exert its pharmacological activity. Numerous
enzymes are involved in the metabolism of tamoxifen: hepatic CYP3A4, CYP3A5, CYP2C9,
CYP2C19, CYP1A2, CYP2B6, and CYP2D6, and flavin-containing monooxygenase 1 and 3
(phase I), as well as SULT1A1 and UGTs (phase II) [108–110]; however, CYP2D6 and
CYP3A4/5 play the most important role. These two enzymes transform tamoxifen into
two primary metabolites—4-hydroxytamoxifen and N-desmethyltamoxifen—which are
further converted (primarily by CYP2D6) into pharmacologically active 4-hydroxy-N-
desmethyltamoxifen (endoxifen) [109]. This active form displays a much higher affinity for
the oestrogen receptor than tamoxifen [111]. Over 145 variants of CYP2D6 have been iden-
tified, and many of them significantly modify enzyme function [23]. Functional alterations
in CYP2D6 activity (as well as drug induction or drug inhibition) may affect the clinical out-
come of patients treated with tamoxifen. Variations in CYP2D6 activity explain up to 39% of
the variability of the plasma concentration of (Z)-endoxifen and (Z)-4-OH-tam [112]. How-
ever, the concomitant administration of some selective serotonin reuptake inhibitors (SSRIs)
(e.g., paroxetine, fluoretine) or selective noradrenaline reuptake inhibitors (SNRIs) has also
been found to decrease the plasma levels of endoxifen, and to adversely affect the efficacy
of tamoxifen therapy [113]. Women with lower serum levels of endoxifen were found to
have a higher risk of recurrence and other adverse outcomes; therefore, it appears that this
is the key active metabolite of tamoxifen [114]. It has been suggested that a lower plasma
endoxifen concentration may be associated with genetic variations in CYP2D6 which de-
crease its activity. Many studies have demonstrated a worse outcome in tamoxifen-treated
patients carrying non-functional or reduced-function alleles of CYP2D6 [115,116]. The
presence of two non-functional alleles of CYP2D6 in an individual confers a PM phenotype,
two normally-functioning alleles represent EM phenotype, the co-occurrence of one null
allele and another allele conveying diminished function gives rise to an IM phenotype, and
the presence of extra normal activity CYP2D6 gene copy/copies confers the UM pheno-
type [117–120]. The rate of drug metabolism via CYP2D6 in UM is much faster than that in
IM or PM phenotypes, which translates into a very low plasma drug and a lack of drug
efficacy [121]. Therefore, such patients require higher doses in order for the drug to be opti-
mally effective; however, it can turn out to be life-threatening if using drugs with narrow
therapeutic indexes. The frequency of the CYP2D6 phenotype in the Caucasian population
is as follows: 5–10% PMs, 10–17% IMs, 70–80% EMs, and 3–5% UMs [117]. A retrospec-
tive analysis of German and US cohorts of 1325 patients treated with adjuvant tamoxifen
for early stage breast cancer revealed that poor metabolizers and heterozygous exten-
sive/intermediate metabolizers had a significantly increased risk of recurrence compared
with extensive metabolizers (poor metabolizers had a time to recurrence HR of 1.90, 95% CI,
1.10–3.28, whereas extensive/intermediate metabolizers had a time to recurrence adjusted
hazard ratio [HR] of 1.40; 95% confidence interval [CI], 1.04–1.90) [122]. Patients with
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reduced CYP2D6 activity (heterozygous extensive/intermediate and poor metabolism) had
worse event-free survival (HR, 1.33; 95% CI, 1.06–1.68) and disease-free survival (HR, 1.29;
95% CI, 1.03–1.61) compared to extensive metabolizers. The data from the Italian Tamoxifen
Trial demonstrated a higher risk of disease relapse in women with the cytochrome P450
(CYP) 2D6 *4/*4 genotype [123]. Similar results were obtained by Goetz et al. [124], who
observed that tamoxifen-treated women with the CYP2D6 *4/*4 genotype tend to have a
greater risk of disease relapse and a lower incidence of hot flashes. Moreover, they also
found that patients with a diminished metabolism had a significantly shorter time to recur-
rence (p = 0.034; adj. HR = 1.91; 95% CI 1.05–3.45) and worse relapse-free survival (RFS)
(p = 0.017; adj. HR = 1.74; 1.10–2.74) compared to extensive metabolizers [125]. PM were
indicated to display the most significant risk of breast cancer relapse (HR 3.12, p = 0.007)
compared to EM. Teh et al. [126] reported an increased risk of recurrence and metastasis
(OR 13.14; 95% CI 1.57–109.94; p = 0.004) in Asian populations with CYP2D6*10/*10 and
a heterozygous null allele (IM) compared with those with CYP2D6*1/*10 and *1/*1 geno-
types. In contrast, another prospective study failed to find a relationship between CYP2D6
variants and a pathological response or hot flashes; however, they observed a significant
association between CYP2D6 variants and Ki-67 response after preoperative tamoxifen
therapy (p = 0.018) [127]. In turn, Günaldı et al. [128] reported correlations between the
PM phenotype (*3/*4, *6/*6) and hyperplasia, as well as between the UM phenotype
(3X*1/*1 duplication, 2X*1/*2) and atrophy in BC patients (p = 0.019 for both cases). The
presence of the CYP2D6*10/*10 allele was shown to decrease the disease-free survival
(DFS), time to progression (TTP), and overall survival (OS) in East and Southeast Asia
patients with breast cancer [129,130]. The efficacy of tamoxifen and its toxicity may also be
affected by variations in genes other than CYP2D6. The phase II enzymes sulfotransferase
family 1A member 1 (SULT1A1) and uridine 5′-diphospho-glucuronosyltransferase (UGTs)
are also involved in the metabolism of tamoxifen and its metabolites. According to studies,
polymorphisms with their genes may also contribute to differences in the concentration of
circulating endoxifen, and thus to patients’ responses to treatment [19]. Human sulfotrans-
ferase 1A1 (SULT1A1) catalyses the sulfation of, among others, the active metabolite of
tamoxifen, 4-hydroxytamoxifen (4-OH TAM). Functional polymorphisms within the SULT
gene may not only alter enzymatic activity, thus affecting the therapeutic response, but
also modify cancer susceptibility [131,132]. A functional polymorphism in exon 7 of the
SULT1A1 gene (SULT1A1*2) was found to be associated with an approximately twofold
lower enzyme activity, and to be less thermostable than the common allele SULT1A1*1 [133].
Nowell et al. [133] observed that tamoxifen-treated patients who were homozygous for
SULT1A1*2 (a low-activity allele) had an approximately three-times higher risk of death
(HR = 2.9, 95% confidence interval [CI] = 1.1 to 7.6) compared to homozygous carriers
of a common allele, or heterozygous carriers (SULT1A1*1/*2). The retrospective study of
breast cancer patients treated with tamoxifen demonstrated that a high-activity genotype
of a phase II enzyme UGT2B15 facilitating the elimination of active metabolite was asso-
ciated with a higher risk of recurrence and poorer survival [134]. The combined analysis
of UGT2B15 and SULT1A1 “risk” indicated that women carrying these two variant alleles
had a markedly greater risk of recurrence and poorer survival compared with women with
common alleles. Furthermore, a genetic variability in the UGT1A gene-encoding enzyme
involved in the elimination of tamoxifen and its active metabolites has been suggested to
influence tamoxifen therapy. UGT1A1*6 (A/A+A/G vs. G/G) (p = 0.02) was found to
decrease distant disease-free survival in Chinese patients [135].

