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Abstract: Compliance of the effluents from wastewater treatment plants (WWTPs) to the regulatory
standards, which mostly entail the removal/reduction of organic waste and deactivation of the potential
microbial pathogens is of great importance. The detection of indicator parameters can be used to
determine the effectiveness of a WWTP and the level of compliance with the South African regulatory
standards. The performance of the WWTP was assessed by biological, physical and chemical
measures in wastewater final effluent. The Escherichia coli ranged from 0 and 2420 count/100 mL in
the final effluent. The recorded values for the physicochemical parameters were within the following
ranges: pH (7.03–8.49), electrical conductivity (81.63–126.5 mS/m), suspended solids (0.40–20.4 mg/L),
ammonia (0–22.15 mg/L), Chemical Oxygen Demand (COD) (1–73 mg/L), nitrate (0–16.1 mg/L),
ortho-phosphate (0–8.58 mg/L) and free chlorine (0–3.21 mg/L). Furthermore, the concentration of
toxic heavy metals was recorded to be between 1–10 ug/L for arsenic, cadmium, lead and mercury.
In conclusion, all the parameters that were evaluated in this study indicate that the studied WWTP is
performing in accordance with the prescribed general limits.

Keywords: influent; effluent; wastewater; E. coli; physicochemical; heavy metals; general limits;
special limits; green drop

1. Introduction

Wastewater is derived from raw sewage from anthropogenic activities [1,2], while sewage effluent
refers to treated or untreated wastewater generated from a treatment plant [3]. The main aim of
a municipal treatment plant is to remove/reduce organic wastes and safeguard human health by
deactivating disease-causing microorganisms [4]. Insufficient management of municipal wastewater
in many urban areas is a major challenge that leads to poor quality effluents entering public surface
waters and thus posing high risk to downstream users and aquatic life [2,4,5].

In South Africa (SA), 19% of the rural population lacks access to potable water [6] and therefore,
continues to use untreated surface water which is often contaminated by polluted wastewater
effluents [7,8]. Although the quality of effluents for most WWTPs has been adequate to meet discharge
regulations and standards in the past, the drastic increase in population for a developing country
like SA, often means high volumes of wastewater discharged into the environment and consequently,
environmental pollutants that are a threat to public health [9,10].
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One of the main aspects of wastewater treatment is the removal/reduction of the contaminating
microorganisms [11]. The presence of fecal coliforms in final effluents therefore confirms the presence
of human pathogens in wastewater and the potential to contaminate natural water/environmental
water resources [11,12]. As a result, fecal coliforms are often used as indicators for water quality and
can provide valuable information on urban land use and potential routes of fecal contamination [11–14].
E. coli is a preferred indicator organism to monitor the bacteriological quality of wastewater [15]. On
the other hand, inadequately treated effluent may contain hazardous elements [16–18] which place
sufficient treatment technologies/processes [19] at the cornerstone of any WWTP. Some of the hazardous
elements are in the form of heavy metals and the most commonly reported include arsenic, lead,
mercury and cadmium [20,21] which are known to be carcinogenic and mutagenic [22]. The sources of
most physicochemical parameters in wastewater are mainly associated with households, grey water
and black water, mines, domestic and industrial activities, humus materials, waste created by animals
and other living organisms present in water [20,23]. Some of the chemical parameters that include
heavy metals, are persistent to treatment due to their non-biodegradable and toxic nature [24].

Wastewater needs to be adequately treated prior to being discharged into the environment.
Thus, the importance of testing for indicator contaminants for quality characterization, control and
compliance of wastewater final effluent as the framework of quality programs, is widely important
and accepted nowadays [25]. There is a need to improve treatment processes and to adopt stringent
policies in terms of monitoring and control of the quality of the final effluent in order for a treatment
plant to meet national and international standards [26]. In SA, the compliance of a plant to regulatory
standards is recognized and awarded with an incentive-based program certificate popularly known as
a green drop certificate [27,28]. The regulatory standards are used to measure the quality of the effluent,
while the green drop program is driven to strengthen the regulatory approach, and at the same time
refocus the local government in a manner that is more responsive to regulatory imperatives [27].

