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P53 functional abnormality in mesenchymal stem cells
promotes osteosarcoma development

T Velletri1, N Xie1,2, Y Wang1, Y Huang1, Q Yang1, X Chen1, Q Chen1, P Shou1, Y Gan1, G Cao1, G Melino2,3 and Y Shi*,1,4

It has been shown that p53 has a critical role in the differentiation and functionality of various multipotent progenitor cells. P53
mutations can lead to genome instability and subsequent functional alterations and aberrant transformation of mesenchymal stem
cells (MSCs). The significance of p53 in safeguarding our body from developing osteosarcoma (OS) is well recognized. During
bone remodeling, p53 has a key role in negatively regulating key factors orchestrating the early stages of osteogenic differentiation
of MSCs. Interestingly, changes in the p53 status can compromise bone homeostasis and affect the tumor microenvironment. This
review aims to provide a unique opportunity to study the p53 function in MSCs and OS. In the context of loss of function of p53, we
provide a model for two sources of OS: MSCs as progenitor cells of osteoblasts and bone tumor microenvironment components.
Standing at the bone remodeling point of view, in this review we will first explain the determinant function of p53 in OS
development. We will then summarize the role of p53 in monitoring MSC fidelity and in regulating MSC differentiation programs
during osteogenesis. Finally, we will discuss the importance of loss of p53 function in tissue microenvironment. We expect that the
information provided herein could lead to better understanding and treatment of OS.
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Facts

� P53 is a guardian of cell differentiation.
� P53 regulates genomic stability, growth, proliferation, and

immunoproperties of mesenchymal stem cells (MSCs).
� P53 is a negative regulator of osteogenic differentiation

of MSCs.
� Loss of function of p53 in MSCs compromises their

osteogenic differentiation and affects the properties of
bone tumor microenvironment (BME) components,
therefore it dictates the conditions for osteosarcoma (OS)
development.

Open Questions

� To identify in vivo and in vitro key molecules involved in the
process of bone remodeling, in the context of loss of
function of p53.

� Are there any molecules produced by p53-null MSCs that
could affect osteoclast properties and compromise bone
homeostasis?

� How do they relate to the diagnosis and prognosis of OS?

TP53 belongs to the so-called ‘p53 gene family’ of transcrip-
tion factors, which includes also the proteins p63, p73, and
p53 itself.1–3 Having been discovered since 1979, p53 is the
most studied member of the family with over 60 000 papers so
far published. This large mass of scientific data evidentiate a
huge complexity for p53 functional program, ranging from the
regulation of metabolism4–6 and mitochondria/oxygen
radicals7,8 to the deeply analyzed DNA damage repair
system,9–14 autophagy,15,16 and, last but not the least, its role
in cell stem maintenance and lineage determination.17,18

Despite all these investigations, efforts, and advances in
knowledge, many crucial intriguing points still remain
unanswered to fully understand the physiological and
pathological role of p53. These wide range of effects raise
from several angles, including, for example, its regulation at
the transcriptional level, at the level of micro-RNA,19–22 and
splicing isoforms23,24 to its translational regulation and its
stability/degradation at the protein level.25–29 In parallel to so
much effort in understanding the function of p53, significant
efforts are also underway on its potential clinical exploit
ation.30–37 Although being identified after ~ 20 years, already
now, p63 and p73 show a similar complexity, and also the
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ability to interact with p53 at the structural and functional
level,34,38–49 where the p63 function is highly relevant in skin
formation and homeostasis,50,51 as well as in cancer46,52,53

and stem cell regulation.54–57

P53 and OS in clinical settings

P53 and tumor. The p53 family of transcription factors have
several members including p53, p63, and p73. Each member
of this family expresses unique mRNA variants resulting from
alternative splicing, promoters, and transcription initiation
sites.58 Thus, a single gene can exist in multiple isoforms with
distinct biological functions.59,60 P53 protein, encoded by the
TP53 gene in humans and the Trp53 gene in mice, is well
known for its role as the ‘guardian of the genome’ and
exerts a pivotal role in maintaining the genetic stability.61–63 It
can prevent tumor formation by regulating cell cycle,64

apoptosis,65 senescence,66 and metabolism67 by binding
to responsive elements on DNA (p53RE).64,68 Abnormal
regulation of the p53 family has a critical role in tumorigenesis;
indeed, TP53 mutations have been detected in over 50% of all
human cancers.69,70

