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Abstract: Doxorubicin (DOX) is the most widely used anthracycline anticancer agent; however,
its cardiotoxicity limits its clinical efficacy. Numerous studies have elucidated the mechanisms
underlying DOX-induced cardiotoxicity, wherein apoptosis has been reported as the most common
final step leading to cardiomyocyte death. However, in the past two years, the involvement of
ferroptosis, a novel programmed cell death, has been proposed. The purpose of this review is to
summarize the historical background that led to each form of cell death, focusing on DOX-induced
cardiotoxicity and the molecular mechanisms that trigger each form of cell death. Furthermore, based
on this understanding, possible therapeutic strategies to prevent DOX cardiotoxicity are outlined.
DNA damage, oxidative stress, intracellular signaling, transcription factors, epigenetic regulators,
autophagy, and metabolic inflammation are important factors in the molecular mechanisms of
DOX-induced cardiomyocyte apoptosis. Conversely, the accumulation of lipid peroxides, iron ion
accumulation, and decreased expression of glutathione and glutathione peroxidase 4 are important
in ferroptosis. In both cascades, the mitochondria are an important site of DOX cardiotoxicity. The
last part of this review focuses on the significance of the disruption of mitochondrial homeostasis in
DOX cardiotoxicity.
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1. Introduction

Drug therapy for cancer has made remarkable progress in recent years with the
development of molecular-targeted drugs and immune checkpoint inhibitors alongside
conventional chemotherapy. As a result, the survival rate of cancer patients has markedly
improved [1]. As the prognosis of cancer patients improves, the issue of increased risk
of developing cardiovascular disease due to anticancer drug therapy is rapidly gaining
attention [2–4]. In fact, for breast cancer patients with a history of cardiovascular disease,
mortality due to cardiovascular disease is higher than mortality due to breast cancer more
than five years after the diagnosis of breast cancer [5]. Conversely, heart failure patients are
at an increased risk of cancer [6]. In addition, as the population ages and cancer treatment
advances, the number of patients with both conditions has been increasing [7]. In this
context, the field of oncocardiology has become increasingly important in recent years [8].

Heart failure associated with anticancer drugs is classified into two categories: whether
the mechanism of cardiotoxicity is irreversible (type I) or reversible (type II). As Table 1
shows, irreversible myocardial injury caused by anthracyclines such as doxorubicin (DOX)
is defined as type I. In contrast, reversible myocardial injury caused by trastuzumab, a hu-
man epidermal growth factor receptor 2 (Her2) inhibitor, and later bevacizumab, sunitinib,
and sorafenib, is defined as type II [2,9]. Generally, type II drugs cause cardiomyocyte dys-
function but not myocardial necrosis, and their cardiotoxicity is considered reversible [9].
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This review will introduce the molecular mechanisms of DOX cardiotoxicity and anthracy-
clines that cause type I myocardial injury and will discuss possible countermeasures.

Table 1. Characteristics of type I and II chemotherapy-induced cardiotoxicity.

Type I (Myocardial Damage) Type II (Myocardial Dysfunction)

Representative agents Anthracyclines (DOX) Trastuzumab
Bevacizumab

Sunitinib
Sorafenib

Dose-dependence Yes No

Mechanism Free radical formation Inhibition of Erb signaling
DNA damage

Oxidative damage

Clinical manifestation Underlying damage appears to be
permanent and irreversible

High likelihood of recovery (to or near
baseline cardiac status) in
2–4 months (reversible)

Biopsy presentation Myofibril disarray Minimal changes have been reported
Vacuole formation

Effect of rechallenge
High probability of recurrent dysfunction
that is progressive, leading to intractable

heart failure and death

Increasing evidence for the relative safety
of rechallenge; additional data needed

Modified from reference [2,9].

Anthracyclines are a class of drugs used in cancer chemotherapy and are derived
from Streptomyces peucetius var. caesius [10]. Anthracyclines include DOX, daunorubicin,
epirubicin, idarubicin, pirarubicin, and amrubicin. They were developed in the 1970s
and are widely used in clinical practice. They inhibit DNA topoisomerase II (TopII) and
intercalate between base pairs of DNA strands, inhibiting DNA synthesis, replication, and
transcription and suppressing cell proliferation. Among them, DOX (sold under the brand
name Adriamycin) is one of the most widely used anticancer drugs in cancer treatment [11].
It has been used for hematopoietic tumors and solid tumors, such as breast cancer, resulting
in improved cure rates and quality of life for cancer patients [12]. However, despite its
outstanding efficacy, the risk of DOX cardiomyopathy, which develops in a cumulative
dose-dependent manner, is often experienced as a limitation to continued treatment [13].