Studies have been carried on WWTP, but few or no papers have been done in the North-West
Province of South Africa about their compliance to general and special limits as well as their
performance when measured to current updated green drop effluent quality requirements. The aim of
this study is intended in assessing the prevalence and compliance of the studied plant to South African
regulatory standards with regard to fecal coliforms and physicochemical parameters as well as to
improve knowledge on the quality of wastewater discharged to the environment due to various
anthropogenic activities.

2. Materials and Method

2.1. Study Area

The plant considered in this study is situated in the North-West Province of SA. According to
regulation 2834, popularly known as regulation 17, the plant is registered and classified as class A [29].
The town where the plant is situated has a population of around 124,000. It is an industrial and
agricultural growth point of the North-West province. The plant therefore receives municipal domestic
sewage and wastewater that is heavily influenced by industrial water use.

There are different technologies for treatment of wastewater in SA, of which activated sludge and
trickling filter are the commonly applied methods [30]. The plant is an activated sludge with a capacity
of 45 megaliters (ML) and is divided into two sections (old and new plant) with operational capacities
of 23 and 22 mL, respectively. The old plant is subdivided into polishing and Bardenpho sections with
a capacity of 10 and 13 mL, respectively, while the new plant is subdivided into reactor A and B with
operational capacity of 11 mL each.

2.2. Sample Collections

Both raw and treated wastewater samples were collected aseptically using sterile 250 mL and 1 L
sampling bottles respectively for microbiological and physicochemical testing. The sampling containers
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were washed with soap and water and autoclaved after each use. Samples were collected between May
2019 and March 2020. Physicochemical samples were collected at the plant inlet (raw sewer) and plant
outlet (final effluent). Microbiological samples were collected before disinfection (secondary effluent)
and after disinfection (final effluent).

2.3. Detection of Fecal Coliforms (E. coli)

The Colilert Quanti-Tray/2000 system as described in Omar et al., [31] was used for the enumeration
of the viable E. coli cells from the 336 samples studied. Enumeration of E. coli from samples was done
by using 100 mL water according to the manufacturer’s instructions. The Quanti-Trays were incubated
for 18–22 h at 37 ◦C. After incubation, the Quanti-Trays/2000 were examined under long wave (366 nm)
ultraviolet light, and wells that turned both yellow and fluoresced were counted as E. coli positive
(IDDEX). The results of the quantifications were reported as E. coli count/100 mL.

2.4. Determination of Physicochemical Parameters

All equipment and meters were verified and calibrated according to the manufacturer’s instruction.
A total of 336 samples were analyzed for all physicochemical parameters except for heavy metals
which were analyzed from 20 samples. Free chlorine was measured onsite using HACH handheld
pocket colorimeter Pocket Colorimeter II 5870000 (HACH Company, Loveland, CO, United State of
America (USA)). pH was measured using benchtop pH meter (XS Instruments, Via della Meccanica,
Italy). Ammonia, nitrate, and ortho-phosphate from raw and treated samples were analyzed using
spectrophotometry model DR3900 (HACH Company, Loveland, CO, USA) and a Gallery Discrete
Analyzer Thermo Scientific (Thermo Fisher Scientific, Waltham, MA, USA) respectively. COD samples
were digested in a Hanna thermo reactor HI 839800 COD reactor (Hanna Instruments, Woonsocket,
RI, USA). Electrical conductivity was measured using a benchtop meter Eutech Instruments-Con
2700 (Thermo Fisher Scientific, Waltham, MA, USA). Whatman GF/F Glass Microfiber 47 mm filters
(Sigma-Aldrich, St. Louis, MO, USA) were used for the measurement of suspended solids. Heavy
metals analyses from the final effluent samples were outsourced to Waterlab (Pty) Ltd. in Pretoria,
South Africa. Analyses for the heavy metals were done twice every month through inductively coupled
plasma optical emission spectrometry (ICP-OES).