Organic anion-transporting polypeptides (OATPs) are involved in the transport of
exogenous and endogenous substances, including drugs (statins, methotrexate, Olmesartan,
etc.); therefore, it is plausible that variations within their genes may affect the efficiency of
some drug therapies [136,137]. Numerous studies have indicated that OATP1B1 is highly
polymorphic (at least 40 mutation have been identified so far). Among them, 521 T>C
SNP in OATP1B1 was found to have a reduced transport function, which translated into a
higher concentration of drugs in the blood and better therapeutic effects due to the lower
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efficiency of the transport of drugs to hepatocytes [138]. In turn, the studies analysing
the impact of another polymorphisms, i.e., 88A>G, in the same transport protein brought
conflicting results. Some of them indicated an enhanced function of OATP1B1, while others
failed to show such an effect [137]. This may be associated with the fact that OATP1B1
polymorphisms show racial differences. There are hardly any studies of the impact of
polymorphisms within OATP1B1 on treatment outcomes. In vitro studies demonstrated
that OATP1B1 388GG and 521CC reduced the activity of the OATP1B1 protein, limited its
turnover capacity, and diminished the entrance of tamoxifen into MCF-7 cells, leading to
the deteriorated efficacy of this drug in the treatment of breast cancer [139]. The in vitro
analysis of the uptake of tamoxifen and its metabolites with the use of the overexpression
lentivirus platform of wild-type and mutant-type (mutations at 388 and the 521 base)
OATP1B1 revealed that both tamoxifen and endoxifen could be taken up by the cells via
OATP1B1; however, the presence of OATP1B1 521T/C polymorphism markedly inhibited
the function of the transport protein. These results imply that OATP1B1 521T/C can hamper
the effects of OATP1B1 on tamoxifen and endoxifen in the cells.

3.4. 6-Mercaptopurine (6-MP)

The purine antimetabolite 6-Mercaptopurine (6-MP) is used in the treatment of
leukaemia [55]. The mechanism of its antitumor action is based on the inhibition of
the formation of the nucleotides that are required for the synthesis of DNA and RNA. The
conversion of 6-MP into inactive metabolites is associated with the activity of thiopurine
methyltransferase (TPMT), which catalyses its S-methylation. Therefore, functional genetic
polymorphisms within the TPMT gene may significantly affect drug bioavailability and toxi-
city. A disturbed metabolic balance between the activation and inactivation of a prodrug, re-
sulting for example from decreased TPMT activity, can lead to life-threatening bone marrow
toxicity and myelosuppression [140]. So far, at least 24 genetic variants have been identified;
however, only several appear to be clinically relevant [141,142]. The mode of inheritance of
low- and high-activity TPMT is autosomally co-dominant. In the Caucasian population,
89% of individuals possess high (normal) enzyme activity (TPMT*1), 11% have intermedi-
ate activity, and 0.3% have a low activity [143–145]. The variant alleles TPMT*2–TPMT*24
show slightly-to-drastically reduced activities [142]. More than 80% of individuals with
low TPMT activity are carriers of the following non-synonymous coding polymorphisms:
TPMT*2 (G238C; Ala80Pro), TPMT*3A (G460A/A719G; Ala154 hr/Tyr240Cys), TPMT*3B
(G460A; la154 hr) and TPMT*3C (A719G; Tyr240Cys), which are associated with alterations
in the sequence of the encoded protein [141,145]. The presence of three alleles of TPMT
(TPMT*2, TMPT*3A, and TPMT*3C) has been found to be responsible for nearly 95% of
the observed cases of TPMT deficiency [146]. The activity of TPMT in TPMT*3C carriers
is reduced two times, in TPMT*3B it is reduced nine times, and those with the TPMT*3A
allele display negligible TPMT activity. Proteins encoded by all of the aforementioned
alleles undergo rapid proteolytic degradation, which results in enzyme deficiency [147].
According to estimations, c.a. one in 300 individuals has a TPMT deficiency (an autosomal
recessive trait). Such patients are characterized by a considerably reduced rate of 6-MP
metabolism; thus, homozygous carriers of the TPMT*3A allele are at the greatest risk of
developing life-threatening myelosuppression while they are treated with standard doses
of thiopurines [148–150]. A study evaluating excessive toxicity in patients receiving mer-
captopurine demonstrated the over-six-times overrepresentation of TPMT deficiency or
heterozygosity among patients who developed hematopoietic toxicity from therapy contain-
ing thiopurines. These patients with bone marrow intolerance to 6-MP experienced more
frequent hospitalization, more platelet transfusions, and more missed doses of chemother-
apy. According to the authors, following appropriate dosage adjustments, TPMT-deficient
and heterozygous patients can be administered thiopurines without eliciting acute dose-
limiting toxicity [151]. Therefore, it seems that the analysis of genetic variations in the TPMT
gene may enable the determination of a safe starting dose for 6-MP therapy [152]. Based on
sound pharmacogenetic evidence, the FDA has decided to include information concerning
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the need for genotyping in the drug label for 6-MP [153]. The results of large cohort studies
pointed to polymorphism within the nudix hydrolase 15 gene (NUDT15, also known as
MTH2) as a vital factor determining 6-MP intolerance [154]. This nucleotide triphosphate
diphosphatase converts oxidized GTP to its monophosphate form, which hampers the
integration of the damaged purine nucleotides into DNA [155,156]. In turn, the excessive
accumulation of tGTP/tdGTP results in extensive DNA damage and cytotoxicity [157]. It
appears that variant rs116855232 is of high clinical importance. Carriers of the TT genotype
could tolerate only around 10% of the dose tolerated by those with the CC genotype, while
carriers of CT could tolerate 75% of said dose. The results of an immunochip-based assay
demonstrated the relationship between the missense SNP 415C>T of the NUDT15 gene
(rs116855232) (resulting in a p.Arg139Cys change) and early leukopenia in thiopurine-
treated patients [158]. The presence of the T allele raised the risk of leukopenia ~8 times
compared to the C allele (p < 0.00001, OR = 7.86, 95% CI: 6.13, 10.08) [159]. Moreover,
patients carrying the T allele tolerated a lower mean daily thiopurines dose (p < 0.00001).
According to Moriyama et al. [160], the p.Arg139Cys change is associated with lower
protein stability, which probably results from a loss of supportive intramolecular bonds and
thus rapid proteasomal degradation in cells, rather than with decreased NUDT15 enzymatic
activity. Another clinical trial enrolling children with acute lymphoblastic leukemia demon-
strated that variants (p.Arg139Cys, p.Arg139His, p.Val18Ile and p.Val18_Val19insGlyVal)
were associated with a 74.4–100% loss of nucleotide diphosphatase activity [160]. The pres-
ence of loss-of-function NUDT15 diplotypes translated to thiopurine intolerance. Because
NUDT15 inactivates thiopurine metabolites and reduces thiopurine cytotoxicity, patients
carrying defective NUDT15 alleles display excessive levels of thiopurine active metabolites
and higher toxicity. The evidence of the relationship between NUDT15 alleles and 6-MP
intolerance is considerable; it is recommended to perform genetic tests for NUDT15 be-
fore the start of thiopurine therapy [161]. Furthermore, TPMT testing is recommended.
Patients with NUDT15 and TMPT genetic variants require the adjustment of the drug
dose. According to CPIC recommendations, normal metabolizers (e.g., NUDT15 *1/*1,
MP 75 mg/m2/day in ALL) should be administered with the normal starting dose, while
intermediate metabolizers (e.g., NUDT15 *1/*3, MP 30–80% of the normal starting dose)
and poor metabolizers (e.g., NUDT15 *3/*3; MP 10 mg/m2/day in ALL) should receive
a reduced dose [161]. Genotype-tailored, individualized dosing holds the promise of the
minimization of adverse drug reactions.

