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Sexual transmission of HIV-1 consists of processes that exert either positive or negative

selection pressure on the virus. The sum of these selection pressures lead to the

transmission of only one specific HIV-1 strain, termed the transmitted founder virus.

Different dendritic cell subsets are abundantly present at mucosal sites and, interestingly,

these DC subsets exert opposite pressure on viral selection during sexual transmission.

In this review we describe receptors and cellular compartments in DCs that are

involved in HIV-1 communication leading to either viral restriction by the host or further

dissemination to establish a long-lived reservoir. We discuss the current understanding

of host antiretroviral restriction factors against HIV-1 and specifically against the HIV-1

transmitted founder virus. We will also discuss potential clinical implications for exploiting

these intrinsic restriction factors in developing novel therapeutic targets. A better

understanding of these processes might help in developing strategies against HIV-1

infections by targeting dendritic cells.

Keywords: dendritic cell, langerhans cell, transmitted founder HIV-1, IFITM, Type I IFN, Trim5a, viral restriction and

dissemination

INTRODUCTION

The number of new HIV-1 infections globally continues to decline. From a peak of 3.4 million
new infection a year in 1996 to 1.8 million in 2017. The intervention of early combination
antiretroviral therapy (cART) is clinically beneficial to patients and very effective in preventing
HIV-1 transmission (1–3). The introduction of pre-exposure prophylaxis (PrEP) will further
interfere with HIV-1 transmission (4–6). However, currently there is no curative treatment or
vaccine to prevent HIV-1 infection. Uncovering the mechanisms underlying viral transmission and
pathogenesis is crucial to develop methods to prevent HIV-1 transmission. Sexual transmission of
HIV-1 results most commonly from virus exposure at mucosal surfaces (7, 8). The identification
of transmitted founder (TF) viruses emphasizes the existence of selection pressure mechanisms
that lead to the transmission of only specific HIV-1 strains (9). Host factors influence whether
virus exposure leads to productive infection. These may include the physical barrier of the
mucosa (10), the amount of available target cells (11), altered mucosal microbiota (12, 13), and
immune activation by genital inflammation established by other sexual transmitted infection
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(14–18). Also, genital fluids are known to contain proteins
that enhance viral infection, like semen-derived enhancer of
virus infectivity (SEVI) and complement (Figure 1) (19, 20).
The transmission risk is associated with the specific within-host
barriers, which creates a selection bias with an advantage for
viruses with higher between-host transmission potential (21–
24). Important cells that exert opposing selection pressures
are the different dendritic cell (DC) subsets localized in the
mucosal tissues.

VIRUS-HOST INTERACTIONS AT
MUCOSAL SITES

DC subsets play an important role in transmission of viruses
such as HIV-1 across mucosal tissues (14, 25). The cellular
plasma membrane is the first interaction of HIV-1 with its host
and an important step in viral transmission and pathogenesis.
HIV-1 spreads either as cell-free virus particles or via cell-cell
transmission. While cell-free virus allows spread of virions in
more distant tissues, cell-cell transmission is much more efficient
and it helps the virus to overcome physical and immunological
barriers (26). In vitro studies illustrate that cART and broadly
neutralizing antibodies (bnAb) do not neutralize HIV-1 cell-
cell transmission as potent as cell-free spread (27–29), which
underscores the importance of understanding the mode of viral
transmission for drug design.