2.5. Compliance Study and Calculation of Reduction Efficiencies

The Department of Water Affairs General Authorization guidelines (general and special limits) as
indicated in Table 1 [32] along with the green drop category requirements (microbiological, chemical
and physical) were used as yardsticks/benchmarks to evaluate the acceptability of the final effluent of
the studied plant. General limits are applicable to WWTPs discharging effluents of less than 2 mL as
well as discharging into water resources that are not listed on the regulation [32], while special limits
apply to WWTPs discharging effluents less than 2 mL, but discharging into a water resource listed in
the regulation [32]. However, WWTPs that discharge effluents above 2 mL and do not have a water
use license also use these regulation limits. All effluent quality compliance categories (microbiological,
chemical, physical compliance) must obtain ≥95%, respectively, for the plant to meet the green drop
requirements [33].

The efficiency of the studied plant for the removal of waste matter was calculated using the
following equation [4,34]:

Removal efficiency (%) =
Ci−Ce

Ci
× 100 (1)

where Ci is the concentration of waste matter in influent and Ce the concentration of waste matter
in effluent.
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Table 1. South African General Authorizations for general and special limits [32].

Substance/Parameter
General Authorizations

General Limits Special Limits

Fecal coliforms (per 100 mL) 1000 0

Chemical oxygen demand (COD) (mg/L) 75 (i) 30 (i)

pH 5.5–9.5 5.5–7.5

Ammonia (as N) (mg/L) 6 2

Nitrate (as N) (mg/L) 15 1.5

Chlorine as free chlorine (mg/L) 0.25 0

Suspended solids (mg/L) 25 10

Electrical conductivity (mS/m) 75 mS/m above intake water,
to maximum of 150

50 mS/m above background receiving
water, to maximum of 100

Ortho-phosphate as phosphorous (mg/L) 10 1 (medium) and 2.5 (maximum)

Fluoride mg/L 1 1

Soap, oil or grease (ug/L) 2500 0

Dissolved arsenic (ug/L) 20 10

Dissolved cadmium (ug/L) 5 1

Dissolved chromium (ug/L) 50 20

Dissolved copper (ug/L) 10 2

Dissolved cyanide (ug/L) 20 10

Dissolved iron (ug/L) 300 300

Dissolved lead (ug/L) 10 6

Dissolved manganese (ug/L) 100 100

Mercury and its compounds (ug/L) 5 1

Dissolved selenium (ug/L) 20 20

Dissolved zinc (ug/L) 100 40

Boron (ug/L) 1000 500

3. Results

Presumptive E. coli detected as shown in Table 2, ranged between 0 and 2420 E. coli count/100 mL.
The highest count of 2420 E. coli count/100 mL was observed in November, December and January.
The organism was detected in 96.43% of the 336 final effluent samples studied, with 98.81% of
the samples below the permissible general limit of 1000 counts/100 mL as recommended by the
South African General Authorization regulation in Table 1 [32]. The study results were also evaluated
against the special limit and the outcomes indicated a lower compliance of 3.57% out of the 336 samples
studied. Zero detection as required by the special limit, was only observed in 12 samples. The final
effluent samples with no detection (0 E. coli count/100mL) were observed in June, August, December
and March, respectively. The final effluent was above the requirement for green drop when evaluated
against the general limit. The 3.57% obtained through special limit, was too little to meet the green
drop limit. The plant has a chlorination (disinfection) step as the only tertiary treatment before effluent
discharge. In terms of monitoring the efficiency of the chlorination system, 99.77% of the organisms
were reduced from the 1.26 × 105 count/100mL detected before disinfection. The study recorded E. coli
reduction of more than 99% in all the months studied (see Table 3 and Table S1). Few cells of E. coli
survived disinfection from the secondary effluent samples.
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Table 2. Physical parameters compliance to South African General Authorizations regulations.

Categories Parameter Unit Mean Min Max * Std.
dev.

General Limits Special Limits

Results
>Limit (n)

** Cpl.
(%)

Results
>Limit (n)