Many basic studies have attempted to elucidate the molecular mechanisms of DOX
cardiotoxicity, and approximately 400 studies have been published since 2000. Although
apoptosis has been the focus of attention, as the final process leading to cardiomyocyte
death, several recent studies have concluded that the newly proposed programmed death,
ferroptosis, is involved in DOX-induced cardiomyocyte death. In this article, we review the
reported mechanisms of DOX cardiotoxicity, broadly categorized into apoptosis (Figure 1)
and ferroptosis (Figure 2), and classify them according to the molecular mechanism of each
cell death.

1.1. Apoptosis
1.1.1. DNA Damage

TopII has attracted attention as a classical cellular target of DOX [14]. There are
two forms of the TopII enzyme: TopIIα and TopIIβ [15]. TopIIα is highly expressed in
tumor cells, whereas TopIIβ is highly expressed in cardiomyocytes. TopIIβ-DOX-DNA
ternary complex formation is important for DOX cardiotoxicity and induces DNA double-
strand breaks in cardiomyocytes, resulting in cell death [16]. In the presence of TopIIβ, DOX
decreases the transcription of genes, such as PPARG coactivator 1α (PGC1-α), involved in
mitochondrial biogenesis and function [17]. Cancer patients with high expression levels
of TopIIβ in cardiomyocytes are more sensitive to DOX cardiotoxicity, while mice lacking
TopIIβ are resistant to DOX cardiotoxicity [17]. One reason for the increased cardiotoxicity
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risk with the combination of anthracyclines and trastuzumab is that trastuzumab changes
the expression of the TopIIβ gene and protein in cardiomyocytes, leading to apoptosis [18].
Selective inhibitors of TopIIβ are a promising strategy to reduce toxicity to cardiomyocytes
without compromising the potent anticancer effects of DOX. Dexrazoxane functions as a cat-
alytic inhibitor of TopIIβ and reduces anthracycline-induced cardiotoxicity by suppressing
DOX-induced DNA double-strand breaks [19]. Although concerns about second malignant
neoplasms have been reported [20], dexrazoxane has been approved and clinically used in
more than 30 countries to treat extravascular leakage of anthracycline antineoplastic agents.

1.1.2. Oxidative Stress

Oxidative stress is one of the major mechanisms of DOX cardiotoxicity [21,22], and
attenuating reactive oxygen species (ROS) by N-acetylcysteine and resveratrol is report-
edly an efficient strategy for alleviating DOX-induced cardiotoxicity [23–25]. In the heart,
after DOX administration, the major enzymes of the glycolytic system, triosephosphate
isomerase, β-enolase, and ubiquinone oxidoreductase, which function as a transporter
of electrons to the mitochondrial respiratory chain, were oxidized, and their activities
decreased, suggesting that the bioenergetic pathway is an important target of DOX-induced
oxidative stress [26]. There are many reports on the importance of the mitochondria as
a source and target of oxidative stress [27–29]. The hearts of glutathione peroxidase (GPX) 1
knockout mice, scavenging H2O2 in the mitochondria and cytoplasm, showed significantly
more severe DOX-induced cardiac dysfunction, mitochondrial injury, protein nitration, and
apoptosis than the hearts of wild-type mice [30]. Although it is possible to enhance antioxi-
dant stress mechanisms in cardiomyocytes by preconditioning with non-lethal oxidative
stress stimuli, clinical application is difficult because similar cellular responses are expected
to occur in cancer cells.
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Figure 2. Schematic representation of Doxorubicin (DOX)-induced ferroptosis pathway. DOX,
doxorubicin; Tf, transferrin; GSH, glutathione; GSSG, oxidized glutathione; GPX4, glutathione and
glutathione peroxidase 4; FSP1, ferroptosis suppressor protein 1; CHAC1, ChaC Glutathione Specific
Gamma-Glutamylcyclotransferase 1; Nrf2, Nuclear factor erythroid 2-related factor 2; KEAP1, Kelch-
like ECH-associated protein 1; ABCB8, ATP-binding cassette transporter 8; CoQ10, coenzyme Q10.