Silent mutations in the tumor suppressor gene TP53 and/or
the retinoblastoma gene RB1 have been reported to be the
main causes of the development of sporadic OS.71 In vitro
experiments comparingMSCswithmalignant OS cells, aswell
as in vivo studies using transgenic mice with targeting p53 and
Rb (retinoblastoma gene RB1; retinoblastoma protein) silen-
cing in MSCs, have elegantly demonstrated that when p53
alone was deleted, the incidence of OS could reach 60%.72

Another function of p53 in suppressing tumor is to act as ‘a
guardian of differentiation’.59

Notably, p53 guards osteogenic, myogenic, adipogenic,
hematopoietic, and neural differentiation of adult stem
cells.73,74

P53 in OS. OS is a bone tumor affecting long bones in
childhood and adolescence.75 Seven subtypes of OS have
been characterized according to histological analysis of the
osteoid matrix produced by aberrant osteoblasts: osteoblas-
tic, fibroblastic, chondroblastic, telangiectatic, epithelial, small
cell, and giant-rich cell.76 The abundant deposition of osteoid
matrix and osteoblast-like features of the malignant cells are
the dominant characteristics of the osteoblastic phenotype.
This subtype manifests the highest incidence representing
75% of screened OS.76–78 Within OS of the osteoblastic
subtype, aberrant preosteoblasts and osteoblasts produce
their own osteoid mineralized matrix close to the area of
growth plate (GP). Although chromosomal abnormalities
have a decisive role in the development of OS,79 the
karyotype is not essential for the subtype classification. OS
frequently occurs in human patients with Li-Fraumeni
syndrome and with hereditary retinoblastoma. Li-Fraumeni
patients carry a germline p53 mutation in one allele
compromising the function of p53.80–82 Different studies have
reported that preosteoblasts and osteoblasts represent the
cells of origin of OS.78,83 Importantly, cellular microenviron-
ment is also decisive in determining the fate of stem cells and
in promoting tumor formation.84 The osteogenic differentia-
tion of p53-deficient or mutant MSCs can be affected by
signals from BME and promote eventually OS. Intrabone
inoculation of undifferentiated p53− /− and p53−/−Rb− /−

MSCs generated osteoblastic OS and developed metastasis
characterized by osteoid areas in the lung, spleen, and
heart.33 These data suggest that, along with specific bone
microenvironment conditions, undifferentiated MSCs with
compromised p53 function can represent the cells of origin
of OS (Figure 1). The initiation of the tumor could, in part, be
affected by a failure of MSCs in maintaining a balance with
other differentiation gene programs, such as adipogenesis
and chondrogenesis.78 Notably, p53− /−Rb− /− MSCs reflect
the phenotype for the development of sarcoma.79 Interest-
ingly, the feature of the osteoblast subtype of OS is tightly
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Figure 1 Loss of function of p53 in undifferentiated MSCs and origin of OS. Preosteoblasts and osteoblasts can be considered as cells of origin for OS development (2) as
well as undifferentiated MSCs (1). When mesenchymal progenitor cells (1) or preosteoblast cells (2) become aberrant following mutational events of p53 tumor suppressor gene
(*p53), they show compromised growth, proliferation and terminal differentiation. The arrow (*) indicates MSCs with loss of function of p53: *MSCs
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associated with the impaired activity of p53 in mouse MSCs
and osteoblasts.85

Formation of OS

Aberrant proliferation of preosteoblasts and osteoblasts.
The bone is an alive and active tissue, crossed by blood
vessels that form a complex sinusoidal vascular network. Its
basic structure is composed of both trabecular and cortical
bone, with trabecules of trabecular bone interspersed in the
bone marrow and in direct contact with the bone marrow
microenvironment. The surface of the trabecules includes
both active and quiescent osteoblasts, which originate the
endosteal niche.86 During bone remodeling, the osteoblasts,
cells of mesenchymal origin,87 and the osteoclasts, cells of
hematopoietic origin, cooperate and work in proximity of the
endosteum niche, respectively, generating and resorbing the
bone. Osteoblasts and osteoclasts can communicate,
regulate, and activate each other through the secretion of
specific key molecules (coupling growth factors) released
during bone resorption. Insulin-like growth factors and
transforming growth factor-beta (TGF-β) are examples of
two coupling growth factors secreted during bone degrada-
tion, which have been proven to stimulate the osteoblast
activity.88 However, MSCs and osteoblasts can also secrete
molecules that can influence the osteoclast activity, and affect
bone remodeling in the same cases.89 Indeed, throughout the
lifetime bone remodeling is kept at a constant rate to balance
bone formation and bone degradation, and to guarantee
bone homeostasis. However, along with aging, this exquisite
equilibrium is subjected to alterations mainly as a conse-
quence of hormonal dysfunctions. Indeed, steroid hormone
deficit enhances the resorbing activity of osteoclasts, which
could terminate in an osteoporotic condition.90 Conversely,