** Cpl.
(%)

Microbiological E. coli
Count

69 0 2420 249.09 4 98.81 324 3.57
/100 mL

Physical

pH - 7.71 7.03 8.49 0.3 0 100 232 30.95

Electrical
conductivity mS/m 108.23 81.63 126.5 8.15 0 100 265 21.13

Suspended
solids mg/L 7.62 0.4 20.4 3.06 0 100 47 86.01

Chemical

Ammonia mg/L 2.1 0 22.15 3.63 24 92.86 84 75

*** COD mg/L 25.48 1 73 11.86 0 100 130 61.31

Nitrate mg/L 5.53 0 16.1 3.96 1 99.7 285 22.13

Ortho-phosphate mg/L 0.42 0 8.58 0.62 0 100 5 98.63

Residual
chlorine mg/L 0.69 0 3.21 0.51 273 18.75 335 0.3

Arsenic ug/L 1.05 1 2 0.22 0 100 0 100

Cadmium ug/L 1.5 1 3 0.89 0 100 5 75

Lead ug/L 1.6 1 6 1.57 2 90 3 85

Mercury ug/L 3.25 1 10 4 0 100 5 75

* Std. dev. = Standard deviation; ** Cpl. = Compliance; *** COD = Chemical Oxygen Demand.

The physicochemical parameters were categorized into physical and chemical parameters (Table 2).
The chemical parameters were complemented by heavy metals analyses. The results were compared
against SA General Authorization (general and special limits). The concentrations of the physical
parameters attained, were ranged as follows: pH (7.03–8.49), electrical conductivity (81.63–126.5 mS/m)
and suspended solids (0.40–20.4 mg/L). All the samples tested for physical parameters results complied
100% to the permissible general limit. However, when evaluated against special limits, 104 (30.95%),
71 (21.13%) and 289 (86.01%) compliances were observed for pH, electrical conductivity and suspended
solids, respectively. The lowest concentrations for electrical conductivity and suspended solids were
observed in September and August, respectively. The physical parameters met the ≥95% requirement
for green drop when evaluated against the general limit, while noncompliance of 46.03% was observed
when measured against the special limits.

Ammonia, COD, nitrate, ortho-phosphate and free chlorine were studied under the chemical
category. Their detected concentrations ranged between 0–22.15 mg/L, 1–73 mg/L, 0–16.1 mg/L,
0–8.58 mg/L and 0–3.21 mg/L, respectively. The final effluents of all the samples exhibited 100%
compliance when measured against general limits. Compliances above 90% were observed for
ammonia (92.86%) and nitrate (99.7%) while lowest compliance to the general limit was observed with
free chlorine (18.75%). The final effluent concentrations when evaluated against the special limits,
resulted in the following compliances: 75% for ammonia, 61.31% for COD, 22.13% for nitrate, 98.63%
for ortho-phosphate and 0.3% for free chlorine. The efficiencies of the plant in reducing ammonia,
COD, nitrate and ortho-phosphate from the inlet concentrations as indicated in Table 3 and Table S1,
were 94.23%, 31.51% and 91.46%, respectively. The challenge around the reduction of nitrate was due
to the configuration employed. The treatment process in reactor A had to be changed from Modified
University of Cape Town (UCT) to Phoredox, that brought stability in reducing the concentration of
nitrate. The change around the configuration from Modified UCT to Phoredox happened in October
and the change showed better outcomes. Before the change, the plant would sometimes experience
a higher concentration at the final effluent than the raw inlet. The efficiency of the plant to remove
COD was improved as the plant managed to reduce the concentration from the inlet of the plant by
more than 95%. The lowest reductions that were below 95% but higher than 90% were observed in
December, January and March.
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Table 3. Wastewater treatment plant (WWTP) removal efficiency in reducing E. coli, ammonia, COD, nitrate and ortho-phosphate from untreated wastewater.

Months
E. coli (Count/100 mL) Ammonia (mg/L) COD (mg/L) Nitrate (mg/L) Ortho-Phosphate (mg/L)

Secondary
Effluent * F.E ** Red % Raw Inlet * F.E ** Red % Raw Inlet * F.E ** Red % Raw Inlet * F.E ** Red % Raw Inlet * F.E ** Red %

May-19 4.93 × 104 70 99.86 43.64 0.25 99.43 674 27 95.99 9.24 7.66 17.1 5.47 0.49 91.04
Jun-19 2.06 × 104 46 99.78 39.81 0.57 98.57 694 32 95.45 8.29 8.52 -2.77 4.97 0.61 87.73
Jul-19 1.03 × 104 36 99.65 41.24 0.2 99.52 709 27 96.13 10.6 11.17 -5.38 5.62 0.38 93.24