3.5. Sunitinib

Sunitinib malate, a multitarget tyrosine kinase inhibitor, is a well-established chemother-
apeutic for the treatment of metastatic renal cell carcinoma (mRCCs), gastrointestinal stro-
mal tumours (GISTs), metastatic breast cancer, and other types of solid tumours [162]. This
drug has been approved in the United States and the European Union for the treatment of
advanced renal cell carcinoma and imatinib-resistant or imatinib-intolerant gastrointestinal
stromal tumours [163]. Sunitinib blocks the receptors of vascular endothelial growth fac-
tor (VEGFR-1, 2, and 3), the platelet-derived growth factor receptors α and β (PDGFR-α
and PDGFR-β), the stem cell factor receptor (KIT), and Fms-like tyrosine kinase-3 recep-
tor (FLT3), as well as the glial cell line–derived neurotrophic factor receptor [163–165].
CYP3A4 converts sunitinib into its active N-desethyl metabolite (SU12662), and further me-
tabolizes it into inactive metabolites [162]. The clinical benefits from sunitinib therapy may
depend on inter-individual variations in drug absorption, metabolism, distribution, and
excretion [166]. The results of studies have indicated that a higher exposure to sunitinib is
associated with improved survival, but also with an greater risk for adverse events [163,167].
Clinical evidence indicates that the individual response to sunitinib is highly variable due
to extensive differences in the plasma concentration following standard dosage regimens.
Phase I studies in patients with advanced solid tumours determined the maximum tol-
erated dose (MTD, the maximum dose with less than 33% incidence of dose-limiting
toxicity) of sunitinib, which is 50 mg daily [167,168]. Some patients administered with
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the recommended dose show no response, while others experience severe toxicity and
require dose limitation (~32–46%) or treatment discontinuation (38%). The most frequent
toxicities involve hand–foot skin reactions and haematological toxicities [169]. However,
there are no established markers which could enable the prediction of the efficacy and
toxicity [170]. Some studies have suggested the importance of the mutant CYP3A5*3 allele,
which is associated with the defective CYP3A5 enzyme [171]. The presence of a defec-
tive CYP3A5 enzyme may result in the accumulation of the parent drug [172]. This is
especially important in the Asian population, in which race and low body weight were
found to reduce sunitinib clearance, exacerbating sunitinib toxicity [163]. However, Nu-
makura et al. [170]—who analysed the impact of single-nucleotide polymorphisms (SNPs)
in genes related to sunitinib pharmacokinetics (the transport proteins ATP-binding cas-
sette ABCB1: rs1045642, rs1128503, rs2032582, and rs7779562; and ABCG2: rs2231142, and
CYP3A4 (rs35599367) and CYP3A5 (rs776746)) on clinical outcomes in Japanese patients
with mRCC—failed to find any associations between studied SNPs and dose reduction,
progression-free survival, overall survival, and the best objective response. Furthermore,
Teo et al. [169] also suggested that the presence of variations in the CYP3A5 may not affect
the metabolism of this drug due to the redundancy between CYP3A5 and CYP3A4 enzymes.
It appears that the relative metabolizing capacity of CYP3A4 for sunitinib may adequately
compensate for any variability in the CYP3A5 enzyme. Moreover, sunitinib seems to be
a better substrate for CYP3A4 compared with CYP3A5 [173]. In contrast, one of studies
demonstrated that the presence of CYP3A5*1 was associated with dose reductions due to
toxicity (odds ratio: 2.0; 95% CI, 1.0–4.0, p = 0.039) [174]. Diekstra et al. [175] observed that,
in a Caucasian population, the clearance of sunitinib can be affected by the CYP3A4*22 poly-
morphism. However, this polymorphism was not detected in Asians. The results of all of
the aforementioned studies confirm the importance of CYP3A4 in sunitinib metabolism.
Furthermore, polymorphisms within genes encoding efflux transporters and drug targets
may affect the efficacy of sunitinib, as well as sunitinib-induced toxicities [166]. SNPs in
VEGFR-2 have been found to modulate sunitinib activity. For example, VEGFR-2 1718T/A
was associated with the lower overall survival of sunitinib-treated patients [166]. Another
study revealed that the VEGFR-2 (T allele in 1191 C/T) was associated with the occurrence
of any toxicity > grade 2, while NR1I3 (the absence of a CAG copy in the haplotype) and
ABCB1 (the presence of a TTT copy) polymorphisms enhanced the risk of leukocytopenia
and hand–foot syndrome, respectively [176].