an increase in bone mass and bone density is representative
of osteosclerosis and osteopetrosis conditions. Higher intake
of bone in osteosclerosis is exclusively promoted by
osteoblasts, whereas osteopetrosis is due to aberrant activity
of osteoclast-mediated bone resorption.91 Notably, during the
process of endochondral bone formation, which occurs until
adolescence, the mesenchymal progenitor cells first differ-
entiate into chondrocytes, which generate new cartilage on
the GP. The chondrocytes will be slowly replaced by
osteogenic progenitor cells and osteoblasts to produce the
bone.84 Interestingly, under normal conditions p53 acts as a
negative regulator of osteoblastogenesis by repressing the
promoter activity of transcription factors required in the early
phase of osteogenic commitment, such as Osterix,92 Cbfα-1,
and Runx2 in osteoprogenitor cells73,93 (Figure 2). According
to these evidences, p53-null mice are considered as a model
for increased bone remodeling and osteosclerosis.94

During MSC osteogenic differentiation, p53 can inhibit
osteogenesis95,96 along with the downregulating expression
of critical osteogenic transcription factors including Osterix
and Runx2.92 Higher bone density and formation rate have
been reported in p53-deficient mice along with increased
bone resorption, which is not directly regulated by p53.92

MSCs are a source of osteoblasts. MSCs are a subset of
adult progenitor cells that exist in almost all adult tissues
(bone marrow, adipose tissue, skin, and liver). Adult MSCs
have proven to be cells of mesodermal origin, which can give
rise to skeleton, muscle, heart, spleen, and other internal
organs.97 These cells exert a key function in the maintenance
of tissue homeostasis, tissue regeneration, and wound
repair.98 MSCs show immunoregulatory properties,99 self-
renewing, and differentiation ability into mesenchymal
lineages (i.e. chondrocytes, osteoblasts, adipocytes,
endothelial cells, pericytes).100,101 P53 can regulate key
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Figure 2 P53-null MSCs show abnormal osteogenesis compared with the wild-type MSCs. In non-aberrant conditions, the expression of Osterix and Runx2 is upregulated
during osteogenic differentiation of osteogenic committed cells to promote their differentiation and maturation towards osteoblasts and osteocytes, and to ensure a balanced bone
remodeling (1). P53-null MSCs express before the commitment towards upregulated levels of both Osterix and Runx2. This compromises their differentiation towards mature
osteoblasts and osteocytes, culminating in impaired bone remodeling and in the osteosclerotic phenotype observed in p53-deficient mice (2)
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transcription factor genes involved in exclusive programs of
differentiation and dedifferentiation of somatic cells, with an
impact on stemness and development. Given that p53 is a
tumor suppressor gene and gate keeper of cell differentiation,
in this review we want bring to light the connection of p53
status in MSCs, BME, and OS development. Notably,
p53-null MSCs exhibit accelerated growth rate and aberrant
osteogenic differentiation compared with wild-type MSCs,
which contributes to tumor bone formation. Indeed, distinct
studies highlight that p53-deficient bone marrow-derived
MSCs can proliferate faster, and appear to differentiate
earlier during in vitro osteogenic differentiation compared with
the wild-type MSCs.93,95,102 However, this ‘tricky’ appearance
to differentiate earlier into osteoblasts reflects a more complex
scenario; indeed, p53-null MSCs are impaired in achieving
terminal differentiation towards mature osteocytes.92 MSCs
represent a source of precursor for osteogenic progenitor
cells and osteoblasts. P53 mutations that lead to defects in
the control of cell growth of osteogenic progenitor cells
represent the main source of sporadic OS.
The in vitro knockdown of p53 in mouse embryonic

fibroblasts (MEFs), which are cells representative of an
embryonic stage of development, induced higher expression
level of Osterix and Runx273 but not of terminal differentiation
markers such as Osteocalcin and Sost-Sclerostin.103