Research is also underway to establish iPS cells from patients and to differentiate
them into cardiomyocytes to elucidate individual differences in sensitivity to DOX and
the mechanisms involved. Human-induced pluripotent stem cell-derived cardiomyocytes
(hiPSC-CMs) from breast cancer patients who experienced DOX-induced cardiotoxicity
were consistently more sensitive to DOX toxicity, with decreased cell survival, impaired
mitochondrial and metabolic function, impaired calcium handling, decreased antioxidant
pathway activity, and increased production of ROS, compared to patients who did not ex-
perience DOX-induced cardiotoxicity [23]. These results suggest that individual differences
in antioxidant mechanisms may define susceptibility to DOX. In fact, most recently, Chi
Keung Lam et al. highlighted the importance of the use of patient-specific hiPSC-CMs in
identifying populations who are at risk of drug-induced cardiotoxicity [31]. This strategy
has potential applications in future precision medicine practice, especially in regard to the
overlap cases between type I and type II drugs, such as sequential treatment with DOX and
Her2 inhibitors, because the incidence of cardiotoxicity in this setting varies according to
patient-related factors.

1.1.3. Intracellular Signaling

Among the intracellular signaling molecules, mitogen-activated protein kinase (MAPK)
is one of the most studied target molecules for triggering DOX-induced cardiotoxicity. The
MAPK cascade forms a signaling network that regulates cellular processes, including cell
proliferation, growth, differentiation, transformation, and apoptosis. There are four major
branching pathways of the MAPK pathway [32], and the p38 cascade is the main contrib-
utor to DOX-induced cardiotoxicity. Activated p38 induces apoptosis by acting on BAX,
Bcl-2, and p53 [32–36]. A study examining the role of individual p38 isoforms, particularly
the alternative isoforms p38γ and p38δ, in DOX-induced cardiotoxicity reported that p38δ
plays an important role in promoting DOX-induced cardiotoxicity in females by inhibiting
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autophagy [37]. Conversely, many reports suggest that PI3k/Akt signaling, one of the most
important kinases in the regulation of cell survival, has a significant effect on the inhibition
of DOX-induced cardiotoxicity [38–41]. Indeed, the upregulation of the PI3k/Akt expres-
sion can inhibit apoptosis and improve DOX-induced cardiotoxicity [41–43]. Specifically,
the hormone irisin, the membrane protein fibronectin type III domain-containing 5, and
its cleavage substance, activate AKT/mTOR signaling and attenuate DOX cardiotoxicity-
induced apoptosis [43]. In addition, some reports have suggested that JNK and ERK
mediate DOX-induced cardiotoxicity [44,45]. Mechanistically, DOX treatment for rat my-
oblastic H9c2 cells shows increased phosphorylation levels of JNK and ERK, leading to the
upregulation of NFkB, which further enhances cardiomyocyte apoptosis. Future studies to
clarify the differences in the intracellular signaling mechanisms activated after treatment
with DOX between cardiomyocytes and cancer cells will be useful for identifying target
molecules that can mitigate cardiomyocyte toxicity while maintaining the anticancer effects
of DOX.

1.1.4. Transcription Factors

In response to DNA damage, p53 induces cell cycle arrest and promotes DNA repair
and apoptosis [46]. In DOX-induced cardiotoxicity, p53, activated by DNA double-strand
breaks, triggers apoptosis. Dox-treated H9c2 cells showed increased phosphorylation
of Ser15 in p53, the release of cytochrome c, and increased apoptosis [47]. In mouse
hearts, DOX treatment promoted the acetylation of p53 protein and binding of p53 to
the BAX promoter, upregulated BAX expression, and increased cytochrome c release
from the mitochondria [48]. Using hiPSC-CMs, p53 was identified by RNA-seq as an
upstream regulator of DOX-induced transcriptome changes [49]. Clustering and pathway
analyses revealed that an increased expression of the death receptor and the exogenous
apoptotic pathway were significantly associated with DOX-induced cardiotoxicity [49].
Suppression of the p53-mediated PGC1-α and APLNR (apelin receptor) signaling pathways
limits energy production through fatty acid oxidation in the myocardium of DOX-treated
mice [50]. DOX also inhibits histone deacetylases (HDACs) activity in a ROS-independent
manner and promotes p53 acetylation [51]. Studies in p53-deficient mice have shown that
the inhibition of p53 is cardioprotective during DOX treatment, but paradoxically leads
to increased cardiotoxicity after the cessation of DOX treatment [52–54]. Other studies
have shown that selective deletion of p53 in cardiomyocytes is insufficient to prevent the
DOX-induced myocardial generation of reactive oxygen and nitrogen species, apoptosis,
interstitial fibrosis, and perivascular fibrosis [55]. Thus, it is necessary to consider the
possibility that the role of p53 in DOX-induced cardiotoxicity may differ between the acute
and chronic phases. It has also been reported that DOX cardiotoxicity is associated with the
reduced function of GATA binding protein 4 (GATA4), a transcription factor that regulates
fetal cardiac development and stress response in adult cardiomyocytes [56]. By decreasing
GATA4 levels, DOX downregulates Bcl2 expression and induces autophagy-related genes,
leading to apoptosis and autophagy [57,58], and inhibits myofilament gene transcription,
causing cardiac dysfunction due to extensive sarcomere structural abnormalities [59]. The
establishment of animal models that separately investigate the mechanisms of acute and
delayed cardiotoxicity after DOX treatment is warranted.