Sunitinib is a substrate of ABCB1 and ABCG2 [177]. SNPs within ABCB1 (a TCG copy)
and ABCG2 (e.g., 421C/A) may influence sunitinib absorption and excretion. The presence
of both of the aforementioned polymorphisms was associated with a better outcome [166].
The improved outcome may result from the diminished efflux transport of sunitinib into
the gastrointestinal lumen and bile, and the consequent enhanced systemic exposure of
sunitinib. The carriers of the ABCG2 rs2231142 AA genotype were found to be more likely
to develop thrombocytopenia, neutropenia, and hand–foot syndrome [178]. This SNP is
located within the ATP-binding cassette domain; as such, it can modulate the ATP-binding
activity of the ABCG2 protein [179]. The presence of the A allele was found to decrease such
activity and diminish transport capability, leading to drug accumulation and the reduced
efflux velocity of the drug [180]. In turn, Chu et al. [181] marked the relationship between
ABCB1 1236T (OR = 0.3), ABCB1 3435T (OR = 0.1), ABCB1 2677T (OR = 0.4), and ABCG2
421A (OR = 0.3) alleles and the ABCB1 3435, 1236, 2677 TTT haplotype (OR = 0.1) with
neutropenia in Asian mRCC patients. The ABCB1 3435, 1236, 2677 TTT haplotype conferred
primary resistance (OR = 0.1, p = 0.004) as well as inferior survival (progression-free: hazard
ratio [HR] = 5.5, p = 0.001; overall: HR = 5.0, p = 0.005). Moreover, Beuselinck et al. [182]
revealed the link between SNP rs1128503 in ABCB1 and progression-free survival (PFS)
and overall survival (OS) (p = 0.027 and p = 0.025) in sunitinib-treated metastatic clear-cell
RCC. However, Garcia-Donas et al. [183] failed to observe such an association. The carriers
of variants rs1128503 and rs2032582 in ABCB1 display an enhanced clearance of sunitinib
and its active metabolite (SU12662), which results in a lower exposure to the drug [169,174].
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A recent meta-analysis demonstrated that, in carriers of the T allele (ABCB1 rs1128503),
the risk of sunitinib-induced hypertension was considerably reduced compared to those
with the C allele; however, progression-free survival was shorter in this group of Asian and
Caucasian patients [177]. Based on the results of studies, it seems quite reasonable to genotype
for ABCG2 rs2231142, and ABCB1 rs1128503 and rs2032582 polymorphisms in order to adjust
the drug dose and reduce the risk of sunitinib-induced thrombocytopenia and hand-to-foot
syndrome in Asians in whom the prevalence of SNPs within ABCG2 is high.

3.6. Mitotane

A highly lipophilic compound, mitotane, is the most effective agent in the post-operative
treatment of adrenocortical carcinoma which has been approved by the US FDA and the
European Medicines Agency [184–186]. Despite the fact that it has been used for a long time,
many pharmacological aspects—including its activation and pharmacodynamics—require
further studies, as the knowledge in this field is sparse. It has been found that mitotane
blocks sterol-O-acyl transferase 1, which results in disturbed steroidogenesis and lipid-
induced endoplasmic reticulum stress [187]. According to studies, high oral daily doses
(1–6 g/day) are needed in order to reach therapeutic concentrations [187]. In adults, an
initial dose of 2–3 g/day is usually used, and it should be carefully increased in order
to attain a therapeutic range of plasma concentration of 14 and 20 mg/L. Mitotane has
a narrow therapeutic index [187]. Moreover, the management of a patient treated with
this drug is complicated due to the very long elimination half-life related to its strong
drug diffusion in adipose tissues and organs, and drug interaction via the stimulation of
metabolizing enzymes. Such high doses require therapeutic drug monitoring (TDM) [186].
The problems with the reliable prediction of appropriate mitotane plasma concentrations
may, on the one hand, translate to delayed tumour treatment, and on the other may result
in drug toxicity. Poor mitotane tolerability is associated with frequent reductions of the
dose, or even the suspension of the therapy as a result of a high rate of side effects. Both the
efficacy and toxicity of mitotane are related to its plasma concentration [187]. According to
the estimations, only half of the patients treated with a high-dose regimen for 3 months
reached the target. This observation suggests a high inter-individual variability in mitotane
pharmacokinetics, and indicates the need for individualized treatment [188]. Presently, the
dosage titration is basically expert-based. Therefore, a tool assisting the determination of
the mitotane concentration and enabling the selection of an optimized treatment regimen
for individual patients is required.

