
REVIEW

Intestinal Inflammation as a Dysbiosis of Energy Procurement: New Insights into 
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Summary
Inflammatory bowel disease (IBD) coincides with profound shifts in microbiota and host metabolic 
energy supply and demand. The gastrointestinal epithelium is anatomically positioned to provide 
a selective barrier between the anaerobic luminal microbiota and host lamina propria, with the 
microbiota and epithelium participating in an intricate energy exchange necessary for homeostasis. 
Maintenance and restoration of the barrier requires high energy flux and places significant 
demands on available substrates to generate ATP. It is recently appreciated that components of 
the microbiota contribute significantly to a multitude of biochemical pathways within and outside 
of the mucosa. Decades-old studies have appreciated that byproducts of the microbiota provide 
essential sources of energy to the intestinal epithelium, especially the colon. More recent work has 
unveiled the existence of numerous microbial-derived metabolites that support energy procure-
ment within the mucosa. It is now appreciated that disease-associated shifts in the microbiota, 
termed dysbiosis, places significant demands on energy acquisition within the mucosa. Here, we 
review the topic of host- and microbial-derived components that influence tissue energetics in 
health and during disease.
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Introduction

The microbiota is defined as the constellation of 
microorganisms in coexistence with a given organ-
ism. Numerous studies over the last two decades 
have revealed these communities of microorgan-
isms as essential for health. Found on both external 
and internal surfaces, including the skin, gastroin-
testinal tract, and oral mucosa, the microbiota is 
intimately integrated with the host and is as unique 
as our fingerprint. Although the human microbiota 
comprises of bacteria, fungi, archaea, and protozoa, 
bacteria vastly outnumber the other microorgan-
isms by orders of magnitude, with the majority 
residing in the colon. A commonly referenced, 
initial estimation of the bacterial to human cell 
ratio in a body was 10:1, although the ratio has 
since been revisited and updated to ~1:1.1 This 
suggestion, that for every cell in a body that we 
consider as “us” there is a “them” in our gut, begets 
the age-old “how?” and “why?” questions, with the 
answers having great implication on how factors 

like lifestyle, diet, environment, and genetics shape 
the composition and activity of the gut microbiota, 
and ultimately our health and well-being.

Eukaryotes and microbes have long existed in 
mutually beneficial, symbiotic relationships with 
one another, relationships thought as fundamental 
to the development and evolution of multicellular 
life.2 For instance, an ancestor of modern eukar-
yotes engulfed an α-proteobacterium capable of 
oxidative phosphorylation, establishing an endo-
symbiotic relationship that led to the mitochondria 
as essential and defining organelles.3 The gut 
microbiota functions as another organ that resides 
in the host, albeit of microbial origin. This micro-
biota consists of organisms of different lineages that 
communicate with each other and the host, manip-
ulates and redistributes energy, and mediates phy-
siologically vital chemical transformations, 
providing us with essential functionalities upon 
which we depend.4 It has long been known that 
inflammatory bowel disease (IBD) is marked by 
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a state of energy deficiency that involves dysbiosis 
of the composition and function of the gut micro-
biota concurrent with a loss of colonic epithelial 
barrier function.5–7 In this review, we will discuss 
newer and older literature regarding host- and 
microbial-derived components that constitute 
interdependent energy exchanges vital for colonic 
homeostasis and disease remission.

The microbiota is compositionally and 
functionally dynamic

The human microbiota develops after birth and is 
shaped by a number of variables, including gesta-
tional age, delivery type, source of milk, weaning 
period, and exposure to antibiotics.8 Subsequently, 
the microbiota diversifies and stabilizes under the 
influence of environment, diet, genetics, and gut 
physiology into an adult-like composition by the 
age of three, growing to the highest cell density of 
any recorded ecosystem.4 Upon community stabi-
lization, gut microbiota differences between indivi-
duals are shown to associate with many 
environmental and lifestyle aspects such as body 
mass index (BMI), exercise frequency, and, notably, 
diet.8 Gut microbes presumably have a tight co- 
evolutionary history with the host, while under-
going selective pressure from microbial competi-
tors and the host alike.9 This environment is one 
that commonly produces a microbial community in 
which few groups occur in high abundance with 
several in low abundance.10,11 The vastly dominant 
gut microbial phyla are Firmicutes, Bacteroidetes, 
and Actinobacteria;8,12 and although the gut is 
home to great diversity at the species level, the 
microbiota is essentially comprised of divergent 
lineages of closely related bacteria from eight 
divisions.4,11

The composition of the gut microbiota is unique 
to each individual, much like a fingerprint. 
Numerous microbiome analyses over the years 
have provided useful insight into the functional 
capability of the microbiota. One such analysis 
revealed that the human distal gut microbiota is 
uniquely enriched in carbohydrate, amino acid, 
nucleotide, and coenzyme metabolic capability 
relative to other microbes. Further analyses identi-
fied that carbohydrate, nucleotide, amino acid, and 
energy metabolic pathways were among those 

enriched in the gut microbiome relative to the 
human genome, offering insight into the vast func-
tional capability the microbiota can provide the 
host.13 By determining what substrates are available 
for fermentation, diet fundamentally influences 
microbiota composition based on differential 
microbial fermentative capabilities, with dietary- 
induced shifts in bacterial diversity and microbiota- 
derived end products observed as quickly as 24 h.14 

For instance, it is well demonstrated that Prevotella 
is enriched in individuals with a plant-based diet 
rich in fiber and simple sugars, whereas Bacteroides 
dominates in those consuming a Western diet high 
in animal proteins and saturated fat.15 These diet-
ary-linked microbiota compositions highlight the 
functional differences between Prevotella and 
Bacteroides, as Prevotella is more specialized for 
the degradation of plant material and relatively 
lacks lipolytic and proteolytic fermentative capabil-
ities, whereas Bacteroides show more specialization 
for animal carbohydrates and proteolytic fermenta-
tive capacity.16,17 Symbiotic relationships such as 
that shared between the host and gut microbiota 
are dependent on the environment, with diet being 
a substantial environmental variable in this system 
that facilitates the expansion or restriction of cer-
tain microbial populations through selective com-
petition for ingested nutrients.