The compartments where fusion of HIV-1 with the host
cell occurs differs and is dependent on the cell type and
mode of viral transmission. For CD4T cells, HIV-1 fuses
at the plasma membrane using the CD4 receptor and a
co-receptor such as CCR5 and CXCR4 (30–32). For DCs
viral fusion occurs at the plasma membrane (33) or after
internalization via clathrin mediated endocytosis (34, 35).
Internalization minimizes the exposure of viral epitopes at the
cell surface, thereby reducing the efficacy of inhibitors targeting
these epitopes (35). In contrast, endocytosis does not always
lead to productive infection. When HIV-1 is endocytosed in
multivesicular bodies (MVBs) the virus can be recycled back
toward the plasma membrane for transfer to uninfected cells
(36, 37). However, internalization can also lead to autophagic
destruction in specific cells (38). Indeed, different DC subsets
have distinct roles in HIV-1 dissemination because of the
differences in handling the virus. Mucosal langerhans cells
(LCs) capture and internalize HIV-1 leading to degradation,
thereby preventing HIV-1 dissemination (38, 39), whereas
DCs play a key role in transmitting the virus to target
CD4 T cells.

DENDRITIC CELLS FACILITATE HIV-1
DISSEMINATION UPON SEXUAL CONTACT

DCs patrol the submucosal tissues to capture invading pathogens
for antigen presentation to T cells in the lymph nodes, thereby
facilitating HIV-1 transmission (Figure 1) (40). DCs facilitate
viral transmission to T cells either by HIV-1 fusion and
productive infection of the DC, leading to viral transmission

to permissive cells or by capture and internalization of HIV-1
into MVBs and transmission independent of DC infection (36,
37, 41). Besides their role in HIV-1 dissemination they are
also important in triggering an innate immune response upon
viral exposure. DCs express relatively low levels of the CCR5
and CXCR4 co-receptor and CD4 entry receptor, which could
account for the lower levels of infection seen in DCs (42).
DCs express many attachment molecules that mediate virus
internalization and transfer. Indeed, the C-type lectin receptor
(CLR) DC-specific intercellular adhesion molecular 3-grabbing
non-integrin (DC-SIGN) is thought to play an important role in
HIV-1 binding and internalization via endocytosis into clathrin
coated pits (41, 43, 44). After internalization the virions can
stay infectious for many days and can be transmitted to CD4-
positive T cells (45). In this way DCs serve as virus reservoirs
to mediate trans-infection of CD4-positive T cells, thereby
facilitating spread of HIV-1 to the lymph nodes (45, 46). DC-
SIGN is highly expressed on in vitro-generated monocyte-
derived DCs (moDCs), at mucosal sites on CD14-positve dermal
DCs (dDCs) and on sub epithelial-based vaginal myeloid DCs
(47–49). For DCs that do not express DC-SIGN (50), different
attachment receptors like Siglec-1 (CD169) have been identified
to transfer HIV-1 (51, 52). Also external factors can promote
trans-infection, like semen fluid, which contains fragments of

prostatic acid phosphatase forming amyloid aggregates termed

SEVI that promote viral attachment to DCs thereby increasing
trans-infection of CD4-positive T cells by HIV-1 (19, 53).

There are different processes described by which trans-infection

occurs. One process is internalization via clathrin-mediated
endocytosis (41, 43, 44). Antigen bound to DC-SIGN in mature

DCs localizes in compartments with a neutral pH close to

the cell surface, which could represent early endosomes (43).

In contrast, in immature DCs DC-SIGN co-localizes with
late endosomes or lysosomes (41). A different trans-infection

route is dependent on invagination. For mature DCs, HIV-
1 is internalized in a CD81 tetraspanin rich compartment,
which is distinct from endocytic vesicles but adjacent to the

plasma membrane (36, 54). This allows protected transfer of

virions by DCs and delivery to target cells in the lymph node.

Interestingly, more recently it has been shown that a process
called micropinocytosis is involved in transfer of HIV-1 from

immature DCs to CD4-positive T cells. Dynamin 2 (DNM2), a

gene involved in organelle and membrane trafficking limits HIV-
1 endocytosis and maintains virions on the surface of DCs for

efficient transfer (55). Once in the lymph node HIV-1 can be

transmitted from DCs to T cells via different mechanisms. DC-

SIGN-bound HIV-1 facilitates optimal contact with CD4 and
CXCR4/CCR5 co-receptors on T cells, enhancing viral transfer