Mitotane strongly stimulates CYP3A4; at the same time, this enzyme is involved in
mitotane metabolism. According to Arshad et al. [187], the increase in the clearance of
mitotane during treatment could be modelled by a linear enzyme autoinduction process.
Genetic variability in the CYP3A4 gene in the Caucasian population is limited; therefore, it
seems that polymorphisms in the second enzyme metabolizing this drug (CYP2B6) may be
of importance [189,190]. The retrospective analysis of patients with adrenocortical carci-
noma on postoperative adjunctive mitotane demonstrated that SNP in CYP2B6 (rs3745274)
affected mitotane concentrations after three months of treatment [191]. Patients carrying
the GT/TT genotype had higher mitotane plasma concentrations compared to patients
with GG at 3 months (14.80 vs. 8.01 µg/mL; p = 0.008) and 6 months (17.70 vs. 9.75 µg/mL;
p = 0.015). However, this difference in mitotane levels was no longer statistically significant
after 9 months. In turn, Mornar et al. [192] suggested that CYP2C9 variability may also affect
mitotane concentrations. In their study, a high mitotane level was observed in CYP2C9 inter-
mediate metabolizers. According to these authors, the mitotane dose should be adjusted on
the basis of the determination of the following three SNP: CYP2C19*2 (rs4244285), SLCO1B3
699A/G (rs7311358) and SLCO1B1 571T/C (rs4149057); however, further confirmation
of the obtained results is required [192]. CYP2C19*2, which is a non-functioning variant
diminishing the activity of CYP2C19, was found to be in 100% linkage disequilibrium with
CYP2C18 1154C/T (rs2281891) [155]. The sterol O-acyltransferase enzyme (SOAT1) has
been found to be the vital molecular target of mitotane [193]. The association between
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its expression and the outcome of adjuvant mitotane treatment has been shown in some
studies [193,194]. Some other studies failed to observe that SOAT1 expression could predict
the treatment response to mitotane [193,195]. Moreover, the expression level of SOAT1 was
found not to be associated with the recurrence-free survival, progression-free survival, or
disease-specific survival of adrenocortical cancer patients treated with mitotane [196].

3.7. Imatinib

Imatinib is a tyrosine kinase inhibitor which is used for the treatment of chronic
myeloid leukaemia (CML) [197]. CML is a myeloproliferative disorder resulting from the
reciprocal translocation between chromosomes 9 and 22, leading to the fusion of the Abel-
son murine leukemia viral oncogene homolog 1 (ABL1) gene from chromosome 9 with the
breakpoint cluster region (BCR) gene on chromosome 22 [198]. As a consequence, the BCR-
ABL1 fusion gene (Philadelphia chromosome (Ph)) is formed [197]. The protein product of
this gene is a constitutively active tyrosine kinase activating many oncogenic signalling
pathways, including RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, and JAK/STAT [197,199].
The introduction of imatinib as a frontline therapy for chronic-phase CML resulted in
a significant increase in the 5-year survival rates (from 31% in early the 1990s to 66%
in 2012) [197]. More recent clinical trials have indicated even higher survival rates, with a
10-year overall survival as high as 83.3% [200]. Imatinib mesylate (IM) is a highly efficient
first-line therapy for the treatment of chronic myeloid leukaemia; however, resistance
to this therapy has emerged as a serious clinical problem [201]. CYP3A4 is the chief en-
zyme involved in the first-pass metabolism of imatinib. However, other enzymes (CYP3A5,
CYP2C8, and CYP2D6), but to a lesser degree, are also involved in this process. Following its
administration, imatinib is converted by the CYP3A enzymes into pharmacologically active
N-desmethyl imatinib, which shows a 3–4 times lower cytotoxicity than imatinib [202,203].
A pilot study on in vivo CYP3A activity demonstrated a higher in vivo CYP3A activity in
patients who achieved a complete molecular response (Mann–Whitney U-test, p = 0.013;
median quinine metabolic ratio = 10.1) compared to those who achieved a partial molec-
ular response (median = 15.9) [204]. However, some more recent data suggest that the
previous studies underestimated the role of other CYP450 enzymes. Filppula et al. [205]
demonstrated that the role of CYP3A4 is crucial during the first period after the initiation
of imatinib treatment (hepatic clearance by CYP2C8 and CYP3A4 accounts for 40 and 60%,
respectively); however, during long-term treatment with imatinib at 400 mg once or twice
daily, the predominant role of CYP3A4 may be taken over by CYP2C8 (CYP2C8: 65–75%
hepatic elimination; CYP3A4: 25–35% hepatic elimination). This finding may be associated
with the dose- and time-dependent auto-inactivation of CYP3A4 by imatinib [205]. In
the course of multiple dosings, both the polymorphisms and drug interactions affecting
the function of CYP2C8 may be the source of inter-individual variation in response to
imatinib, as well as the occurrence of side-effects. The presence of CYP3A5*3 was found
to be associated with the appearance of a cryptic splice site which results in a premature
stop codon and the subsequent absence of functional CYP3A5 protein [206]. The frequency
of this allele is quite low in Caucasians (5–10%) but very high in Africans and African-
Americans (60%). Data concerning the influence of CYP3A5*3 on drug pharmacokinetics,
efficacy, and toxicity seems to be incomplete due to the fact that most drugs metabolized
by CYP3A5 also undergo conversion by CYP3A4 [23]. Maddin et al. [207] demonstrated
that CML patients with at least a CYP3A5*1 polymorphic allele tended to express greater
amounts of CYP3A5. Moreover, they observed a considerably lower risk of developing
resistance against imatinib in the heterozygous (*1/*3) and homozygous (*3/*3) variant
carriers, which may suggest that this allele exerts protective effects. Furthermore, the
Canadian study implied that carriers of the CYP3A5*1/*1 genotype showed a higher risk of
developing resistance to IM [208]. A study of Nigerian CML patients assessing the impact
of CYP3A5*3 polymorphisms on imatinib metabolism revealed that the GG genotype was
associated with considerably greater trough plasma concentrations; however, no corre-
lation between this level and the clinical outcomes was noted [209]. Individuals with at
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least one CYP3A5*1 allele have a high concentration of CYP3A5; therefore, it appears that
heterozygous or homozygous carriers of CYP3A5*1 should show a high rate of clearance
and the lowest oral bioavailability of CYP3A substrates; therefore, these patients may
not benefit from the standard dose of a drug [207]. In turn, homozygous patients with
the CYP3A5*3 genotype may experience reduced enzyme activity, leading to the limited
clearance and high bioavailability of the drug, and the subsequent better response to IM,
but also a possibly increased risk of adverse events. Another study which assessed the
functional impact of CYP2B6 15631G/T polymorphism on the response of imatinib in CML
patients demonstrated the relationship between a higher hematologic response and the
presence of the 15631GG/TT genotype compared to 15631GT (36.8 vs. 13.8%; χ2 = 3.542,
p = 0.063) [210]. However, the complete cytogenetic response was better in patients carry-
ing the 15631GG/GT genotype when compared with 15631TT (χ2 = 3.298, p = 0.024), while
the primary cytogenetic resistance was greater in those with the 15631GG/TT genotype
when compared with 15631GT carriers (52.6 vs. 17.2%; χ2 = 6.692, p = 0.010). The results
of this study indicate the better response of patients with 15631GG alleles; however, this
group was also more susceptible to side effects (p = 0.004).