1.1.5. Epigenetic Regulators

Epigenetic modifications, including DNA methylation, histone modifications, and
noncoding RNA expression, play an important role in regulating gene expression and
contribute to DOX cardiotoxicity [60]. For instance, Ferreira et al. showed that pretreatment
with DOX ameliorated H9c2 cells resistance against subsequent exposure to DOX [61].
They demonstrated that DOX pretreatment resulted in upregulation of mitochondrial DNA
transcripts accompanied by a decrease in DNA methyltransferase 1 and global methylation
levels. These results suggest that DOX pretreatment induces a beneficial and possibly
epigenetic-based mitochondrial adaptation. Besides DNA methylation, histone modifica-
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tions are also involved in DOX-induced cardiotoxicity. The expressions of several HDACs,
such as HDAC6 and HDAC2, are affected by DOX treatment in cardiomyocytes [62–64].
For example, HDAC6 is upregulated in DOX-treated primary rat cardiomyocytes, resulting
in deacetylation of α-tubulin [62]. On the other hand, HDAC2 is downregulated by DOX
treatment, as well as decreased histone 3 acetylation [64]. Moreover, as mentioned above,
another report showed that DOX cardiotoxicity leads to the suppression of the HDACs
activity, which results in upregulation of p53 [51]. These data suggest that regulating these
HDACs may also have a therapeutic potential for DOX cardiotoxicity. Furthermore, recent
studies have demonstrated that noncoding RNAs, including long noncoding RNAs and
microRNAs (miRNAs), are also involved in DOX cardiotoxicity [65–68]. Several miRNAs,
such as miR-15 [65], miR-23a [68], and miR-34a [66,67], have been reportedly affected
either in vitro or in vivo models of DOX-induced cardiomyopathy. In fact, overexpression
of particular miRNAs, miR-232/132, showed substantial efficacy for DOX cardiotoxicity
prevention in a mouse model [69]. Because epigenetic modification of the gene expression
is a key early event in the transcriptional reprogramming of cardiac structural remodeling
and metabolic flux in failing hearts [70], elucidating therapies to control this early step may
be an important strategy in the future.

1.1.6. Autophagy

DOX is also known to exert toxic effects by affecting macroautophagy, chaperone-
mediated autophagy, and the lysosome itself, the site where molecules transported by au-
tophagy are degraded, thereby impairing proteolysis [71]. While some reports suggest that
activating autophagy can inhibit DOX toxicity [72], others suggest that inhibiting dysregu-
lated (or excessive) autophagy (or mitophagy) is necessary to reduce DOX toxicity [73,74].
Activating the Toll-Like Receptor 9/PI3Kγ pathway by DOX-damaged mitochondrial DNA
in autolysosomes inhibits autophagy, thereby causing cardiac dysfunction [75]. Ghrelin
inhibits DOX-induced autophagy and suppresses cardiomyocyte apoptosis by inducing
mTOR via AMPK and p38-MAPK. [76] Resveratrol exerts its cardioprotective effect by
inhibiting DOX-induced autophagy via S6K inhibition [77]. Bnip3, an autophagy-related
molecule, interacts with LC3 on the outer mitochondrial membrane to sequester and de-
grade the mitochondria into autophagosomes [78]. In DOX-treated cardiomyocytes, Bnip3
expression was upregulated, inducing the opening of the mitochondrial permeability pore
(mPTP) and loss of ∆Ψm, excessive mitochondrial fragmentation, mitophagy, and necrosis.
Knockdown of Bnip3 prevents mitochondrial fission and DOX-induced cell death, suggest-
ing that Bnip3 is involved in the cardiotoxicity of DOX [79,80]. Bnip3 is known to induce
various forms of cell death depending on the cell situation, and there is a report that Bnip3
contributes to DOX-induced cardiomyocyte pyroptosis [79].