(56), HIV-1 is transferred via virological synapses which is

formed by direct contact between DCs and T cells (57–59) or

DCs transfer HIV-1 to T cells via exosomes (60, 61). Interestingly,
exosomes derived from HIV-1 infected cells contain HIV-1
viral genome (62) and are able to establish productive infection

in target cells (61, 63). All these mechanisms contribute to

viral escape and promote further dissemination in the newly

infected host.
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FIGURE 1 | Opposing selection pressures during transmitted founder HIV-1 transmission at mucosal surfaces. The within-host evolution creates a selection bias that

leads to either viral restriction or establishes a new infection. Transmitted founder viruses are able to escape host restriction and are therefore responsible for

establishing productive infection. TF HIV-1, transmitted founder HIV-1; DCs, dendritic cells; IFN, Interferon; SEVI, semen-derived enhancer of virus infectivity.

LANGERHANS CELLS ARE EITHER
PROTECTIVE AGAINST OR PROMOTE
HIV-1 TRANSMISSION

LCs a subset of DCs are abundantly present at epithelia of vagina,
foreskin and within the anal tissues (64, 65) and under normal
conditions are therefore the first immune cells to encounter
HIV-1 during sexual transmission (38, 39). Langerin (CD207)
is a CLR expressed almost exclusively by LCs and is important
for antigen capture and internalization, which induces Birbeck
granules formation and routing of antigen into organelles (66). In
contrast to DC-SIGN, langerin has a role in antiviral protection
as immature LCs do not become infected by HIV-1 but capture
HIV-1 via langerin, leading to TRIM5α-mediated degradation of
HIV-1 and thereby preventing HIV-1 dissemination (Figure 1)
(38, 39). LCs from inner foreskin explant cultures and vaginal
explant are not productively infected byHIV-1 but several studies
suggest that these cells support trans-infection of CD4-positive
T cells (64, 67). Since the restrictive nature of LCs is dependent
on the activation state and can be saturated, the amount of
virus and isolation method could explain differences observed
in restriction and infection (68). Taken together, the outcome of
these studies suggest that immature LCs generally seem to be
more restrictive to HIV-1 infection, whereas activation of LCs
allows cis-infection and subsequent transmission of HIV-1 to T

cells (14, 64). Inflammatory stimuli like TNFα, Pam3CSK4 or
Interleukin-7 increase HIV-1 transmission by increasing HIV-
1 replication or capture (14, 69). Also, viral coinfections, such
as HSV-2, breach the protective function of LCs by abrogating
langerin function, which increases HIV-1 susceptibility (15, 65).
This implies that activation of LCs by inflammation or genital co-
infection alters the protective function of LCs, mediating HIV-1
transmission (Figure 1), which might be associated with lower
expression of langerin on activated LCs as langerin has anti-viral
properties (39).