These findings provide initial evidence that the determination of polymorphisms
within P450 enzymes could help to predict the therapeutic response to imatinib. However,
the observed associations should be treated with caution due to the fact that the reported
variants may be population-specific; therefore, such relationships must be confirmed in
larger CML cohorts in order to assess the clinical relevance.

The intracellular levels of tyrosine kinases such as imatinib depend on their influx and
efflux involving transmembrane transporter proteins [197]. This process is associated with
the efficiency of BCR-ABL1 inhibition. Therefore, polymorphisms within genes encoding
proteins responsible for drug efflux, including ABCB1 (also called MDR1 or P-GP) and
ABCG2 (also known as BCRP2), may modulate the effects of imatinib treatment. Some
studies have demonstrated increased ABCB1 expression in the advanced stages of CML,
as well as the relationship between higher ABCB1 expression and a lower rate of imatinib
resistance [211–213]. The results of in vitro studies pointed to a rise in ABCB1-mediated
drug efflux as a plausible mechanism of resistance to imatinib [214]. The study of the three
most frequent SNSs (1236T/C, 2677G>T/A and 3435C/T) in patients with CML or gastroin-
testinal stromal tumours (GIST) revealed considerably greater imatinib clearance in carriers
of the TT genotype at all three loci [215]. Some studies have demonstrated significantly
higher rates of major molecular response (MMR) to imatinib in patients with 1236TT or
2677TT/TA, while others have reported reduced rates of MMR and complete molecular
response [216,217]. In vitro studies have not brought unequivocal answers as to whether
the aforementioned polymorphisms also play a role in the modulation of the imatinib re-
sponse [218,219]. In one issue on which the scientists agree, the level of ABCB1 expression
strongly correlates with imatinib responsiveness [211,213]. Furthermore, the expression of
ABCG2 appears to be involved in the mediation of TKI resistance. A study of two variants,
ABCG2 34G/A and 421C/A, in Malaysian patients with CML found a considerably bet-
ter response to imatinib in carriers of diplotype A34A421 [220]. In turn, a meta-analysis
of 14 studies and nearly 2200 patients indicated a markedly higher MMR and complete
cytogenetic remissions in CML patients carrying the 421A variant [221]. Moreover, the
polymorphisms within the solute carrier family 22 member SLC22A1 (or organic cation
transporters or OCT1) may modulate treatment effects because they control the active
intracellular uptake of TKIs [197]. Again, the results of studies concerning the impact of
variations within OCT1 on the imatinib response are conflicting. Some studies confirmed
that SLC22A1 expression correlated with the imatinib response over time [222,223]. In
Asian patients with CML, rs3798168, rs628031, and IVS7+850C>T polymorphisms were
found to be considerably associated with imatinib clearance [224]. In turn, a study of
Italian patients with CML demonstrated a relationship between SLC22A1 480C/G SNP
and imatinib clearance [225]. The presence of at least one G allele was suggested to be
associated with significantly reduced imatinib clearance [225]. Another study found a
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considerably higher frequency of heterozygous (CG) and homozygous variant (GG) geno-
types of SLC22A1 C480G in the IM-resistant group compared with the IM good-response
group [226]. Moreover, the authors suggested that carriers of 1222AA—both 8-bp insertion
and 3-bp deletion—and M420del alleles had an increased risk of developing resistance to-
wards IM treatment. The SLC22A1 variants L160F (rs683369, C480G) and M408V (rs628031,
A1222G) are most frequently associated, in the available studies, with the imatinib re-
sponse [227]. The results of some studies have suggested an increased risk of imatinib
resistance and reduced event-free survival in homozygous carriers of the L160F variant,
while others failed to observe such an association [208,225,228–230]. Homozygous carriers
of the CC genotype had a considerably lower steady-state imatinib plasma concentra-
tion, which suggests the impact of the L160F variant on imatinib pharmacokinetics [227].
Grinfeld et al. [231] found an interaction between the M420del variant and rs113569197
(TGGTAAGT insertion [8+]). In their study, patients lacking both the 8+ and M420del
variants had a superior overall outcome. In turn, Singh et al. [224] identified the sub-
haplotypic region of OCT1 involving IV6-878C/A (rs3798168), M408V and IVS7+850C/T,
which influenced imatinib clearance.

Table 1 comprises the summary of studies concerning the impact of polymorphisms
within genes encoding enzymes involved in the metabolism of drugs on therapeutic effects

Table 1. The summary of studies concerning the impact of polymorphisms within genes encoding
enzymes involved in the metabolism of drugs on therapeutic effects.

Name of Drug Enzyme Polymorphisms Result of the Presence of
Polymorphism Clinical Translation Ref

5-fluorouracil
(5-FU)

Dihydropyrimidine
dehydrogenase

(DPD)

1905+1G/A & 1679T/G
(strong impact)

2846A/T &
1129–5923C/G

(moderate impact)

IM: (1 normal function
allele + 1 no function allele

or 1 decreased function
allele, or 2 decreased

function alleles)
Decreased DPD activity

Increased risk for severe
or even fatal drug toxicity

when treated with
fluoropyrimidine drugs
Solution: Reduction of

starting dose followed by
titration of dose based on

toxicity or therapeutic
drug monitoring

[30]

1905+1G/A & 1679T/G
(strong impact)

2846A/T &
1129–5923C/G

(moderate impact)

PM: (2 no function alleles or
1 no function + 1 decreased

function)
Complete DPD deficiency

Increased risk for severe
or even fatal drug toxicity

when treated with
fluoropyrimidine drugs.
Solution: Avoid use of

5-FU or 5-FU
prodrug-based regimens.
If alternative agents are

contraindicated- use 5-FU
at a strongly reduced

dosed with early
therapeutic drug

monitoring.