Aug-19 1.39 × 104 35 99.74 51.98 0.22 99.58 727 29 96.08 7.93 9.75 -22.95 6.12 0.36 94.12
Sep-19 7.45 × 103 68 99.09 39.21 0.09 99.77 792 33 95.83 8.65 8.94 -3.35 6.92 0.48 93.06
Oct-19 1.17 × 105 54 99.95 40.46 0.99 97.55 805 28 96.55 11.82 4.71 60.15 7.13 0.35 95.09
Nov-19 5.42 × 105 103 99.98 49.58 7.76 84.35 741 27 96.32 10.19 1.19 88.32 7.31 0.22 96.99
Dec-19 3.07 × 105 98 99.97 27.64 5.56 79.88 413 24 94.13 6.19 1.97 68.17 4.27 0.32 92.51
Jan-20 5.67 × 104 123 99.78 28.06 0.89 96.83 206 15 92.56 3.35 2.28 31.94 3.36 0.45 86.61
Feb-20 2.29 × 104 76 99.67 45.04 2.91 93.54 356 17 95.18 4.75 1.66 65.05 4.3 0.51 88.14
Mar-20 2.42 × 105 51 99.98 31.75 3.97 87.5 293 21 92.89 5.23 2.6 50.29 3.69 0.46 87.53

*** Ave 1.26 × 105 69 99.77 39.86 2.13 94.23 583 25 95.19 7.84 5.5 31.51 5.38 0.42 91.46

* F.E = final effluent; ** Red % = reduction percentage; *** Ave = average.
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Heavy metals such as arsenic, cadmium, mercury and lead were also part of the chemical
parameters studied under the chemical category. The concentrations of these heavy metal parameters
in ug/L at the final effluent as indicated in Table 2 were as follows: arsenic 1–2 (1.02), cadmium 1–3
(1.45), mercury 1–6 (1.55) and lead 1–10 (3.05). All the samples were 100% compliant for arsenic,
cadmium and lead when measured against general limits, while mercury had two failures with a
compliance of 90%. Arsenic was the only heavy metal that had 100% compliance to both general and
special limits, while a decrease in compliance was observed with cadmium (75%), mercury (85%) and
lead (75%) when evaluated against special limits.

To determine the chemical category compliance to the set green drop requirement, the chemical
parameters obtained were 89.03% and 65.82% when the effluent was evaluated against general and
special limits, respectively. The findings were however lower than the required ≥95% for compliance
to the green drop in all the regulatory standards (general and special limits).

4. Discussion

E. coli has been increasingly used as a fecal coliform indicator due to the fact that it is the only
organism amongst other coliforms that is of fecal origin even though some of its strains are not
considered pathogenic [35,36]. The organism accounts for more than 95% of the coliform genera in
human feces [37]. The E. coli counts in 1.91% and 96.43% of the samples tested in this study were over
the set General Authorization guidelines of 1000 counts/100 mL (general limit) and 0 count/100 mL
(special limit), respectively, and indicated noncompliance in this regard. The results reported here and
the issues of compliance that characterized this sector are further demonstrated in a study by Osuolale
and Okoh [11], on the compliance of WWTP-B to the general but not the special limit and other reports
of a similar nature [38,39]. In this study, the samples that were compliant to special limits, were only
observed in June, August, December and March. The detection of E. coli in wastewater final effluents
presents a major threat to public health [40] and possibly indicates the presence of other disease
causing/potentially pathogenic microbes including viruses and protozoa. Osuolale and Okoh’s [11]
study identified their findings with insufficient chlorine as the cause of high E. coli detections. However,
in this study, residual chlorine proved to be high, which therefore confirmed that enough chlorine
for the disinfection process was being dosed. Some aspects (cleaning of clarifiers, sludge reticulation
affected due to aerator breakdown, high inflow of 103% at balancing dam and load shedding) that are
not associated with disinfection have been identified on the days with high detections above general
limit. The effluent in this study was less polluted than the effluent in a study by Elmund et al., [41]
for which the detections ranged between 0 to approximately 10,000 and 3 to 1500 organisms/100 mL
at their two plants studied. About 81.25% of free chlorine meant to eradicate these organisms was
above the set limit when measured against the general limit. The final effluent compliance was about
3.57% when measured against zero E. coli count/100 mL of the special limit. The high free chlorine
concentration detected confirmed that the dosed chlorine was more than sufficient and possibly
indicated the presence of chlorine resistant strains [18]. The presence of resistant microorganisms
pose significant risk to public health. Studies have shown stress mechanisms [18,42,43] and resistance
genes mechanisms [44,45] advancing in the resistance of E. coli to disinfection by chlorine. As the
final effluent samples, the samples collected prior to disinfection were also analyzed to determine the
number of organisms expected to be eradicated. This was done to measure the efficiency of the plant in
removing microorganisms such as E. coli, and the outcomes showed high efficiency of more than 99%
even though the compliances for both limits were not optimally (100%) achieved. A study by Edokpayi
et al., [39] showed reduction of E. coli to levels between 15% and 25% which tend to be lower than the
current study reductions. The paucity of E. coli present an optimistic picture of the state of this WWTP.