INTERFERON PRESSURE AT
MUCOSAL SITES

Viral infections sensed by pattern recognition receptors (PRRs)
lead to the activation of signaling cascades that results in
the release of interferons (IFNs). Upregulation of type I IFN
production is one of the earliest innate responses observed in
HIV-1 infection. Production of type I IFNs during viral infections
promotes an antiviral environment by an autocrine feedback
loop triggering the IFN receptor and subsequently inducing
cellular expression of IFN-stimulated genes (ISGs) within the
infected cells but also in bystander cells (70). Several studies
have shown that HIV-1 is able to escape intrinsic IFN-β response
triggering by limiting replication of viral DNA (71) or actively
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blocking virus sensing by PRRs, which contributes to efficient
HIV-1 replication (72). Besides cellular IFN responses upon viral
infection, plasmacytoid dendritic cells (pDCs) secrete a second
wave of type I IFNs in response to viruses or tissue damage
(73, 74). pDCs develop in the bone marrow and circulate in the
blood. Macaque studies have shown that upon SIV exposure,
pDCs are recruited to the mucosal sites of virus transmission,
become activated and start producing high levels of type I IFNs
(75). The outcome of this high IFN response by pDCs has
conflicting functions in antiviral defense. Some of the induced
ISGs act as host restriction factors to prevent HIV-1 infection
and dissemination. In contrast, during acute infections, IFN
produced by pDCs results in maturation of bystander myeloid
DCs that play a crucial role in transporting the virus to secondary
lymphoid organs thereby promote transmission (Figure 1) (74).
It has been shown that DCs upregulate the interferon-inducible
receptor Siglec-1 which is able to transfer HIV-1 to T cells
(76). Also, studies show that ISGs are upregulated during
chronic infection (77, 78). The persistent activation of pDCs
during chronic infection may contribute to immune activation
and inflammation, which is associated with AIDS disease
progression (79, 80). These consequences of high IFN production
promote viral dissemination. Earlier studies suggested that IFN-
α responses in mucosa of non-human primates could enhance
infection and the IFN-α induction did not protect animals from
SIV infection (75, 81). However, IFN production may also create
an antiviral environment. Recently an elegant study showed that
early type I IFN responses in macaques prevent SIV infection
and slow disease progression (82). Moreover, in uninfected but
high exposed individuals, higher IFN-α levels have shown to
be protective against infection (83). Also, the induction of an
effective early antiviral immune response at mucosal sites creates
selective pressure for viruses that are resistant to type I IFN (84).

TRANSMITTED FOUNDER VIRUSES ARE
RESPONSIBLE FOR INITIAL
HIV-1 INFECTION

In 60–80% of mucosal infection, a single specific HIV-1 variant,
the TF virus, establishes productive clinical infection (Figure 1)
(9, 85, 86). To be able to cross intact mucosal barriers TF
viruses have specific properties that provide an advantage to
establish new infections more efficiently (87, 88). TF virus strains
are relatively resistant to IFN compared to viruses isolated
later in infection (84, 88–90), suggesting adaptations in HIV-
1 evolution to escape host restriction. TF viruses replicate and
spread more efficient in CD4T cells in the presence of IFN-α
than chronic viruses (84, 88). This suggest that IFN resistance
of TF viruses is specifically important during initial infection
as type I IFNs are produced at lower levels during systemic
infection when chronic viruses replicate. Also, initial HIV-1
infection occurs predominantly with R5 HIV-1 strains (31, 91)
and TF viruses have the chemokine receptor 5 (CCR5) tropism
(9, 92). TF viruses incorporate more envelope glycoprotein
(Env) per particle compared to chronic HIV-1 viruses, which is
associated with enhanced infection of target CD4T cells (88).

Furthermore, it has been shown that TF viruses bind more
efficiently to DCs than their chronic counterparts giving TF
viruses a potential selection advantage in transmission to a new
host (88). Phenotypic analyses of TF viruses show an enhanced
resistance to fusion inhibitors, masking of CCR5 co-receptor
binding sites, and more neutralizing antibodies compared to
chronic HIV-1 strains (9, 93). Since TF viruses need to establish
infection they might have specific capabilities to infect immune
cells such as DCs an LCs. Moreover, certain TF virus strains
might infect immature LCs more efficient compared to their
chronic counterparts, which could indicate that TF viruses might
have an intrinsic capacity to escape LC restriction (Figure 1).
These findings underscore the importance of LCs as initial
targets for sexual transmission of HIV-1 and understanding
these phenotypic properties of TF viruses is essential for vaccine
design. Especially in the era of PrEP, transmitted drug resistance
could be of concerns as it could select for higher virulent TF
viruses (94).