[30]

IVS14 + 1G/A or
2846A/T Decreased DPD activity

Early grade 3 to 4 toxicity
Solution: Treatment
should be quickly
stopped, or safely
continued with an

individual dose
adjustment.

[38]

Homozygotes -
IVS14 + 1G/A allele are

Complete lack of DPD
activity

5-FU-related toxicities
can be life-threatening or

sometimes even fatal
[40]
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Table 1. Cont.

Name of Drug Enzyme Polymorphisms Result of the Presence of
Polymorphism Clinical Translation Ref

Irinotecan

UDP glucuronosyl-
transferase family

1 member A1
(UGT1A1)

−3156G/A and
additional TA repeat in

the TATA sequence of the
UGT1A1 promoter,

((TA)7TAA, instead of
(TA)6TAA) (UGT1A1*28)

Gene transcriptional
efficiency is inversely

correlated to the number of
TA repeats in the TATA box

Greater risk of grade
4 neutropenia in patients with

the TA indel 7/7 genotype
(relative risk: 9.3 (95% CI,

2.4 to 36.4)) compared with
6/7 and 6/6 (p = 0.001)
TA indel genotype was

significantly associated with
the absolute neutrophil count

nadir (7/7 < 6/7 < 6/6,
p = 0.02).

[71]

additional TA repeat in
the TATA sequence of the

UGT1A1 promoter,
((TA)7TAA, instead of

(TA)6TAA) (UGT1A1*28)

(TA)7TAA:
significantly lower

SN-38 glucuronidation
rates compared (TA)6TAA)

(p = 0.001)

(TA)7TAA heterozygous
carriers: more severe grades of

diarrhoea (4 grade) and
neutropenia (TA)7TAA

homozygous carriers: grade
3 diarrhoea/grade

4 neutropenia,
Conclusion: screening for

UGT1A1*28 polymorphism
may identify patients with

greater susceptibility to
irinotecan induced

gastrointestinal and bone
marrow toxicity.

[72]

UGT1A1*6
UGT1A7*3

UGT1A9-118(T)9/9

UGT1A variants: lower
enzyme activity

UGT1A1*6/*6: higher
incidence of severe

neutropenia, lower tumour
response, shorter

progression-free and overall
survival compared with other

genotypes.
UGT1A7*3/*3: lower drug

response rate (p = 0.034)
UGT1A9-118(T)9/9 or

UGT1A7*3/*3: high incidence
of grade 3 diarrhoea

(p = 0.037 and p = 0.28,
respectively)
Conclusions:

UGT1A1*6 and/or
UGT1A9*22 genotypes might
be important for predicting

severe toxicity and treatment
outcome after irinotecan-based

chemotherapy

[77]

UGT1A1*28 (seven
repeats (TA7))

Reduced efficiency of
transcription of the

UGT1A1 gene

Recommended irinotecan dose
of 180 mg/m2 is considerably
lower than the dose that can be
tolerated for patients with the

UGT1A1 *1/*1 and
*1/*28 genotypes.

Maximum tolerable dose for:

[89]

- high-risk UGT1A1
*28/*28 genotype is 30%
lower than the standard
dose of 180 mg/m2.

- *1/*1 genotype:
450 mg/m2

- *1/*28 genotype:
390 mg/m2

- *28/*28 150 mg/m2
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Table 1. Cont.

Name of Drug Enzyme Polymorphisms Result of the Presence of
Polymorphism Clinical Translation Ref

Tamoxifen

CYP2D6

CYP2D6*1, *2, *3,*4, *5, *6,
*7 *9, *10, *16, *16, *1C

(T1957C), *2B (additional
C2558T), and *4E

(additional C2938T)

EM phenotype:
CYP2D6*1 allele

IM phenotype: slightly
(CYP2D6*2) or moderately
(*9 and *10) reduced activity

PM phenotype: complete
enzyme deficiency

(*4; *3 and *5; *6; *7, *15,
and *16).

Poor metabolizers:
substantially lower doses
would be optimal for this

group

[117]

CYP2D6 CYP2D6*3, *4, *5, *10 and
*41 alleles

PM: lack of active enzyme
function (homozygous or
compound heterozygous

for CYP2D6*3, *4, or
*5 alleles)

IM: reduced enzyme
activity (*10 and *41 alleles
either homozygous or in

combination with a
PM allele)

EM: normal enzyme
function (absence of PM
and IM alleles) UM: high

enzyme activity (duplicated
gene copies without a PM

or IM allele)

Significantly increased risk of
recurrence in heterozygous
EM/IM compared with EM
(time to recurrence adjusted
HR, 1.40; 95% CI, 1.04–1.90)
and PM (time to recurrence
HR, 1.90; 95% CI, 1.10–3.28).
Decreased CYP2D6 activity
was associated with worse

event-free survival (HR, 1.33;
95% CI, 1.06–1.68) and

disease-free survival (HR, 1.29;
95% CI, 1.03–1.61).

[122]

CYP2D6
P450 (CYP)2D6 (*4 and

*6) and CYP3A5 (*3)
genotype

CYP2D6 *4/*4: PM
phenotype

CYP2D6 *4/*4 genotype:
worse relapse-free time
(RF-time; p = 0.023) and

disease-free survival (DFS;
p = 0.012)

CYP2D6 *4/*4 genotype:
lower incidence of hot flashes

The CYP3A5*3 variant: no
impact on any of

aforementioned clinical
outcomes.

[124]

CYP2D6 CYP2D6*10, CYP2D6*4,
CYP2D6*5, CYP2D6*14

CYP2D6*10: reduced
enzyme activity in IM

CYP2D6*4, CYP2D6*5 and
CYP2D6*14: null alleles

encoding no enzyme at all

CYP2D6*10/*10 and
heterozygous null allele (IM):
higher risks of recurrence and
metastasis (OR 13.14; 95% CI

1.57–109.94; p = 0.004)
compared with

CYP2D6*1/*1 and
*1/*10 genotypes.