Conversely, p53 knockdown in multipotent bone marrow
stromal cells (MBA-15), which resembles adult progenitor
cells,73,104 promoted terminal osteogenic differentiation.73

Consistently, also after reintroduction of wild-type p53 in OS
cell line, apoptosis and terminal differentiation were
promoted.104 We can emphasize that p53 can regulate
bone formation and the differentiation of early osteogenic
precursors as demonstrated by the knockdown of p53 in MEF,

and, furthermore, it can also promote terminal differentiation in
MBA-15.

P53 and MSCs

P53 and MSC proliferation. Isolated MSCs can be
maintained in culture in vitro for several passages without
being severely compromised in their properties.105 The
induction of p21 or cyclin-dependent kinase (CDK) inhibitor
p21Cip1/Waf1 mainly promoted by p53 is associated with
cell-cycle arrest (Figure 3). This suggests that alterations in
cell-cycle regulators represent one of the main causes
inducing aberrations in MSCs.106 Transformation of MSCs
is highly correlated with simultaneous abnormalities of p53
and p21, and this could represent the event that could lead to
the origin of mesodermal tumors.106 Nevertheless, it has
been proven that loss of p53 in MSCs promote higher growth
rate, chromosomal instability, resistance to apoptosis, and
senescence107,108 (Figure 3). Interestingly, p53 has a key role
in regulating both differentiation of mesenchymal precursors
and quiescence of hematopoietic stem cells in the bone
marrow environment.109

Notably, bone marrow is one of the important sites for
hematopoiesis in adults where hematopoietic stem cells are
kept in a stemness condition.100,110 Bone and bone marrow
are functionally and anatomically correlated87 composing a
unique compartment, which has a role in hematopoiesis and in
bone homeostasis.100,111 Transplanted nestin-marked human
MSCs into the bone marrow cavity of nonobese diabetic/
severe-combined immunodeficiency mice persisted 10 weeks
after transplantation. Interestingly, these transplanted cells
were able to differentiate into all the cells of the hematopoietic
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Figure 3 Loss of function of p53 compromises proliferation and differentiation of MSCs. MSCs can be isolated from adult organs, such as bone marrow, skeletal muscle,
adipose tissue, and others, with a higher prevalence from the bone marrow (BM). MSCs can be identified in vitro for their surface markers and their multipotential differentiation
properties. P53 has a role in regulating growth and proliferation of MSCs. Mutational events of p53 or p53 deficiency compromise the proliferation rate of MSCs mainly through
p21 or CDK inhibitor p21Cip1/Waf1
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environment.112 Indeed, nestin-positive cells in the bone
marrow have been recognized to have all the properties of
MSCs, and were closely located with hematopoietic stem cells
to support their quiescence.113 In vivo depletion of nestin-
positive cells reduced the percentage of hematopoietic
progenitor cells hosted in the bone marrow.113

P53 and MSCs differentiation. In vitro gene knockdown of
TP53 and Trp53 have revealed the importance of p53 in
mesenchymal differentiation of multiprogenitor cells.
However, controversial role of p53 during differentiation of
MSCs have been reported.92,95 Cell cycle and differentiation
represent two interconnected processes in which p53 can
exert distinct functions depending on the cell type. Absence
of p53 can block the terminal cell differentiation, resulting in
the accumulation of early and intermediate progenitors, which
can lead to alterations of that specific differentiation pathway
such as osteogenesis, adipogenesis, or myogenesis
(Figure 4). For example, p53 negatively regulates adipogen-
esis by repressing the key adipogenic transcription factors
PPAR-γ (proliferator-activated receptor-γ) and C/EBP-α
(CCAAT/enhancer-binding protein-α).74,114 Adipocytes and
osteoblasts are both cells derived from multipotent progenitor
cells. The undifferentiated status of the cells is kept by the
repression of transcription factors that repress each other to
preserve multipotency. However, upon appropriate stimula-
tions, MSCs make sequential cell fate choices.115 The
commitment of MSCs towards a specific mesenchymal
differentiation program is coordinated also by p53, which
regulates their multipotential state. In in vivo studies, p53 is
upregulated in adipocytes from genetically obese mice in a
fed state. Transgenic mice overexpressing functional p53
gain less body mass and adipose tissue when compared with
wild-type mice; this has suggested an inhibitory role for p53,
which may be exerted by changes in metabolism.116 Indeed,
in the absence of functioning p53, a shift from oxidative

phosphorylation towards glycolysis was observed.117

Furthermore, even myogenic differentiation can be monitored
by p53. Distinct studies have shown an increase in p53
mRNA levels during myogenic differentiation in vitro.118–120