The SA final effluent discharge guidelines outline the limits for physical and chemical
parameters [32]. Studies have reported that physicochemical parameters have synergetic effects
on each other, which have some impact on the water quality [23,46–48]. The outcome of the physical
parameters (pH, electrical conductivity and suspended solids) analyzed was 100% compliance to the
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general limits. However, a decline in compliance was observed when the parameters were evaluated
against the special limits. Suspended solids showed the highest compliance when measured against the
special limit. Studies in the Limpopo and Gauteng provinces of SA reported general limit compliance
with regards to pH [4,34], as was also observed in this study. Electrical conductivity in this study ranged
between 81.63 and 126.5 mS/m. The electrical conductivity from final effluent in the Mpumalanga
Province (SA) ranged from 162.1 to 1170 mS/m for the final effluent [26]. Studies done in Eastern Cape
by Agoro et al., [4] and Osuolale and Okoh, [11] showed higher detections of electrical conductivity
above both South African general and special limits. Suspended solids showed the highest compliance
when measured against the special limit. Like other indicator parameters, suspended solids are used
to describe the extent of pollution in wastewater [48]. The average of suspended solids recorded in this
study were lower compared to three of the four plants studied in Vaal, Gauteng [34].

The data presented here indicates that for the vast majority of the samples, the general limit
criteria for discharging chemical parameters were met. These results correspond well with the data
obtained from the study in the Eastern Cape Province (EC-SA) [49,50] and Bulgaria [50] which reported
on data that is compliant to the general limit but noncompliant to the special limit due to a diversity
of reasons [48,50,51]. The 100% compliance reported in this study with respect to COD was in the
concentration range between 1–73 mg/L which was significantly higher in comparison to the 33%
compliance that was reported in the EC-SA WWTP [11]. Igbinosa and Okoh, [40] recorded COD effluent
concentrations in the range of 36.82–238 mg/L from a WWTP in the East of Alice Town of EC-SA.

Chlorine was one of the chemical parameters that were not in compliance to both general and
special limits. This parameter is widely used to disinfect wastewater prior to discharge in order to
mitigate against the spread of waterborne infectious diseases [52]. Moreover, chlorine can be harmful
to aquatic life if high concentrations are discharged into the environment [53]. It is therefore regulated
before being discharged into the environment as free or residual chlorine in SA [32]. Only 63 (18.75%)
and 1 (0.30%) were compliant to general and special limits. About 67% of the WWTP-A samples in
EC-SA had low free chlorine concentration below the recommended general limit [11]. Most of SA
WWTPs use chlorine as a form of disinfectant and it is expected to detect free chlorine in the final
effluent after contact time of 30 min, however contrary to that, the special limit requires a discharge of
0 mg/L and thus seems to be too stringent a requirement for a plant.