1.1.7. Metabolic and Inflammation

SIRT1 protects cells from DNA damage and p53-dependent apoptosis [81] and also
inhibits apoptosis by suppressing ROS production, p38 MAPK phosphorylation, and
caspase-3 activation [82]. Many reports suggest that SIRT1 activation has a protective
effect against DOX cardiotoxicity. Resveratrol activates SIRT1 and improves DOX car-
diotoxicity [82–84]. AMPK also attenuates cardiotoxicity by activating SIRT1 [85–87]. In
fact, calorie restriction and resveratrol exert protective effects against DOX cardiotoxicity
via the activation of AMPK and SIRT1 and the induction of autophagy [88]. In addition,
many reports show the inhibition of cardiotoxicity by activating SIRT1 through C1q/tumor
necrosis factor-related protein-3 [89] and erythropoietin [90]. The p38- and p53-mediated
pathways lead to apoptosis, but the pathway mediated by NF-κB is also important [91].
NF-κB activity inside and outside the mitochondria may affect mitochondrial dynamics,
apoptosis, respiratory regulation, and gene expression [91]. Regarding DOX cardiotoxicity,
several studies have shown that DOX activates NF-κB and causes apoptosis in cardiomy-
ocytes, leading to cardiotoxicity [92–94]. As a therapeutic means of suppressing NF-κB
and improving DOX cardiotoxicity, DHA [95], N-acetylcysteine [96], and berberine [97]
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alkaloids extracted from various herbs have been proposed. In contrast, it has been re-
ported that DOX suppresses NF-κB signaling. Although DOX-induced upregulation of
Bnip3 disrupts the homeostasis of mitochondrial dynamics and induces cell death, it has
been reported that NF-κB signaling, which transcriptionally suppresses Bnip3 activation,
is dramatically reduced after DOX treatment [98]. This report demonstrated that Bnip3
forms a protein complex with cyclophilin D and is involved in mPTP opening, leading to
cell death.

1.2. Ferroptosis

Several studies have recently demonstrated that DOX-induced cardiotoxicity is caused
by ferroptosis, a novel form of cell death [99–105]. Ferroptosis is a type of programmed
cell death dependent on iron, and is characterized by the accumulation of lipid peroxides.
The concept of ferroptosis was first reported by Dixon et al. in 2012 [106]. Since then, this
programmed cell death has been implicated in various diseases [107–109]. In 2019, Fang
et al. identified ferroptosis as the primary cause of cell death in DOX-induced cardiomyopa-
thy [99]. They showed that only the ferroptosis inhibitor Ferrostatin-1 (Fer-1) significantly
reduced DOX-induced mortality; in contrast, in mice treated with apoptosis, necroptosis, or
autophagy inhibitors, survival was not significantly improved. DOX increases the nuclear
accumulation of nuclear factor erythroid 2 -related factor 2 (Nrf2) and the expression of
Hmox1 in cardiomyocytes, leading to the degradation of heme, resulting in the release of
free iron and the formation of oxidized lipids in the mitochondrial membrane. Based on
this report, the involvement of ferroptosis in the pathogenesis of DOX cardiomyopathy
has attracted attention [100,101], and inhibiting this type of cell death with ferroptosis
inhibitors, such as Fer-1, is expected to be a new therapeutic strategy [99–101]. Alpha-
tocopherol, a well-known antioxidant that inhibits lipid peroxidation [110] also reduces
DOX cardiotoxicity [111–113].

1.2.1. Apoptosis or Ferroptosis?

A new form of cell death called ferroptosis was identified after looking back on
previous reports, and it was concluded that apoptosis is the central mechanism of DOX-
induced cardiotoxicity. However, even among studies concluding that the final form of cell
death is apoptosis, many reports are suggesting the involvement of iron in the process of
cell death. For example, one trial of patients with advanced breast cancer revealed that
dexrazoxane, which is the only drug that is FDA approved to prevent DOX cardiotoxicity,
has a significant cardioprotective effect [114]. Mechanistically, dexrazoxane is a chelator
of intracellular iron, which blocks iron-assisted oxidative radical production, suggesting
the importance of iron overload in the heart as a mechanism caused by DOX [115,116].
In bovine aortic endothelial cells, iron uptake into the cells is markedly increased during
DOX-induced cell death, and iron regulatory protein-1, a central cytosolic regulator of
cellular iron metabolism, is activated [117]. This DOX-induced iron uptake occurs through
a transferrin receptor-dependent mechanism, and the administration of anti-transferrin
receptor antibodies dramatically suppress DOX-induced iron uptake, intracellular oxidant
production, and cell death. In clinical practice, serum transferrin levels in patients receiving
DOX chemotherapy correlate with left ventricular dysfunction severity [118]. Treatment
of the HL-1 cell line with DOX caused a time-dependent increase in cytoplasmic and
mitochondrial free iron pools, resulting in a loss of mitochondrial membrane potential [102].
Ferritin sequesters iron, consequently protecting cells against iron-mediated free radical
damage. Mice lacking mitochondrial ferritin localized in the mitochondrial matrix exhibited
enhanced DOX-induced cardiotoxicity [119]. In addition, another study demonstrated that
DOX becomes concentrated in the mitochondria and increases both mitochondrial iron and
cellular ROS levels [120]. The ATP-binding cassette (ABC) transporter ABCB8, localized in
the mitochondrial inner membrane, is responsible for mitochondrial iron export and plays
an essential role in maintaining mitochondrial iron homeostasis and maturation cytosolic
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Fe/S proteins [121]. An overexpression of ABCB8 in the heart reduces mitochondrial iron
and intracellular ROS levels and suppresses DOX-induced cardiomyopathy [120].