Despite broad fermentative ability, the physiol-
ogy of the gut microbiota is exceptionally suited for 
polysaccharide metabolism, reflecting the available 
resistant starch and non-starch polysaccharides 
(dietary fiber) gut microbes evolved around and 
are accustomed to harvesting for fuel in the gut 
microbiota-occupied niche. Humans produce ~17 
gastrointestinal enzymes to mainly digest starch, 
whereas the gut microbiota produces thousands of 
complementary enzymes that depolymerize the 
xylan-, pectin-, and arabinose-containing carbohy-
drates remaining from consumed grains, fruits, 
vegetables, nuts, and legumes.13,18 In this, our 
microbiota offers us access to nutrients we other-
wise could not. In addition to the resistant starch 
and non-starch polysaccharides mentioned above, 
a consistent carbohydrate source is provided by 
host epithelial goblet cells that secrete large 
amounts of highly glycosylated mucin proteins. 
The diverse capacity of gut microbes to utilize 
a wide variety of carbohydrates benefits the 
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microbial community as a whole through cross- 
feeding, whereby the differential degradation abil-
ities provide mono/oligosaccharides to the entire 
microbiota, affording a degree of flexibility in 
maintaining symbiotic function in a perpetually 
fluctuating nutrient environment.

Supplementing diet with non-digestible sub-
strates, called prebiotics, for microbial fermenta-
tion have been reported to show beneficial effects 
in both of the IBDs ulcerative colitis (UC) and 
Crohn’s disease (CD), as well as chronic 
pouchitis.19 Current hypotheses on protective 
mechanisms of prebiotics include changes in the 
intestinal microbiota and improving the intestinal 
barrier.19 Several studies showed that prebiotics 
shift the intestinal microbiota toward a beneficial 
composition in both animal models and human 
studies, as they increase the quantity of beneficial 
bacteria, such as bifidobacteria and lactobacilli, at 
the loss of disease-inducing bacteria.20,21

Microbial-derived metabolites and host health

Analogous studies of the microbiome at other 
levels corresponding to active genes (metatran-
scriptomes), proteins (metaproteomes), and 
metabolites (metabolomes) are comparatively 
lacking to microbiota composition studies, but 
may be more relevant in understanding how the 
gut microbiota defines and contributes to host 
function.22 A beneficially functional gut micro-
biota requires continuous adaptation to the vari-
able nature of food intake, in that the microbiota 
is capable of processing a range of molecules 
into the compounds required by the host. As 
discussed above, this capability is achieved in 
part through compositional plasticity and cross- 
feeding, but also through a high level of func-
tional redundancy.23,24 This functional redun-
dancy is in part due to horizontal gene transfer 
occurring 25-times more often in gut bacteria 
than between other bacteria, stimulating the evo-
lution and selection of specific core functions in 
the intestinal ecosystem.13,22,25 Indeed, one of 
the most prominent findings of the Human 
Microbiome Project was that although taxo-
nomic composition significantly differs among 

individuals, the abundances of metabolic path-
ways are relatively consistent.26,27 In this, two 
microbiotas differing in composition at the spe-
cies and/or genetic level may produce similar 
protein and metabolite profiles.22,24 Over the 
years, attention has shifted from microbiome- 
based, associative studies toward the mechanistic 
determination of the molecular interactions 
between the microbiota and host. An important 
insight resulting from these studies is that many 
microbiota–host interactions are mediated by 
metabolites secreted or modified by the micro-
biota and/or host.28 A recent study comparing 
germ-free and colonized mice revealed that such 
microbial metabolites affect the chemistry of all 
organ systems, highlighting how the gut micro-
biota signals to distant organs and influences 
whole-body metabolism.29

The importance of intestinal homeostasis to 
whole-body health is manifested by numerous gut- 
organ axes, where disease in other organs often 
occurs with gastrointestinal (GI) diseases. It is 
appreciated that dysbiosis of the gut microbiota is 
not limited to IBD and associates with irritable 
bowel syndrome (IBS), allergies, asthma, metabolic 
syndrome, and cardiovascular disease.30–33 

Commonly, these GI diseases present 
a multifaceted pathophysiology involving dysbiosis 
of the composition and metabolism of the micro-
biota and intestinal epithelial barrier loss, with this 
increased epithelial permeability allowing inap-
propriate immunological stimulation by luminal 
antigens. In the chronic disease state of UC, these 
factors perpetuate each other in a convoluted rela-
tionship between the dysbiosis-induced loss of 
microbiota-derived metabolites, dysfunctional 
epithelial barrier, and unresolving inflammation.34 

This intricate relationship motivates the search for 
therapeutic approaches that address both host pro-
cesses and the microbiota.35 As epithelial barrier is 
responsible for creating a habitat that promotes 
a healthy microbiota, isolating that microbiota 
from the host immune system, and coordinating 
crosstalk between the two,36,37 targeting epithelial 
barrier restoration may have such a pleiotropic 
response. To do so necessitates defining the con-
tribution of microbiota-derived metabolites to gut 
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barrier function and the dysbiosis-induced shifts of 
those metabolites in disease.

The high energy demand of mucosal barrier 
function

The GI tract is tasked with managing nutrient and 
waste flux in a manner that protects the host from 
luminal pathogenic microbes and antigenic materi-
als. Intestinal homeostasis requires substantial 
energy input, with the gut devoted ~20% of total 
cardiac output while consuming 10–20% of the 
available oxygen.38–40 The microbiota is also 
a substantial contributor to host energy procure-
ment. This is exemplified in that germ-free (GF) 
mice lacking a microbiota are lean in comparison to 
conventionally-raised (CR) mice, with the coloni-
zation of GF mice inducing rapid weight gain and 
increased adiposity.41 The contribution of the 
microbiota to the human energy requirement is 
estimated to be 5–10%,42 with a considerable local 
impact on the large intestine. For example, analyses 
of the total available energy (TAE), a metric that 
accounts for the total available chemical energy in 
a system as ADP, ATP, and phosphocreatine,43 

from colon tissue extracts reveal that GF mice 
have ~55% (p < .001) of the TAE shown in CR 
counterparts.44 Much of this microbiota-derived 
energy is devoted to a monolayer of intestinal 
epithelial cells (IECs) residing at the frontier of 
the microbiota–host interface that construct and 
maintain a mutually beneficial, selective barrier 
between the gut microbiota and host. In doing so, 
these IECs establish the first line of defense against 
pathogen infection, but also provide fuel and habi-
tat for microbial symbionts. Two primary differen-
tiated host epithelial cell types are responsible for 
constructing and maintaining barrier in the large 
intestine – the goblet cell and enterocyte – with 
distinct and essential contributions to this key com-
ponent of gut homeostasis.