The study further showed the effectiveness of the WWTP in reducing the concentration of
ammonia, COD, ortho-phosphate present in the influent except for nitrate. The reduction of these
parameters were above 90%. Phosphate which is an essential nutrient for plants [54] was considerably
reduced compared to 24% and 5% recorded in a study conducted in Limpopo [39]. Contrary to this
study, higher nitrate reduction efficiencies of 98.3%, 85.8%, 96.9%, 86.2% and 75.8% were recorded in a
study by Aniyikaiye et al., [55]. The plant employed different activated sludge configurations such as
Modified UCT, Bardenpho and Phoredox for reductions of nitrate, ammonia and phosphate [56,57].
The challenge around the reduction of nitrate was due to the configuration employed which sometimes
showed higher concentrations of nitrate in the final effluent than at the inlet of the plant. Similar trends
(higher nitrate concentration at the final effluent than the inlet), were also observed for the majority of
parameters studied by Edokpayi et al., [39]. High concentration of nitrate is known to accelerate algal
growth causing eutrophication, which consequently leads to increase in oxygen demand, loss of some
aquatic life forms and offensive odors that affect people living very close to the water resource [48,58–61].
The issue of noncompliance with regard to nitrate was a concern and it led to the changes in configuration
applied from Modified UCT to Phoredox which showed efficient outcomes. Most activated sludge
configurations have advanced over the years, and, subject to the design, an activated sludge WWTP
can achieve removal of organic carbon substances and nutrients such as nitrogen and phosphorus [56].
The outcomes of this study show the efficiency of the activated sludge configurations applied except
for the Modified UCT configuration.

The plant considered in this study is situated in an area that is known for intense industrial
activity in the province. Different industrial wastewater streams from the industrial catchment area
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are mixed with domestic sewage discharges before they reach the treatment system. Effluents from
industry are mostly dominated by heavy metals that are persistent to treatment and are toxic to the
environment [24]. The study of the chemical properties from the final effluent was completed by
analyzing the heavy metals. The studied heavy metals are shown in Table 2. The plant showed high
efficiency in reducing heavy metals resulting in a final effluent compliance ≥90% and ≥75% when
evaluated against general and special limits, respectively. Arsenic concentrations were above the
general and special limits, while cadmium concentrations complied with both limits in three plants
studied in Gauteng [34]. The detection range for cadmium and mercury were lower in a Cape Town
study by Olujimi et al., [62], compared to the detection limit in this study. According to the literature,
high trace levels of arsenic, cadmium and mercury were recorded in Austria [63], Italy [64] and
Israel [65]. A study by Edokpayi et al., [39], showed the concentration of lead in the effluent complying
with the DWA guideline value of 10 ug/L [25] except for months of April and June. Similar findings
were observed in this study with lead complying 100% to both general and special limits. A study in
China indicated cases of lead above the Chinese standard and such occurrence was mostly observed
from WWTPs receiving wastewater from electroplate plants [66].

The green drop process measures the performance of a WWTP, and subsequently rewards the
institution upon evidence of their excellence according to the minimum standards or requirements
that have been defined. Since the data was evaluated through General Authorization (general and
special limits), the plant classified as B according to SA classification of WWTP is then expected to meet
≥95% for compliance to green drop [32,33]. Overall achievement around microbiological, chemical and
physical green drop compliance in relation to general and special limits as indicated in Figure 1 was as
follows: general limits (microbiological—98.1%, Chemical—89.03% and Physical—100%) and special
limits (microbiological—3.57%, Chemical—65.82% and Physical—46.03%). Compliance of the plant
in relation to general limits had two categories (microbiological and physical) above the set target of
≥95%. Chemical determinant was the only category that was not in compliance. This therefore would
not award the plant green drop certification status because of the fact that not all categories achieved
≥95% compliance. The results showed overall noncompliance to green drop when measured using
special limits. Contrary to the above findings, the plant had achieved its green drop status for several
years since its inception in 2008, except in 2009 [28]. A decline was observed in the performance of the
plant when compared to the last audit that was done in 2013. In that year (2013) the plant obtained
99.71%, 99.93%, and 100% for microbiological, chemical and physical categories, respectively [28].
Despite the decline in compliance, the conditions for all the categories were initially set at ≥90% before
being reviewed to ≥95% [33]. This therefore indicates that the harsher the green drop compliance
requirements become, the less likely it is that the plant will obtain its green drop status, unless the
design of the plant is revised as the infrastructure is ageing. Insufficient budget for assets management
and ageing infrastructure have been identified as the source of decline for the performance of the plant.