P53 might be involved in this process by regulating the
retinoblastoma protein, Rb, which has a pivotal role in the
differentiation of muscle through cell-cycle arrest and also by
specific genes involved in the myogenic differentiation
program.121–123 The association of p53 expression and cell-
cycle regulators, which are target genes of p53, such as p21,
was observed during the development of the mouse nervous
system.124,125 Indeed, p53 monitors the differentiation of
neural stem cells via its regulating pathways including
cooperation with phosphatase and tensin homolog
(PTEN).125 Notably, accumulation of mutant p53 in neural
stem cells in the subventricular zone of the brain could
generate aberrant neural progenitor cells and promote glioma
formation.126 However, it is still unclear how p53 functions in
the specific signaling context to regulate neural stem cells
differentiation.127 In hematopoiesis, p53 induces hemato-
poietic stem cells to differentiate into proper mature blood
cells and function in maintaining their quiescence.73 So far,
the development of skeletal muscles and blood system has
not yet been found abnormal in p53-null mice. Several in vitro
studies have confirmed the role of p53 as a negative regulator
in cell differentiation pathways, which reflects the complexity
of the underlying mechanisms (Figure 4).

P53 and MSCs dictating tumor microenvironment

P53 and tumor microenvironment. Interestingly, our
previous work has proved that MSCs that lack p53 exhibit
tumor-promoting characteristic through high secretion of nitric
oxide (NO) and higher vigorous immunomodulation when
compared with wild-type MSCs.128 We found that the higher
secretion of NO from p53-deficient MSCs have an inhibitory
effect on T cells, and promote tumor growth.128 Thus, loss of
p53 function in MSCs can promote their transformation by
regulating their immunoproperties, growth, and proliferation.
Importantly, p53 can dictate tumor microenvironment in an
MSC-related manner. Indeed, except for tumor cells, also
non-tumoral cells in tumor stroma were reported to gain p53
mutations, which were associated with regional lymph-node
metastases.129 When p53 is inactivated, tumor stroma shows
less response to anticancer drugs, such as cisplatinum,
etoposide, and vincristine as a consequence of failure in
upregulating p53-inducible genes and inducing apoptosis of
tumor cells.130 Alternatively, ablation of p53 in tumor stroma
has promoted tumor growth by upregulating the expression of
stromal cell-derived factor 1/C–X–C motif chemokine
12.131,132 Notably, tumor stroma with dysfunctional p53 can
enhance differentiation of myeloid-derived suppressor cell,
exacerbate immunosuppression, and promote tumor
progression.133 Furthermore, the role of p53 in the tumor
microenvironment under hypoxic conditions has also been
reported. Indeed, p53 targets the subunit HIF-1-α of hypoxia-
inducible factor (HIF), necessary for metabolism adaptation,
avoiding its proteasomic degradation through murine double
minute 2 protein.134 Ablation of p53 increases the expression
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Figure 4 P53 is a negative regulator of differentiation pathways of MSCs. P53
can negatively regulate differentiation of mesenchymal progenitor cells such as
osteogenesis, myogenesis, adipogenesis, and neurogenesis pathways by down-
regulating the expression levels of key transcription factor genes. In undifferentiated
MSCs, p53 maintains lower expression levels of key transcription factor genes
involved in the early phases of differentiation, such as Osterix and Runx2 for
osteogenesis, PPAR-γ, CEBP-α for adipogenesis, Rb for myogenesis, and PTEN for
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of HIF-1-α in a hypoxia condition, which in turn induces the
expression of vascular endothelial growth factor (VEGF) in
tumor cells and promotes angiogenesis, neovascularization,
tumor growth, and invasion. VEGF and HIF-1-α are,
furthermore, overexpressed in several types of human
cancers, especially with HIF-1-α in metastatic OS.135