[126]

Sulfotransferase 1A1
(SULT1A1)

SULT1A1*1 &
SULT1A1*2

SULT1A1*2: enzyme with
approximately twofold
lower activity and less

thermostable compared to
SULT1A1*1

SULT1A1*2 homozygotes:
~3 times higher risk of death

(HR = 2.9, 95%, CI = 1.1 to 7.6)
compared to

SULT1A1*1 homozygotes or
SULT1A1*1/*2 heterozygotes.

[133]

SULT1A1 and UDP-
glucuronosyltransferase

isoform 2B15
(UGT2B15)

SULT1A1*1 &
SULT1A1*2,

Asp85Tyr(UGT2B15*1/*2)

SULT1A1*2: decreased
catalytic activity

Asp85Tyr(UGT2B15*1/*2):
increased velocity of

reaction

UGT2B15*2 high activity
genotypes: increased risk of

recurrence and poorer survival.
Combination of UGT2B15 and

SULT1A1 ‘at-risk’ alleles:
significantly greater risk of

recurrence and poorer survival
than those with
common alleles.

[134]
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Table 1. Cont.

Name of Drug Enzyme Polymorphisms Result of the Presence of
Polymorphism Clinical Translation Ref

6-
Mercaptopurine

(6-MP)

Thiopurine
S-methyltransferase

(TPMT)

TPMT*2, *3A, *3B, and
*3C alleles TPMT enzyme deficiency

TPMT-deficient patients
experience more frequent

hospitalization, more platelet
transfusions, and more missed

doses of chemotherapy.0
Serious side-effects:
hematologic toxicity
(>90% of patients)

Following appropriate dosage
adjustments, TPMT-deficient

and heterozygous patients can
be treated with thiopurines,

without acute
dose-limiting toxicity

[151]

Sunitinib

CYP3A4, CYP3A5 CYP3A4 (rs35599367) and
CYP3A5 (rs776746)

No significant association
between the genotypes of each

SNP and time to dose
reduction, progression-free

survival, overall survival, and
best objective response.

[170]

CYP3A4 or CYP3A5 CYP3A5*1/*1,
CYP3A5*3/*3

Sunitinib activated midazolam
1′-hydroxylation by

CYP3A5 but inhibited that
by CYP3A4.

Unexpected drug interactions
involving sorafenib and

sunitinib might occur via
heterotropic cooperativity

of CYP3A5.

[173]

CYP3A5 CYP3A5*1/*1,
CYP3A5*3/*3

CYP3A5*1: need for dose
reductions (OR: 2.0; 95% CI,

1.0–4.0, p = 0.039).
[174]

CYP3A4, CYP3A5
SNPs in CYP3A4, CYP3A5,

affected the clearance of
both sunitinib and SU12662.

CYP3A4*22 was eliminated
with an effect size of −22.5%

on clearance
[175]

Mitotane

CYP2B6 G/T (rs3745274) Affects mitotane
metabolism

Significant correlation between
CYP2B6 SNP and mitotane

plasma levels (after 3 months)
(p = 0.003).

Patients with the GT/TT
genotype: higher mitotane
plasma concentrations after

3 months of treatment
compared with patients with
GG, the wild-type genotype

[14.80 µg/mL (10.50–18.08) vs.
8.01 µg/mL (6.37.6–10.61);

p = 0.008]

[191]

CYP2C9
SLCO1B1
SLCO1B3

CYP2C19*2 (rs4244285),
SLCO1B3 699A/G

(rs7311358) and SLCO1B1
571T/C (rs4149057)

CYP2C19*2: a
non-functioning variant

diminishing the activity of
CYP2C19

CYP2C9 IM: high
mitotane level.

Suggestion: the adjustment of
mitotane dose based on the
determination of three SNP:

rs4244285, rs7311358 and
rs4149057

[192]
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Table 1. Cont.

Name of Drug Enzyme Polymorphisms Result of the Presence of
Polymorphism Clinical Translation Ref

Imatinib

CYP3A4 and
CYP3A5

CYP3A5*3 (6986A/G)
and CYP3A4*18 (878T/C)

Alter the enzyme activity of
IM and may affect its

response
CYP3A5*1 polymorphic
allele tended to express

greater amounts of CYP3A5

Carriers of heterozygous (AG)
and homozygous variant (GG)

of CYP3A5*3: significantly
lower risk of acquiring

resistance with OR 0.171; 95%
CI: 0.090–0.324, p < 0.001 and
OR 0.257; 95% CI: 0.126–0.525,

p < 0.001, respectively.
Non-significantly lower risk of
acquiring resistance toward IM
in heterozygous carriers of TC
genotype of CYP3A4*18 (OR

0.648; 95% CI: 0.277–1.515)
(p = 0.316).

[207]

CYP2B6 15631G/T Decreases enzymatic
activity of CYP2B6 in liver

15631GG/TT genotype: higher
hematologic response loss
compared with 15631GT

(36.8 vs. 13.8%; X (2) = 3.542,
p = 0.063).

15631GG/GT genotype: higher
complete cytogenetic response

compared with 15631TT
χ2 = 3.298, p = 0.024).

15631GG/TT genotype: higher
primary cytogenetic resistance

compared with 15631GT
carriers (52.6 vs. 17.2%;
χ2= 6.692, p = 0.010).

15631GG genotypes: more
frequent side effects compared

with GT/TT carriers (36 vs.
13.8 %; χ2 = 8.3

[210]

4. Conclusions

Anticancer drugs usually have a very narrow therapeutic index; therefore, it is very
important to use appropriate doses in order to achieve the maximum benefits without
putting the patient at risk of life-threatening toxicities. However, the adjustment of the
appropriate dose is not so easy due to the inheritance of specific polymorphisms in the
genes encoding the target proteins and drug-metabolizing enzymes. This review presented
just a few examples of such polymorphisms and their impact on the response to therapy. It
appears that the characterization of all of the genetic polymorphisms present in humans
and the understanding of their role in clinical endpoints would enable the development
of clinical practice strategies based on accurate genotype testing, and would facilitate the
rational selection of cancer drug(s) and the adjustment of the dosage for the individual
patient. Furthermore, the knowledge of drug–drug interactions is of high importance in
this field. Such an approach would allow for the optimization of treatments.
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