Understanding the difference between these two programmed cell death pathways is
important to determine whether the underlying mechanism of DOX-induced cardiotoxicity
is apoptosis or ferroptosis (Table 2). In fact, the morphological changes and cell death
cascade induced by apoptosis are completely different from those of ferroptosis [106]. In
ferroptosis, chromatin aggregation is not observed as in apoptosis. Moreover, caspase
activation was not observed during ferroptosis [122,123]. In DOX, cardiotoxicity, apoptosis,
and cell death due to ferroptosis may occur simultaneously [100,101,124]. In our study,
when primary cultured rat myocardial cells were treated with 5 µM DOX for 24 h, cell death
caused by low-dose DOX treatment could be rescued by either the apoptosis inhibitors
ZVAD or Fer-1. However, the inhibitory effect of Fer-1 on cell death was stronger than
that of ZVAD [100]. Ferroptosis inhibitors do not alter caspase activation or the amount of
cytochrome c in the cytosol, representing mitochondria-dependent apoptosis. In contrast,
the apoptosis inhibitor ZVAD does not reduce the number of lipid peroxides that cause
ferroptosis [101,124]. This result might indicate that both apoptosis and ferroptosis present
DOX toxicity as independent cell death that does not affect each other. As Table 2 demon-
strates, there are several apoptosis or ferroptosis inhibitors other than ZVAD and Fer-1. For
instance, Emricasan, Q-VD-Oph, IDN-6556, and DEVD-CHO have been used as apoptosis
inhibitors in several studies [103,125]. While Emricasan failed to show protective effects
for DOX-induced cardiotoxicity [99], other apoptosis inhibitors, including Q-VD-Oph and
DEVD-CHO, have not been investigated well in DOX cardiotoxicity. On the other hand, as
ferroptosis inhibitors, vitamin E (α-tocopherol) and liproxstatin-1 are well-known radical
trapping agents. In fact, vitamin E had been reported to play an effective antioxidant role
to prevent apoptosis before ferroptosis was first reported. Indeed, as mentioned above,
previous reports showed that vitamin E decreased doxorubicin-induced cardiotoxicity [113].
Although there is a scarcity of data that directly show the liproxstatin-1 efficacy for DOX
cardiotoxicity, these radical trapping agents, including Fer-1, may be potential targets for
DOX cardiotoxicity prevention.

Table 2. Differences between features of apoptosis and ferroptosis.

Apoptosis (Intrinsic Apoptosis) Ferroptosis

Biochemical characteristics
Involvement of Bcl-2 family proteins

Release of cytochrome c from mitochondria
Activation of caspases

Peroxidation of cell membrane
phospholipids catalyzed by iron ions (Fe2+)

Accumulation of lipid hydroxyl radicals

Key molecules Caspase-3, Bcl-2, BAX, p53, NF-κB GPX4, GSH, Xc−, CHAC1, CoQ10, Nrf2

Inhibitors ZVAD-FMK, Emricasan, Q-VD-Oph,
IDN-6556, DEVD-CHO Fer-1, Vitamin E, Liproxstatin-1, CoQ10

Morphological features

Chromatin condensation and fragmentation
DNA laddering

Cell shrinkage and bleb formation at the
plasma membrane

Exposure of phosphatidylserine to the
outer membrane

Decrease in mitochondrial cristae
Mitochondrial aggregation

Modified from reference [125–127].