Mucus barrier

Goblet cells secrete large amounts of mucin pro-
teins to construct a barrier that physically separates 
the epithelium and microbiota. A healthy colonic 
mucus barrier has two layers – a dense, stratified 
inner layer impenetrable to most luminal microbes 

and an outer, less dense layer containing microbes 
and dietary material.45 In a healthy colon, mucins 
are continuously secreted at a rate of ~2 – 4 μm/ 
min, creating a flow that physically repels microbes 
and turns over the mucus barrier hourly.46 The 
transition from the inner to the outer layer is in 
part endogenously controlled to assist mucin clear-
ance, and allow mucin to provide lubrication for 
the fecal stream.47 The prominent secreted mucin is 
MUC2, which has a high level of O-glycosylation 
that accounts for ~80% of the total molecular 
weight of intestinal mucus.48 This glycosylation 
helps shield the mucin protein backbone from 
host and microbe proteases and binds the water 
necessary for gel formation. The integrity of the 
mucus layer is critical for health, as it is the first 
intestinal structure that a pathogen must overcome 
to establish infection. Genetic ablation of MUC2 
expression or loss of O-glycans in mice incites 
spontaneous colitis and sometimes cancer.49,50 

Correspondingly, structural weakening of the 
mucus barrier is implicated as an early event in 
UC pathogenesis,51 while patients with active UC 
have an abnormally penetrable inner mucus layer 
and altered O-glycosylation profile.52,53

The secretion of large amounts of mucin protein 
is a substantial energy and nucleotide demanding 
process at multiple levels. Fundamentally, nucleo-
tide templates are required for ribosomal RNA 
generation and messenger RNA transcription, 
with the need for nucleotides most prominent dur-
ing transcription.54 After which, the translation of 
secretory proteins on the endoplasmic reticulum 
(ER) is fueled by GTP hydrolysis, followed by 
numerous ATP consuming processes like protein 
translocation, folding, post-translational modifica-
tions, and trafficking.55 The extensive nucleotide 
demanding process of O-glycosylation occurs 
once the mucin reaches the Golgi, requiring 
nucleotide sugar precursors to sequentially add 
single monosaccharides.56 Given the high energy 
requirement for ER function in secretory cells, 
energy deprivation disrupts protein folding and 
glycosylation, causing ER stress. To overcome this 
imbalance in protein folding capacity, ER stress 
activates a pathway called the unfolded protein 
response (UPR) that engages transcription factors 
and enzymes in an effort to reestablish ER 
homeostasis.57 Notably, several proteins that sense 
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and respond to ER stress are O-glycosylated, which 
is thought to function to relay the status of the 
Golgi and secretory apparatus to regulate the 
UPR.58 The dependency of the ER on energy bal-
ance is underscored by exquisite sensitivity and 
coordination of responses to energy fluctuations. 
The UPR transcriptionally regulates glucose synth-
esis and breakdown genes, in addition to having 
important roles in fatty acid and cholesterol 
metabolism.59 Furthermore, the ER directly com-
municates with mitochondria to increase ATP 
regeneration during times of energetic demand.60 

Prolonged ER stress induces inflammation and 
apoptosis, as demonstrated by mice aberrant in 
MUC2 oligomerization leading to MUC2 precursor 
accumulation-induced ER stress, increased apopto-
sis, and spontaneous colitis.61 The colitis developed 
in these mice exhibited the decreased goblet cell 
number, decreased MUC2 production and secre-
tion, MUC2 precursor accumulation, and increased 
ER stress phenotypes characteristic of UC.62 

Interestingly, colonic epithelial defects in the key 
UPR component X-box binding protein 1 (XBP1) 
are reported in UC, identifying the ER stress path-
way as a common genetic contributor to the 
disease.63 Given the intimate relationship with 
and dependence on energy metabolism for ER 
function and the state of energy deficiency of the 
colonic mucosa during UC,5–7 it is reasonable that 
poor energy balance may be a significant contribu-
tor to the penetrability of the mucus barrier during 
disease that must be addressed for healing.

Apical junction complex

Colonic enterocytes contribute to barrier function 
by forming intercellular adhesion complexes 
mediated by tight and adherens junctions, termed 
the apical junction complex (AJC). The most apical 
tight junctions (TJs) are the primary regulators of 
paracellular permeability to solutes and macromo-
lecules (gate function), while polarizing the enter-
ocytes into apical and basolateral regions that 
establish a gradient between the intestinal lumen 
and basolateral membrane (fence function).64,65 

Adherens junctions (AJs) provide the strong adhe-
sive bonds responsible for maintaining cellular 
proximity and junctional complex stability.66 Loss 
of AJs disrupts cellular contacts, polarization, and 

differentiation, while inducing premature 
apoptosis.66,67 The AJs are made up of a family of 
transmembrane proteins called cadherins that form 
strong, homotypic interactions with molecules 
from neighboring cells. The cytoplasmic end of 
cadherins interacts with catenin proteins that link 
the AJ to the cellular cytoskeleton and 
a perijunctional actomyosin ring. This AJ system 
provides the stability necessary for TJ formation 
and resultant sealing of the paracellular space.

Small molecules, including potential antigens, 
easily diffuse through the mucus layers. Epithelial 
paracellular flow is typically more permeable than 
transcellular flux, conferring TJs as the rate limiters 
of transepithelial transport and principle determi-
nant of mucosal permeability.66 TJs are multi- 
protein complexes, with the most important mem-
bers from the claudin family. Peripheral membrane 
or scaffolding proteins such as the zona occludins 
(ZO) are crucial to TJ formation, notably through 
linking TJ proteins to the actin cytoskeleton. At 
least two independently regulated means of trans-
port across TJs are identified. The leak pathway 
allows passage of large solutes, even molecules as 
large as proteins and proinflammatory bacterial 
lipopolysaccharides.68,69 Flux across this pathway 
is increased by proinflammatory cytokines such as 
interferon-γ and tumor necrosis factor, which are 
highly expressed in the chronically inflamed 
intestine.70,71 The other pathway represents the 
canonical association with TJ function, in which 
small pores formed by claudin proteins exclude 
molecules larger than 4 angstroms in a charge selec-
tive manner.68,69 Both size and charge selection can 
be independently or jointly regulated in response to 
various physiological or pathophysiological 
stimuli.66 Dysregulation of the TJ and thus para-
cellular flux is another hallmark of UC.71–73 For 
instance, a study that measured epithelial resistance 
as a metric of TJ function revealed an 80% reduc-
tion in resistance in samples from UC patients with 
an inflamed colon.74 Perhaps unsurprisingly, 
restoration of homeostatic TJ characteristics corre-
lates with quiescent UC and mucosal healing, nota-
bly in part through increased expression of the 
actin associating ZO proteins.75