Int. J. Environ. Res. Public Health 2020, 17, x  9 of 13 

industry are mostly dominated by heavy metals that are persistent to treatment and are toxic to the 
environment [24]. The study of the chemical properties from the final effluent was completed by 
analyzing the heavy metals. The studied heavy metals are shown in Table 2. The plant showed high 
efficiency in reducing heavy metals resulting in a final effluent compliance ≥90% and ≥75% when 
evaluated against general and special limits, respectively. Arsenic concentrations were above the 
general and special limits, while cadmium concentrations complied with both limits in three plants 
studied in Gauteng [34]. The detection range for cadmium and mercury were lower in a Cape Town 
study by Olujimi et al., [62], compared to the detection limit in this study. According to the literature, 
high trace levels of arsenic, cadmium and mercury were recorded in Austria [63], Italy [64] and Israel 
[65]. A study by Edokpayi et al., [39], showed the concentration of lead in the effluent complying with 
the DWA guideline value of 10 ug/L [25] except for months of April and June. Similar findings were 
observed in this study with lead complying 100% to both general and special limits. A study in China 
indicated cases of lead above the Chinese standard and such occurrence was mostly observed from 
WWTPs receiving wastewater from electroplate plants [66]. 

The green drop process measures the performance of a WWTP, and subsequently rewards the 
institution upon evidence of their excellence according to the minimum standards or requirements 
that have been defined. Since the data was evaluated through General Authorization (general and 
special limits), the plant classified as B according to SA classification of WWTP is then expected to 
meet ≥95% for compliance to green drop [32,33]. Overall achievement around microbiological, 
chemical and physical green drop compliance in relation to general and special limits as indicated in 
Figure 1 was as follows: general limits (microbiological—98.1%, Chemical—89.03% and Physical—
100%) and special limits (microbiological—3.57%, Chemical—65.82% and Physical—46.03%). 
Compliance of the plant in relation to general limits had two categories (microbiological and physical) 
above the set target of ≥95%. Chemical determinant was the only category that was not in compliance. 
This therefore would not award the plant green drop certification status because of the fact that not 
all categories achieved ≥95% compliance. The results showed overall noncompliance to green drop 
when measured using special limits. Contrary to the above findings, the plant had achieved its green 
drop status for several years since its inception in 2008, except in 2009 [28]. A decline was observed 
in the performance of the plant when compared to the last audit that was done in 2013. In that year 
(2013) the plant obtained 99.71%, 99.93%, and 100% for microbiological, chemical and physical 
categories, respectively [28]. Despite the decline in compliance, the conditions for all the categories 
were initially set at ≥90% before being reviewed to ≥95% [33]. This therefore indicates that the harsher 
the green drop compliance requirements become, the less likely it is that the plant will obtain its green 
drop status, unless the design of the plant is revised as the infrastructure is ageing. Insufficient budget 
for assets management and ageing infrastructure have been identified as the source of decline for the 
performance of the plant. 

 
Figure 1. Assessment of the data to green drop compliance. 

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105

Micribiological Chemical Physical

Pe
rc

en
ta

ge
 (%

)

GREEN DROP COMPLIANCE

General Limits

Special Limits

____ Compliance
requirements

Figure 1. Assessment of the data to green drop compliance.



Int. J. Environ. Res. Public Health 2020, 17, 6381 10 of 13

5. Conclusions

Microbiological and physical treatments are very significant within wastewater treatment systems.
Wastewater with high domestic content has the highest negative impact on water quality in a river.
The plant of study showed high efficiency in reducing sewer constituents. The analytical outcomes
confirmed compliance of the final effluent to general limits, however, some challenges were observed
for compliance to special limits. Detection of high residual chlorine concentrations were observed,
therefore there is a need for introspection on the issue of chlorine dosing because higher residual
concentrations that are not compliant to both SA standards are being discharged into the environment
and that is not good for aquatic life. Discharging effluents containing E. coli and high residual chlorine
imply chlorine as the only source of disinfection is not sufficient; therefore, complementing the chlorine
disinfection process at the current plant with maturation ponds, ozonation, or ultraviolet radiation
could radically assist the plant in discharging effluents with zero E. coli which would illustrate an
absence of pathogens. The Phoredox configuration proved to be efficient in reducing nitrates compared
to Modified UCT. Even though challenges have been observed with compliance to special limits and
green drop requirements, the plant however showed high efficiency in reducing majority determinants
in line with general limits standards.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/17/17/6381/s1,
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