In addition, DOX activates necroptosis, which, together with necrosis, causes more cell
death than apoptosis [102,128]. DOX upregulates RIPK3, which binds to and phosphory-
lates calmodulin kinase II, which in turn regulates the opening of mPTP, leading to necrop-
tosis and apoptosis [102]. Thus, various types of cell death are involved in DOX-induced
cardiotoxicity, and the mechanisms of each type of cell death at least partially overlap.
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1.2.2. Ferroptosis Regulatory Pathway
Glutathione Peroxidase 4 (GPX4)

GPX4 is a selenium-containing enzyme that uses reduced glutathione (GSH) as
a co-factor to reduce lipid peroxide accumulation [129]. GPX4 is considered to be the
primary enzyme that prevents ferroptosis. The ferroptosis activator RSL3 (1S,3R) induces
ferroptosis by inhibiting GPX, which contains the essential microelement selenium, particu-
larly GPX4 [130]. Tadokoro et al. demonstrated that DOX downregulates GPX4 expression
and induces excessive lipid peroxidation via the mitochondrial DOX-Fe2+ complex, leading
to mitochondria-dependent ferroptosis [101].

MITOL/MARCH5

As mentioned above, DOX downregulates the GPX4 expression and causes fer-
roptosis. However, the reason DOX decreases the expression of GPX4 is unclear. We
found that the depletion of GSH in cardiomyocytes caused a decrease in the expression
of GPX4 in the mitochondria [100]. MITOL/MARCH5 is an E3 ubiquitin ligase that
plays an important role in regulating mitochondrial quality and function. In primary
cultured neonatal rat cardiomyocytes, downregulation of MITOL expression by siRNA
markedly reduced GPX4 localized in the mitochondria, promoting the accumulation of
lipid peroxides in the mitochondria and induced cell death by ferroptosis. In MITOL-
knockdown cells, the glutathione-degrading enzyme ChaC Glutathione Specific Gamma-
Glutamylcyclotransferase 1 (CHAC1) expression was upregulated, resulting in a decrease
in the glutathione/oxidized glutathione (GSH/GSSG) ratio. Improving the GSH/GSSG
ratio through the administration of N-acetylcysteine or knockdown of CHAC1 suppressed
ferroptosis by recovering the expression of GPX4 in MITOL knockdown NRVMs. In
DOX-treated cultured cardiomyocytes, both MITOL and GPX4 decreased, but the forced
expression of MITOL maintained the GPX4 content and prevented DOX-induced ferrop-
tosis. Sensitivity to DOX cardiotoxicity increased in mice lacking MITOL. These results
suggest that MITOL plays a role in protecting cardiomyocytes from DOX-induced toxicity
by regulating mitochondrial glutathione levels and GPX4 expression. As ferroptosis caused
by MITOL knockdown is a cardiomyocyte-specific phenomenon, the authors believe that
it may explain at least part of the mechanism through which cardiomyocytes are more
dysfunctional after DOX treatment than other cells. If it is possible for us to examine the
expression of MITOL in the heart, we may be able to conduct risk stratification of cardiotox-
icity caused by DOX. Moreover, compounds that upregulate MITOL may be a promising
strategy to mitigate DOX-induced cardiotoxicity. Other studies have shown that the admin-
istration of GSH and glutamate, necessary for GSH synthesis, can reduce the cardiotoxicity
of DOX [131–133]. GSH, a co-factor of GPX4, is a tripeptide of cysteine, glutamate, and
glycine. Cysteine is often depleted in the cells. Cystine/glutamate antiporter solute carrier
family 7 member 11 (SLC7A11, also known as System Xc−) promotes cystine uptake and
glutathione biosynthesis. Erastin and sulfasalazine inhibit GSH synthesis by inhibiting
SLC7A11, leading to ferroptosis [134].