Studies using ATP depletion models suggest that 
the AJC commands substantial energy to control 
paracellular flux.76 Much of this energy is devoted 
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to the cytoskeletal components tasked with junc-
tional regulation, which connect to a network that 
transduces adhesive and mechanical signals from 
the membrane, into the cell, and back to mediate 
AJC regulation.77,78 Accommodating the various 
cell morphologies and movements that occur in 
a monolayer requires junctions to be both strong 
and plastic, a functionality that requires an excep-
tionally active cytoskeleton rich in actin filaments 
working to stabilize and cycle junction 
proteins.64,77,79 To this end, the AJC complex is 
supported by a network of TJ-associating F-actin 
bundles and the dense circumferential actomyosin 
ring contiguous with AJs that forms one of the most 
organized and active actin networks found in 
nature.80 This ATP-dependent actomyosin ring 
provides stability and intercellular tension that 
forces paracellular flux through the TJ,73,80,81 

while ATP-fueled turnover, or treadmilling, of the 
F-actin bundles facilitates the extension and con-
traction of actin filaments to, in part, cycle TJ 
proteins.82–85 Not only does mucosal healing in 
UC necessitate TJ reformation and homeostatic 
regulation, but also epithelial migration for wound 
closure and cellular polarization. It was demon-
strated that T84 model IECs devote nearly 20% of 
cellular TAE to cytoskeletal activity in such 
a wound healing scenario.43 Given that these pro-
cesses require exceptional cytoskeletal capacity and 
energy supply to drive restoration and maintenance 
of the AJC, they are likely hindered by the energy- 
deficient state associated with UC.5–7

Interdependent energy circuits of the 
microbiota and host epithelium

All cells require a source of energy to maintain 
cellular functions, growth, and reproduction. 
Fundamentally, the microbiota bioreactor is 
a system that transforms otherwise-indigestible 
complex carbohydrates into energy that fuels bac-
terial communities and the host, producing 
a remarkable number of metabolites in the process. 
It is of ongoing interest to define what metabolites 
are microbial-derived and the responsible taxa.27 

Microbes in the gut community compete for nutri-
ents, but also participate in complex cross-feeding 
relationships in which the excreted product from 
one strain is the preferred energy source for 

another.86 Deficiency in one component of this 
intricate cross-feeding relationship can have 
extended consequence across the bacterial commu-
nity, inducing global shifts in microbiota composi-
tion and metabolism. Such a deficiency may then 
deprive the colonic epithelium of metabolites upon 
which it relies for energy procurement and barrier 
function. Restoring homeostasis to this multifa-
ceted, interdependent system calls for an equal 
therapeutic approach. Given that maintenance of 
energetic relationships is paramount to microbiota 
and host function in health, understanding and 
identifying breaks in these metabolite-mediated 
energy circuits presents a means to address disease.

Humans consume a wide range of complex 
carbohydrates, many of these dietary polysacchar-
ides endure digestion and pass through the sto-
mach and small intestine. These resistant starches 
(RS) and non-starch polysaccharides (NSP, the 
major component of dietary fiber) reach the 
colon, providing the primary energy source for 
the system, where they are fermented by the 
microbiota to short-chain fatty acids (SCFAs). 
Even though NSP completely resists digestion by 
intrinsic human intestinal digestive enzymes, its 
intake may account for only 25% of the calculated 
production of SCFAs.87 This deficit is partially 
filled by oligosaccharides, but dietary RS are 
often the single largest contributor to colonic 
microbial growth.88 These RS are fermented by 
specialized microorganisms to ultimately produce 
the SCFAs acetate, propionate, and butyrate. 
Succinate and lactate are also prominent fermen-
tation products but generally do not accumulate 
higher than 5 mM in healthy adults, as they are 
substrates for other bacteria, including propionate 
and butyrate producers.89–91 Protein fermentation 
can also occur in the distal colon, as various amino 
acids can be used to produce SCFAs, but is less 
favored to carbohydrate substrate and also gener-
ates potentially toxic metabolites such as ammo-
nia, indoles, and phenols.89 Such an imbalance 
between SCFAs and toxic metabolites may contri-
bute to the pathogenesis of IBD and colon 
cancer.92

Colonic SCFAs exist in molar ratios of approxi-
mately 60:20:20 for acetate:propionate:butyrate, 
with total SCFAs reaching up to 140 mM in the 
proximal colon.87 Acetate is a common 
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fermentation product of many gut anaerobes and is 
also produced by reductive acetogenesis, account-
ing for the greater accumulation, while propionate 
and butyrate are produced by distinct bacterial 
subsets.89 These SCFAs are efficiently taken up by 
the gut mucosa, with only 5–10% estimated to be 
excreted in feces, and have significant impact on 
host physiology as energy substrates, regulators of 
gene expression, and signaling molecules recog-
nized by specific receptors.89,93–95 However, these 
SCFAs are differential in their influences, fate, and 
tissue distribution. For instance, propionate contri-
butes to gluconeogenesis in the liver while acetate 
reaches highest concentrations in the blood and 
primarily transports to muscle.93,96 This review 
will center around butyrate production as this 
SCFA is the most increased by RS consumption,97 

the preferential fuel source of the colonic mucosa, 
and a foundational contributor to colonic micro-
biota–host energy circuits.