HOST ANTIRETROVIRAL RESTRICTION
FACTORS AGAINST HIV-1

Host restriction factors play an important role in suppressing
retroviral replication and dissemination (Figure 1). Many
restriction factors that target HIV-1 are induced by type
I IFN. Well-known HIV-1 restriction factors in DCs are
IFITM (Interferon-induced transmembrane proteins), TRIM5α
(E3-ubiquitin ligase tri-partite-containing motif 5a) (38)
SAMHD1 (SAM- and HD domain-containing protein 1)
(95), APOBEC3 (apolipoprotein B mRNA-editing enzyme,
catalytic polypeptide-like 3) (96), Mx2 (Myxovirus resistance
2), and bone marrow stromal antigen 2 (BST2 or Tetherin)
(97). Because of the potent antiviral potential of IFN many
viruses have developed mechanisms to promote their
survival. HIV-1 although sensitive to type I IFNs, is able to
antagonize host restriction factors that inhibit virus entry to
facilitate viral dissemination (Figure 1) (98). HIV-1 accessory
proteins well known to counteract important restriction
factors are: viral protein R (Vpr) viral infectivity factor (Vif)
which antagonizes APOBEC3 proteins, negative regulatory
factor (Nef) and viral protein unique (Vpu) antagonizing
BST2 (99, 100).

IFITMs are small membrane-associated cellular factors that
inhibit the replication of HIV-1 at the entry step (101). IFITMs
do not block the internalization of viruses but inhibit fusion
of the virus with the host cell. Whether HIV-1 is sensitive to
IFITM restriction is determined by the subcellular localization
of the IFITMs and HIV-1 co-receptor usage (102). TF viruses
are more resistant to the antiviral activity of IFITMs. The
ability by TF viruses to evade IFITM restriction is due to
its relative resistance to IFN. Interestingly, IFITM restriction
contributes to the increased IFN sensitivity of chronic HIV-1
viruses (102).

TRIM5α targets incoming retroviral capsid before integration
to block infection. TRIM5α expression levels and polymorphisms
have been associated with the clinical course of HIV-1 infection
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in cohort studies underscoring the antiviral effect of TRIM5α
(103–105). Unique about TRIM5α is that it can restrict diverse
retroviruses in a species-specific manner. Rhesus TRIM5α
(rhTRIM5α) strongly restricts HIV-1, whereas human TRIM5α
has been thought to have poor restriction activity against HIV-1
(106). More recently some primary isolates of HIV-1 have been
found to be more sensitive to human TRIM5α restriction than
lab strains (107, 108). So restriction of TRIM5α on replication
may vary according to the virus. The functional capacity of
TRIM5α also depends on the localization of the restriction factor
in the cell. It has been suggested that non-human primate DCs
lack efficient TRIM5α mediated retroviral restriction because
TRIM5α is unable to restrict incoming viruses because it is
absent from the cytoplasm (109). TRIM5α localization to the
nucleus triggers induction of type I IFN during infection (109).
Notably, recent data show that TRIM5α restriction might be
cell specific. Immature LCs protect against HIV-1 infection by
inducing langerin-mediated autophagic degradation of captured
HIV-1 (38). The LC specific restriction factor TRIM5α is
dependent on the CLR function. HIV-1 binding to Langerin
routes HIV-1 into the TRIM5α mediated restriction pathway
which targets virions for degradation and thereby prevents
infection of LCs. Taken together, the outcome of these studies
support a role for human TRIM5α in HIV-1 transmission and
pathogenesis in vivo.

SAMHD1 is highly expressed in myeloid cells like DCs and
macrophages (95). SAMHD1 also targets the early phase of
viral infection as it inhibits reverse transcription by depleting
the pool of cellular dNTPs (95, 110, 111). HIV-2 viral protein
X (Vpx) is able to counteract SAMHD1 restriction. Degrading
SAMHD1 by treating DCs with SIV-Vpx leads to infection
and maturation of DCs promoting viral dissemination (95).
Whether HIV-1 infection leads to DC maturation is unclear as
it has been shown that interfering with SAMHD1 restriction
increases infection of DCs but not DC maturation (112).
Furthermore, higher infection observed with SAMHD1 depletion
correlates with a stronger suppression of maturation, suggesting
that HIV-1 might actively suppress PRR sensing (112). HIV-1
complement opsonization bypasses SAMHD1 restriction in DCs
by enhancing SAMHD1 phosphorylation, which results in DC
infection (113).