Nrf2

Nrf2 and its repressor Kelch-like ECH-associated protein 1 (KEAP1) are key metabolism,
oxidative stress, and inflammation regulators. In recent years, several reports have ad-
vocated the regulation of DOX cardiotoxicity by Nrf2 [135–137]. Bardoxolone methyl,
an activator of the Nrf2-KEAP1 pathway and a potential treatment for chronic kidney
disease, reduces DOX-induced cardiotoxicity in 3D cardiac spheroids, in which human
cardiomyocytes are grown in combination with human cardiac fibroblasts and endothelial
cells. Exposure of hepatocellular carcinoma cells (HCC) to ferroptosis-inducing compounds,
such as elastin and sorafenib, promotes the nuclear accumulation of Nrf2 through the in-
activation of KEAP1 by p62 expression. Knockdown of p62, quinone oxidoreductase-1,
Hmox-1, and ferritin heavy chain-1 promotes ferroptosis in HCC cells in response to elastin
and sorafenib [107]. The ubiquitin E3 ligase TRIM21 interacts with p62 and ubiquitinates
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it, negatively regulating the p62-KEAP1-Nrf2 antioxidant pathway [138]. Cardiac tissue
lacking TRIM21 is protected from DOX-induced ferroptosis by homeostatic activation of
Nrf2. As mentioned above, selenium inhibits ferroptosis by promoting the expression
of the antioxidant GPX4; however, selenium also exerts a protective effect against DOX-
induced cardiotoxicity by inhibiting the Nrf2-NLRP3 pathway [139]. It has been reported
that Hemin stimulates Nrf-2/Hmox-1 and inhibits the TLR-5/NF-κB/TNF-α pathway,
thereby exerting antioxidant and anti-inflammatory effects and reducing DOX-induced
cardiotoxicity in a dose-dependent manner [140]. In contrast, there are reports that Nrf2
activation is involved in ferroptosis induction. Hassannia et al. reported that elevated Nrf2
activates Hmox1, increasing the amount of unstable Fe(II) ions, resulting in lipid peroxides
production, ultimately inducing ferroptosis [141]. Fang et al. also concluded that DOX
causes an increase in Nrf2, leading to cardiotoxicity via a similar mechanism [99].

Ferroptosis Suppressor Protein 1 (FSP1)

Another known defense mechanism against ferroptosis is FSP1, a GPX4- and GSH-
independent ubiquinone reductase [142,143]. FSP1 was described as a pro-apoptotic gene
apoptosis-inducing factor mitochondria-associated 2 (AIFM2) before it was renamed. The
reduced ubiquinol scavenges peroxyl radicals (ROO•) causing lipid peroxidation. FSP1
uses NAD(P)H to catalyze the regeneration of ubiquinone (coenzyme Q10 (CoQ10)). To
date, no evidence has been published regarding the direct relationship between FSP1 and
DOX cardiotoxicity, but the fact that the administration of CoQ10 minimized DOX-induced
toxicity, such as ECG changes, oxidative stress, lipid peroxidation, and changes in cardiac
tissue, may suggest an association between DOX-induced cardiotoxicity and FSP1 [144,145].

2. Mitochondria Providing a Place for DOX-Induced Cardiotoxicity

Whether the mechanism of DOX cardiotoxicity is apoptosis or ferroptosis, the mito-
chondria are important places where toxicity is exerted [146–155]. It has been theorized
that mitochondria-mediated apoptosis (endogenous pathway) is one of the mechanisms of
DOX cardiotoxicity [147,150,156–163]. Mitochondria also play a central role in ferroptosis
induction [99–101]. DOX disrupts protein complexes between major respiratory chain
proteins, such as uncoupling protein 3 and cytochrome c oxidase, and induces abnormal
mitochondrial respiration and various types of cell death through a Bnip3-dependent
mechanism [80,98,162]. Mitochondria retain their homeostasis through repeated fission
and fusion. DOX fragments mitochondria by inducing the activation of dynamin protein
1 (Drp1), which is important for mitochondrial fission [157,163,164]. Conversely, the in-
duction of the mitochondrial fusion factor Mitofusin2 by DOX acts protectively against
DOX-induced toxicity [164]. In addition, the involvement of mitochondrial fission protein 1
(Mtfp1), a new molecule regulating mitochondrial dynamics, has also been proposed [165].
Mechanistically, DOX upregulates the Mtfp1 expression, which induces mitochondrial
fission and apoptosis. Moreover, in DOX-treated cardiomyocytes, the decreased expression
of a long non-coding RNA called CMDL-1, which is involved in post-translational modifica-
tion (phosphorylation) of Drp1, has also been reported to be associated with Drp1-induced
promotion of mitochondrial fission and cell death [166]. Collectively, there is no shortage
of evidence suggesting the importance of mitochondria in DOX cardiotoxicity.

3. Conclusions

This article summarizes the mechanisms involved in DOX cardiotoxicity, mainly
related to two forms of cell death, apoptosis and ferroptosis, by focusing on the basic
research in this century. Numerous previous studies suggest that various types of cell death
are involved in DOX cardiotoxicity. The underlying mechanisms that induce multiple types
of cell death and their common regulators may serve as therapeutic targets to alleviate DOX-
induced cardiotoxicity. We await the results of basic research that will lead to a therapeutic
strategy to mitigate cardiotoxicity, while maintaining the high anti-tumor efficacy of DOX
or inhibiting the progression of delayed cardiac dysfunction after cancer eradication.
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