Microbiota-derived butyrate

Clostridia are the major butyrate-producing class, 
and particularly, Eubacterium rectale, Eubacterium 
hallii, and Faecalibacterium prausnitzii as among 
some of the most abundant and dominant butyrate- 
producing species, and encompass the primary bio-
synthetic routes utilized for butyrate 
production.89,96,98 Notably, E. rectale and 
F. prausnitzii are capable of producing butyrate 
from the oligosaccharide inulin in an acetate- 
dependent manner, yet both appear limited in 
their capacity or are unable to degrade RS.89,98–100 

It is appreciated that the primary degradation of RS 
is conducted by two currently known species – 
Ruminococcus bromii and Bifidobacterium adoles-
centis (and other related Bifidobacterium species).97 

As such, these primary degraders are responsible 
for producing the available mono/oligosaccharides 
from RS and acetate needed by E. rectale and 
F. prausnitzii for butyrate production, and there-
fore are regarded as “keystone species.”99,101 

Accordingly, increases in the abundance of 
R. bromii by diets supplemented with RS are con-
comitant with increases in E. rectale and butyrate.99 

The human bacterium Ruminococcus champanel-
lensis is a member of this very important keystone 
group due to an ability to degrade the NSP 

cellulose.88 Butyrate production from E. hallii is 
distinguished in that the bacterium utilizes lactate 
and acetate as substrates.91,98 Lactate is a common 
end product of bacterial fermentation produced, 
among others, by the genera Lactobacillus and 
Bifidobacterium, which are regarded as key mem-
bers of the gut microbiota due to their health- 
promoting capabilities.98 The keystone species 
B. adolescentis degrades RS to produce lactate in 
addition to acetate through a unique metabolic 
pathway to Bifidobacterium named the “bifid 
shunt,” functioning as a primary degrader for buty-
rate production by E. hallii.

As mentioned earlier, colonic goblet cells secrete 
large amounts of highly glycosylated mucin pro-
teins that provide a significant carbohydrate source 
for the microbiota. Only Bacteroides thetaiotaomi-
cron, Ruminococcus gnavus, Ruminococcus torques, 
Bifidobacterium bifidum, and Akkermansia mucini-
philia are known as capable of partial or full mucin 
degradation.102 With glycans constituting 80% of 
the dry weight of mucin and the microbiota able to 
access this fuel source, it is as though the colonic 
epithelium itself produces a prebiotic. Since discov-
ery as an abundant member of the microbiota in 
2004, A. muciniphilia has gained attention for its 
therapeutic potential in treating UC.103 The mucin 
protein backbone has primarily O-glycosylated and 
some N-glycosylated chains of 2 to 12 monosac-
charides of mostly galactose, fucose, 
N-acetylgalactosamine, N-acetylglucosamine, man-
nose, and sialic acid.102 Mucin degradation by 
A. muciniphilia results in the release of oligosac-
charides and production of acetate and propionate 
fueled by an impressive ability to utilize up to 85% 
of the complex mucin structure as the sole carbon 
and nitrogen source.102 Because of this capacity to 
access mucin glycans and cross-feed the microbial 
community, A. muciniphilia is thought of as 
a keystone species. Support for this is found 
through the concomitant enrichment of mucolytic 
and non-mucolytic butyrogenic bacteria in the 
mucus environment and was demonstrated by 
A. muciniphilia supporting the butyrate- 
producing gut commensal Anaerostipes caccae.104 

Furthermore, Clostridium cluster XIVa species, 
encompassing well-known butyrate producers 
such as E. rectale and E. hallii, account for nearly 
60% of the mucin-adhered microbiota, conferring 

GUT MICROBES e1880241-7



A. muciniphilia as a local primary degrader with 
this proximity to the colonic epithelium thought to 
facilitate butyrate bioavailability.105

Butyrate has a wide range of influence over cel-
lular processes in the colonic mucosa that include 
G-protein coupled receptor signaling and histone 
deacetylase (HDAC) inhibition to regulate gene 
expression, both of which mitigate chronic inflam-
matory responses.96,106 To maintain focus on 
microbiota–host energy circuits, the scope of this 
review will be primarily limited to the role of buty-
rate in epithelial energy and barrier function.

Butyrate is the preferential fuel source of the colonic 
epithelium, with oxidation of this SCFA accounting for 
over 70% of the cellular oxygen consumption in the 
distal colon.107 Because most colonic butyrate exists in 
the dissociated form, apical epithelial transport from 
the lumen and into the cell is facilitated via several 
transporters, mainly the SCFA-HCO3

− exchange, 
monocarboxylate transporter isoform 1 (MCT1), and 
sodium-coupled monocarboxylate (SMCT1) transpor-
ters. A steep concentration gradient exists between 
luminal and systemic butyrate concentrations, with 
systemic availability of colonic-administered butyrate 
shown to be 2%.108 This is in part due to different 
affinities of colonocyte apical and basolateral SCFA- 
HCO3

− exchange transporters for butyrate (Km 
= 1.5 mM apically and 17.5 mM basolaterally), through 
which butyrate is sequestered for energy 
procurement.108–110 As an energy substrate, butyrate 
undergoes β-oxidation to form acetyl-CoA, which 
enters into the TCA cycle to produce the NADH that 
drives the electron transport chain (ETC) and oxygen 
consumption to ultimately regenerate ATP. This ener-
getic supply provides critical support to the cytoskele-
ton and thus barrier, bestowing IECs an unsurpassed 
capacity to rapidly polarize and form strong AJCs.111 

A substantial contribution of butyrate to barrier func-
tion stems from ATP provision to the cytoskeleton, but 
also through upregulating the expression of actin- 
binding proteins like synaptopodin by HDAC inhibi-
tion and activation of other transcription factors like 
STAT3, SP1, and AMPK that induce genes encoding 
for TJ components.106,111,112

The oxygen consumed for butyrate metabolism is an 
important determinant of intestinal homeostasis. In 
this, not only does microbiota-derived butyrate serve 
as the primary fuel source for the colon, but epithelial 
butyrate metabolism also shapes the gut milieu. The 