Upon HIV-1 infection APOBEC3 is encapsulated into
budding virions. In newly infected cells during reverse
transcription of the viral RNA, APOBEC3G triggers
G-to-A hypermutations leading to the production of
defective proteins and non-functional virus particles
which results in a strong inhibition of HIV-1 replication
(96). Interestingly, exosomes can transfer host restriction
factors such as APOBEC3 from cell to cell and thereby
inhibit HIV-1 infection (114). Vif antagonizes APOBEC3
proteins by inducing the recruitment of proteins leading
to polyubiquitylation and proteasomal degradation of
APOBEC3, thereby preventing incorporation of APOBEC3 into
virions (115, 116).

BST2 or Tetherin prevents the release mature Env virions
by anchoring virions to the plasma membrane of infected
cells (117, 118). The retention of viral particles at the plasma

membrane leads to endocytic uptake and the accumulation of
these virions in endosomes which may result in viral degradation
and thereby inhibit the spread of newly formed virions (119).
Similarly, Vpu interacts with tetherin, preventing tetherin
trafficking to the cell surface, promoting ubiquitination and
subsequent targeting to late endosomes and degradation
in lysosomes (118, 120). This prevents incorporation
of tetherin into virions thereby enhancing viral budding
and release.

Accessory proteins positively contribute to transmission by
allowing HIV-1 to escape host restriction. The continuous
adaptation of HIV-1 to the antiviral activity of host restriction
factors emphasizes their importance in controlling HIV-1
infection and viral transmission.

UNDERSTANDING HOST-VIRUS
INTERACTIONS FOR
SPECIFIC INTERVENTIONS

Mucosal DCs are among the first immune cells to encounter
HIV-1 upon sexual contact. Therefore, receptors expressed or
host antiviral factors induced by DCs or LCs could be used in
immunotherapeutic strategies to prevent HIV-1 transmission.
Langerin binds to glycan ligands for pathogen capture and
internalization. A recent study identified chemical compounds
with a high binding affinity to langerin (121). Interestingly,
these compounds were found to modulate cellular signaling
and to suppress inflammation (121, 122). Also, it has been
shown that rhTRIM5α is very potent in HIV-1 restriction.
Interestingly, human TRIM5α restriction is specific for LCs
and is dependent on HIV-1 binding to langerin. Therefore,
targeting langerin, host restriction factors like TRIM5α and
other ISGs that contribute significantly to viral control could
be interesting candidates for therapeutic applications (125). A
better understanding of the specific properties of TF viruses,
which will relate to different selection biases during transmission,
will allow us to identify the specific selection mechanisms
and thereby providing novel strategies to counteract the
transmission of these TFs (24). The majority of TF viruses
are of R5 tropisms and use CCR5 co-receptor for their
initial infection, which makes CCR5 an interesting candidate
for blocking early transmission. The higher incorporation of
Env per particle may increase the sensitivity to neutralization
by antibodies.

CONCLUDING REMARKS

At mucosal sites DC subsets patrol the microenvironment
and are therefore the first cells to interact with HIV-1 after
exposure. If the virus carries specific properties and interacts
with DCs or LCs determines the fate of the virus which
can result in either routing of the virus for degradation
or further dissemination. Strategies to counteract suppression
mechanisms by HIV-1 leading to HIV-1 sensing and induction
of type I IFN responses upon viral infection can be a
powerful strategy to restrict viral dissemination. The induction
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of host factors and the ability of HIV-1 to counteract viral
restriction shows the intricate interplay between HIV-1 and
host. Further understanding of the specific within-host barriers
provides new insights important for developing novel therapeutic
approaches at the site of initial infection. Understanding
the specific properties of TF viruses that create advantages
to promote between-host transmission may contribute to
the development of immunotherapeutic strategies to combat
HIV-1 dissemination.
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