P53 and MSC in OS tumor microenvironment. During
bone growth, several factors and extracellular matrix compo-
nents secreted by mesenchymal progenitor cells and
chondrocytes in the GP will recruit BME components to
guarantee a balanced bone remodeling. The BME hosts
different types of cells, including osteoblasts, osteoclasts,
mesenchymal cell precursors, hematopoietic stem cells,
chondrocytes, and endothelial cells, as well as fibroblasts
stromal cells and immune cells. In this special scenario, p53
status has a determinant role (Figure 5). In the context of
bone remodeling, along with the coexistence of aberrant
conditions arising from a p53 mutational landscape, the BME
components could contribute to altered bone homeostasis
compromising the cross-talk between MSCs, osteoblasts,
osteoclasts, and hematopoietic cells, and therefore it dictates
the environment for tumor initiation.84 Given the plasticity of
MSCs to generate and differentiate into several cell types,
including osteoblasts, it is not surprising that MSCs with p53
aberrations have been suggested to be the cells of origin for
bone tumor, including OS, chondrosarcoma, Ewing’s
sarcoma, and sarcoma.75 We previously have discussed
about the impaired osteogenic differentiation of p53-deficient
MSCs; however, we here want to emphasize that p53-null
MSCs also represent an important cellular component of
tumor microenvironment. Interestingly, it has been demon-
strated that in tumor BME, MSCs can support OS growth
through the expression of CCL5 (chemokine ligand 5).136

Interestingly, CCL5/CCR5 (C–C chemokine receptor type 5)
axis can promote OS migration through the extracellular
signal-regulated kinase pathway, which induces the nuclear

factor κ-light-chain enhancer of activated B cells (NF-κb).136

Conversely, growth factors secreted from cancer cells and
during bone resorption, such as tumor necrosis factor-α,
TGF-β, bone morphogenetic protein 2 (BMP2), and
interleukin-6 (IL-6), can promote osteoclast maturation by
directing the expression of RANK (receptor activator of the
receptor activator of nuclear factor-κb) on the surface of
osteoclast precursor cells increasing bone erosion. The
increased bone degradation culminates in the release of
BMP2 and TGF-β, which severely contribute to tumor growth
and stimulate the osteoclast activity.137 TGF-β can evoke
MSC-secreted IL-6, which acts by promoting OS metastasis
via STAT-3 (signal transducer and activator of signal-3).138

These data emphasize how the loss of function of p53 is a
determinant in dictating the conditions that contribute to
initiate OS: on the one hand, it can affect proliferation,
immunoproperties, and compromise osteogenesis of undif-
ferentiated MSCs, but on the other hand, it can affect the
properties of BME components compromising the talk
between BME and cancer cells, a further condition that
supports OS initiation and development.

Conclusion

In this review, we aimed to bring to light that p53 has a pivotal
role in keeping the balance between bone formation and bone
degradation. Indeed, p53 not only regulates the genomic
stability of MSCs but also their osteogenic differentiation
functioning as ‘bone remodeling surveillant’ to prevent bone
tumor initiation.Wang et al.92 and other groups have proposed
a negative role of p53 in regulating osteogenesis and other
mesenchymal differentiation programs. We set the evidence
that p53 mutational events occurring in undifferentiated MSCs
or in osteoblasts at different stages of commitment can
promote OS initiation72 as a consequence of alterations of
osteogenic differentiation, bone remodeling, and bone
homeostasis.139 Indeed, OS is a heterogeneous tumor that
includes cells at different stages of commitment during
osteogenesis.140 Interestingly, the osteosclerotic condition
observed in p53-null mice imposes the phenotype of OS
development.106 We summarize that p53 can affect osteo-
genic differentiation of MSCs and largely contribute to OS
initiation: (1) it can promote or abrogate differentiation of
multipotent progenitor cells acting as a negative mediator of
transcription factors of early osteogenic differentiation;
(2) it can regulate the genomic stability, growth, and prolifera-
tion of MSCs; (3) it can affect the immunoproperties of MSCs
through growth factors and chemokine secretion; (4) it can
affect the BME-regulating immune properties, growth, prolif-
eration, and differentiation of microenvironment components.
Further investigations on the molecular mechanisms through
which loss of function of p53 can affect properties of MSCs
and osteoprogenitor cells should be considered. This will
ameliorate the knowledge of p53 function in the context of
bone biology, and also will be helpful in identifying new
strategies for targeting key molecules necessary for OS
formation and survival.
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