colonic mucosa exists in a state of physiologic hypoxia, 
in part due to anoxic colonic lumen but also from the 
oxygen consumption resulting from butyrate 
metabolism.113,114 This oxygen depletion stabilizes 
hypoxia-inducible factor (HIF), a transcription factor 
that regulates many genes important for intestinal bar-
rier function, such as the TJ protein claudin 1 
(CLDN1).115 Oxygen concentrations in colon tissue 
range from ~1% near the lumen and increase to 
~5-10% in the vascularized submucosa and muscle 
layers.113 The ETC can function at near anoxia and is 
not limited by intracellular oxygen until levels reach 
0.3%.116,117 Instead, flux through the ETC during 
hypoxia is attenuated by HIF-dependent and HIF- 
independent mechanisms, a major benefit being 
decreased formation of mitochondrial reactive oxygen 
species that can incur cellular injury.118–121 HIF mod-
ulates glucose metabolism by increasing glucose uptake 
and flux through glycolysis, while shunting the resulting 
pyruvate from conversion into acetyl-CoA and 
entrance into the TCA cycle toward lactate production 
and efflux.118,122–128 In doing so, butyrate-induced HIF 
stabilization molds metabolism to confer butyrate as 
the primary source of acetyl-CoA for the TCA cycle and 
thus mitochondrial ATP regeneration in the healthy 
colon. Additionally, the HIF-mediated upregulation of 
glycolysis also drives ATP regeneration, further pro-
moting epithelial energy balance and function. The 
energy provided from butyrate oxidation also supports 
mucin production complemented by the upregulation 
of MUC2 expression by HIF, providing fuel and habitat 
for the microbiota and altogether contributing to 
mucus and AJC barriers (Table 1).127,129 As a whole, 
microbiota-derived butyrate is a critical component 
and modulator of epithelial energy metabolism that 
fundamentally molds and contributes to 
a homeostatic colonic environment (Figure 1).

Microbiota-sourced purines

The purine nucleobase hypoxanthine is a significant 
product of the gut microbiota that provides a readily 
available substrate for efficient purine nucleotide 
biogenesis.44,130 Through experiments in which mice 
were treated with gentamicin, ceftriaxone, and 
a combination of the two followed by fecal microbiome 
and metabolomic analyses, fecal hypoxanthine abun-
dance most strongly associated with the genus 
Barnesiella, and to a lesser extent Prevotella, identifying 
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potential sources of hypoxanthine production by the 
microbiota.130 The rapid cellular turnover and need to 
secrete large amounts of highly glycosylated mucins 

characteristic of the colonic epithelium is especially 
nucleotide demanding. Substantial nucleotide template 
is required to duplicate the genome (DNA) for 

Figure 1. Role of butyrate in intestinal homeostasis. Microbial-derived butyrate is a fuel source for intestinal epithelial cells and promotes 
barrier through gene regulation (MCT1, monocarboxylate transporter isoform 1; TCA, tricarboxylic acid; AJC, apical junction complex; 
ATP, adenosine triphosphate; HIF, hypoxia-inducible factor; TFs, transcription factors).

Table 1. Origins and influences of butyrate, hypoxanthine, and creatine on gut energy metabolism and barrier function.
METABOLITE PRIMARY SOURCE ENERGETIC ROLE BARRIER CONTRIBUTION

Butyrate Eubacterium rectale 
Eubacterium hallii 
Faecalibacterium prausnitzii 
Roseburia inulinivorans 
Roseburia intestinalis 
Anaerostipes hadrus 
Coprococcus eutactus 
Coprococcus catus 
Subdoligranulum variabile89

● β-oxidation of fatty acid for mitochondrial-driven ATP 
regeneration.107

● Mitochondrial oxygen consumption-induced HIF stabilization 
increases glycolysis-driven ATP regeneration.118,122–128

● ATP regeneration107

● Induction of cytoskeletal bind-
ing proteins111

● Induction of TJ 
proteins106,112,115

● Induction of MUC2128,129

● Induction of creatine 
kinases132

Hypoxanthine Associates with Barnesiella 
and Prevotella,130 TBD*

● ATP and GTP generation.43,44

● Microbial substrate,131 TBD*
● Cytoskeletal ATP43

● AJC formation and stability43

● Mucin generation and mucus 
barrier sterile integrity44

Creatine Diet and Endogenous 
Biosynthesis

● Temporal and spatial ATP buffer.
● Microbial carbon and nitrogen source.133

● ATP buffering/ 
regeneration132,134,135

● AJC formation and 
stability132,134,135

TBD*, to be determined
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proliferation and to support the ribosomal RNA gen-
eration, messenger RNA transcription, and glycosyla-
tion required for sustained mucin secretion.54,56 This 
purine nucleotide requisite is met via two pathways – 
the salvage pathway, which is true to its namesake and 
utilizes exogenous purine as substrate for nucleotide 
generation, and the ATP and nutrient-consuming de 
novo pathway which sequentially constructs purine 
nucleotides from phosphoribosyl pyrophosphate 
(PRPP), at the very costly expense of 5 ATP per purine 
molecule produced. Previous studies have demon-
strated that the gut mucosa preferentially salvages pur-
ines in lieu of the energy and nutrient-consuming de 
novo pathway in the presence of available purine 
substrate.44 This salvage is an efficient, resource- 
conserving alternative to de novo purine biosynthesis.

Hypoxanthine is readily salvaged by IECs to support 
energy balance and nucleotide biosynthesis.43,44 For 
example, colonic enterocyte model T84 cells show 
a substantial decrease in AJC barrier resistance when 
subjected to hypoxia, an energetically depleting state of 
oxygen deprivation representative of their natural 
environment. Hypoxanthine supplementation signifi-
cantly increased the total available energy (TAE) in 
hypoxic cells, concomitant with complete recovery of 
AJC function. Further analyses revealed that the ener-
getic benefit afforded by hypoxanthine supplementa-
tion promoted actin polymerization and AJC stability, 
and increased AJC formation from a depolarized cell 
state.43 Extended in vivo studies revealed that depletion 
of microbial purine production through streptomycin 
treatment significantly decreased colonic tissue purine 
levels, and that those purine levels could be restored by 
colonization with streptomycin-resistant, purine- 
producing bacteria.44 The colonic mucosa was found 
to be dependent upon this microbiota-sourced purine 
for energy balance and nucleotide biogenesis during 
dextran sodium sulfate (DSS)-induced colitis. Colonic 
tissue depleted of microbiota-sourced purines showed 
increased ER stress concurrent with loss of inner mucus 
layer thickness and sterile integrity during the colitic 
insult, rendering the barrier more penetrable to 
microbes. Tissue energy balance and the sterile integrity 
of the mucus barrier was recovered, and ER stress 
alleviated, by reconstitution of exogenous purine supply 
through colonization with purine-producing bacterial 
or oral hypoxanthine supplementation, identifying pur-
ines as a limiting substrate in such processes.44 In 
analogous work, lower amounts of hypoxanthine were 

recently observed in the stools of IBS patients.131 

Notably, the microbiota was found to also use hypox-
anthine as a substrate, endowing the metabolite as 
a cross-feeding substrate. Additionally, IBS patients 
appeared to have decreased fecal hypoxanthine as 
a result in part of increased microbial utilization and 
breakdown, particularly by Lachnospiraceae, and the 
ensuing purine starvation in the colonic epithelium 
identified as a potential new mechanism underlying 
IBS.131 Overall, microbiota-sourced purines appear as 
substantial contributors to and critical substrates for 
colonic energy homeostasis, barrier function, and 
potentially a healthy microbiota, warranting further 
characterization (Table 1, Figure 2).

Microbiota and host creatine metabolism

Creatine supplementation has been long used as means 
to drive muscle energy production and energetic capa-
city in athletes and bodybuilders and is the subject of 
a clinical trial as a potential therapeutic for UC 
(ClinicalTrials.gov Identifier: NCT02463305). ATP 
homeostasis is highly dependent on the efficient action 
of the creatine kinase (CK) circuit, as a large amount of 
cellular energy is stored as phosphocreatine. Creatine 
kinases utilize a large creatine pool (creatine + phos-
phocreatine) to distribute energy from regions of ATP 
production to regions of ATP consumption, acting as 
a temporal and, due to the subcellular compartmenta-
lization of CKs, spatial ATP buffer. Creatine is equally 
provided physiologically by diet and endogenous pro-
duction. Biosynthesis of creatine occurs simply through 
two enzymatic steps in which arginine and glycine are 
condensed by arginine:glycine aminotransferase 
(AGAT) to form guanidinoacetic acid (GAA) predo-
minantly in the kidney, then methylation of GAA 
utilizing S-adenosyl methionine (SAM) by guanidinoa-
cetate methyltransferase (GAMT) to form creatine in 
the liver, which is released into the bloodstream and 
taken up in other tissues.136 Inherent to this process is 
the transport of the zwitterionic GAA and creatine 
transport across cell membranes, which is mediated 
by two identified transporters – creatine transporter 1 
(CrT) and monocarboxylate transporter 12 (MCT12). 
Tissues with high energy demand are abundant in CrT 
owing to its unidirectional transport and ability to con-
centrate intracellular molecules against a gradient, 
while MCT12 facilitates diffusion.137

e1880241-10 J. S. LEE ET AL.



Luminally sourced and endogenously synthesized 
creatine are both important for epithelial barrier func-
tion. Colonic epithelial cells localize CrT to their apical 
surfaces to utilize luminal substrate.134 At this time we 
are unaware of any studies characterizing a role for 
MCT12, which may contribute to IEC creatine meta-
bolite exchange with the bloodstream. A murine diet 
fortified in creatine conferred enhanced AJC barrier 
resistance and decreased disease susceptibility in experi-
mental models of colitis, with creatine kinases shown to 
localize to the AJC in support of ATP regeneration and 
to draw high energy phosphates to the region.132 This 
work also identified creatine kinases and CrT as HIF 
targets, further highlighting their importance to 

epithelial energy homeostasis and function. Moreover, 
mice deficient in endogenous creatine production due 
to AGAT mutation show increased AJC dysfunction 
and disease susceptibility to experimental colitis,135 

while an inability to transport and utilize exogenous 
creatine is demonstrated to impede AJC formation and 
cells enriched in creatine transport show enhanced 
barrier formation (Table 1).134

Colonic creatine and creatinine, the spontaneous 
degradation product of phosphocreatine and creatine, 
are known to be utilized by the microbiota and may 
impact host physiology and pathology.136 Various bac-
teria are shown to express specific enzymes such as 
creatinine deaminase and creatine amidinohydrolase 

Figure 2. Purine metabolism promotes barrier function. Hypoxanthine from the microbiota is salvaged for energy and nucleotide 
biosynthesis in the colon. This energy and nucleotide source fuels cytoskeletal support of the apical junction complex and drives mucin 
generation (AJC, apical junction complex; IMP, inosine monophosphate; Hpx, hypoxanthine; PRPP, phosphoribosyl pyrophosphate; 
ATP, adenosine triphosphate; GTP, guanosine triphosphate).
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to facilitate creatinine and creatine break down.133 For 
example, several Bacillus, Clostridia, and Escherichia 
strains can degrade creatinine to 1-methylhydantion 
and ammonia for nitrogen procurement, while some 
Pseudomonas, Brevibacterium, and anaerobic Clostridia 
species can degrade the 1-methylhydantion further for 
nitrogen and carbon harvest.136 Additionally, GAA is 
degraded by several bacterial species such as 
Corynebacterium spp., Pseudomonas aeruginosa, and 
Flavobacterium spp., which are part of the normal 
human gut flora, through the enzyme 
guanidinoacetase.138 This bidirectional bacterial 
enzyme catalyzes the degradation of GAA with water 
to glycine and urea and vice versa. Increases in GAA 
were found in the gut of mice fed a high-fat diet and 
decreased in mice treated with metronidazole, suggest-
ing a role for the microbiota in both the degradation 
and production of GAA.139 Altogether, a role for crea-
tine metabolism in microbiota cross-feeding and 
microbiota–host energy circuits is apparent, but is 
clearly overlooked and incompletely understood.

Disrupted microbiota–host energy circuits in 
ulcerative colitis

In 1980, Roediger reported that colonocytes obtained 
from UC patients were deficient in butyrate oxidation 
and postulated that the disease has a substantial “energy 
deficiency” component.5 In lieu of butyrate oxidation, 
the harvested colonocytes showed increased glucose 
and glutamine oxidation. An increase in glycolysis is 
a characteristic phenotype of proliferating cells to sup-
port the biomass accumulation necessary for cell 
division.54 In the normal large intestine, proliferating 
cells are confined to the lower two-thirds of the crypts. 
Indeed, patients with UC show more proliferating cells 
that extend high into the crypts, with extreme cases 
thought to be a state that precedes colon cancer.140 

Rectal butyrate enemas in patients with active distal 
UC were found to reverse this proliferative phenotype 
and significantly reduce the number of proliferating 
cells in the upper 40% of crypts.141 Perhaps unsurpris-
ingly, fecal butyrate levels are generally found dimin-
ished to varying degrees in UC,142 although it should be 
noted that fecal butyrate determinations represent 
a microbial butyrate production–host absorption bal-
ance and epithelial MCT1 (host butyrate absorption) is 
significantly diminished in UC.143 Such a decrease in 

host butyrate uptake likely results in an under- 
representation of the extent of fecal butyrate depletion, 
as decreased MCT1 itself, a target upregulated by 
butyrate,144 is indicative of decreased microbiota- 
derived butyrate. This lack of microbiota-derived buty-
rate coincides with diminished butyrate-producing spe-
cies, notably F. prausnitzii and Roseburia hominis,145 

and members of Clostridium cluster XIVa.146

Recent fecal microbiota transplantation (FMT) 
experiments assessing the efficacy of the treatment in 
UC and associated fecal microbiome and metabolome 
shifts provide invaluable insights into the compositional 
and metabolic dysbiosis of the disease state, and the 
changes from that state accompanying long-term 
remission, notably in lactate- and succinate- 
consuming energy circuits. In a healthy colon, lactate 
is typically found at less than 5 mM and succinate 
around 1–3 mM because of their function as microbial 
cross-feeding metabolites for butyrate and propionate 
formation, respectively.89–91,98,142 In UC, lactate can 
accumulate to 100 mM and succinate to 24 mM.90,91 

Correspondingly, positive FMT outcomes associate 
with reinstation of the broken energy circuits contribut-
ing to diminished SCFA production and cross-feeding 
substrate accumulation. For instance, patients who 
maintain clinical remission show normalized levels of 
butyrate-producing and lactate-consuming members 
of Clostridium cluster IV (including F. prausnitzii) 
and XIVa (including E. hallii and E. rectale) with drastic 
concomitant reduction in fecal lactate levels.146,147 

Furthermore, microbial taxa that discriminated positive 
therapy outcomes include the keystone species 
R. bromii and A. muciniphilia that degrade RS and 
mucin glycans, respectively, to provide mono/oligosac-
charides and acetate for the aforementioned butyrate 
producers, with A. muciniphilia possibly contributing 
to the remission-associating decrease in fecal 
succinate.147 Of note, significant fecal metabolite 
increases in the salvageable purine nucleobases 
xanthine and adenine were observed upon FMT, indi-
cating shifts in microbial purine metabolism, with sus-
tained remission of UC correlating with decreases in 
fecal hypoxanthine and xanthine. As reinstatement of 
mucin production and restoration of the mucus barrier 
is inherent for the sustained remission of UC and 
concurrent habitat and fuel for A. muciniphilia and 
Clostridium cluster XIVa,105 and colonic epithelial uti-
lization of microbiota-sourced purine is instrumental to 
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mucin generation,44 it is intriguing to postulate 
a fundamental role for microbial purines in positive 
therapeutic outcomes.

Future perspective: next-generation therapies

Interest in treating human diseases with beneficial 
microorganisms long predates recent discoveries, ori-
ginating in a 1910 publication by Nobel laureate Elie 
Metchnikoff, The Prolongation of Life.28 Despite nearly 
three decades of effort to that end, probiotics have 
generally failed to live up to their expectations.28 Next- 
generation probiotics (NGPs) will include bacteria 
selected for a specific activity and genetically modified 
microorganisms (GMMs) designed for a specific func-
tion to consistently and locally deliver deficient micro-
biota-derived metabolites in diseases.148 The genetic 
engineering of probiotic strains offers therapeutic 

promise by endowing bacteria with beneficial functions 
to target a specific disease, and such GMMs have been 
made to treat diseases such as cancer, infections, meta-
bolic disorders, and inflammation.148,149 Similar 
GMMs may be generated that are enriched in lactate 
and/or succinate consumption and SCFA and/or pur-
ine production to shift the IBD environment to a more 
homeostatic state and facilitate healing.

A lesson derived from the FMT studies is that 
successful treatment of IBD is multifaceted and vari-
able across individuals. Individually, microbial- 
derived metabolites such as butyrate and hypox-
anthine exhibit specific influences on the gut epithe-
lium, but as a diverse body of bacterial species and 
influential metabolites coexist in the human intes-
tines, this plethora of microbes and their metabolic 
functions need to mesh in order to regulate energy 
metabolism and maintain homeostasis (Figure 3). 

Figure 3. Intestinal homeostasis requires balance between microbial species and their metabolites. A healthy microbiota produces 
microbial metabolites crucial for intestinal function. Dysbiosis creates energy imbalance and loss of barrier function that lead to 
increased disease susceptibility (SCFAs, short-chain fatty acids).
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Successful therapies may require assessment of 
diet, microbiota composition, microbiota and 
host metabolism, and epithelial barrier to under-
stand what metabolic and functional circuits are 
broken and need reinstatement in each indivi-
dual. From there, multifaceted treatments that 
address microbiota and host processes may 
involve bacteria selected for specific activities 
and/or GMMs, prebiotic supplementation (e.g. 
RS, oligosaccharides), small molecule supple-
mentation (e.g. hypoxanthine, creatine), inflam-
matory suppression, and diet. Another lesson 
from FMTs is that sustained remission of UC 
appears possible through addressing dysbiosis of 
the composition and function of the microbiota, 
and processes required by the host mucosa for 
barrier function.

Abbreviations

AJ adherens junction
AJC apical junction complex
AGAT arginine:glycine aminotransferase
BMI body mass index
CLDN1 Claudin 1
CR Conventionally-raised
CK creatine kinase
CrT1 creatine transporter 1
CD Crohn’s disease
DSS dextran sodium sulfate
ETC electron transport chain
ER endoplasmic reticulum
FMT fecal microbiota transplantation
GI Gastrointestinal
GMM genetically modified microorganism
GF germ-free
GAMT guanidinoacetate methyltransferase
GAA guanidinoacetic acid
HDAC histone deacetylase
HIF hypoxia-inducible factor
IEC intestinal epithelial cell
IBD inflammatory bowel disease
IBS irritable bowel syndrome
MCT12 monocarboxylate transporter 12
MCT1 monocarboxylate transporter isoform 1
NGP next-generation probiotic
NSP non-starch polysaccharide
PRPP phosphoribosyl pyrophosphate
RS resistant starch
SAM S-adenosyl methionine
SCFA short chain fatty acid
SMCT1 sodium-coupled monocarboxylate transporter 1
TJ tight junction
TAE total available energy
UC ulcerative colitis
UPR unfolded protein response
XBP1 X-box binding protein 1
ZO zona occludins
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