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Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering
including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This
paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A
detailed description of adopted PSOwas presented to provide a good basis for more contribution of this technique to the field of 3D
slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A
detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were
used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between
the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the
CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of
PSO in determining the CSS of 3D soil slopes.

1. Introduction

Slope stability analysis is a major concern in projects related
to man-made or natural slopes. Several techniques are
applied to analyze the stability state of a slope, of which
limit equilibriummethod (LEM) is themost popular [1].This
method undertakes the static behavior of the slope at the
verge of failure and develops equilibriums of the soil body in
static condition. Consequently, no stress-strain relationship
is considered and corresponding deformation within the soil
body is not studied [2]. As a result, the shape of each potential
slip surface which defines the lower boundary of sliding body
has to be assumed. A numerical ratio as factor of safety (FOS)
is used to determine the critical slip surface (CSS) as the least
stable slip surface among all potentials. FOS compares the
available shear strength of the soil with the existing shear
stress (mobilized shear strength) on the assumed slip surface
as follows [3]:

FOS =

𝑆

𝑇

, (1)

where 𝑆 is mobilized shear strength force (kN) and 𝑇 is
available shear strength of the soil (kN). The mobilized shear
strength force is defined as

𝑆 = (

[𝑐

󸀠
+ (𝜎
𝑛
− 𝑢
𝑤
) tan𝜙󸀠]

FOS
) , (2)

where FOS is factor of safety, 𝑆 is mobilized shear strength
force (kN), 𝑐󸀠 is cohesion of the soil in terms of effective
stress (kN/m2), 𝜙󸀠 is angle of internal friction of soil in terms
of effective stress (kN/m2), and 𝜎

𝑛
is normal stress on the

slip surface (kN/m2), and 𝑢
𝑤
is pore water pressure on the

slip surface (kN/m2). In general, the following principles are
required to analyze the stability of a slope within LEM [2].

(1) A kinematically admissible slip surface is assumed to
define the mechanism of failure.

(2) Two static principles as the assumption of plastic
behavior for soil mass and validity of Mohr-coulomb
failure criterion are employed to determine the shear-
ing strength along the assumed slip surface.

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 973093, 12 pages
http://dx.doi.org/10.1155/2014/973093

http://dx.doi.org/10.1155/2014/973093


2 The Scientific World Journal

(3) Equation of FOS is developed for the assumed slip
surface by dividing the available shear strength at the
surface by the required shear resistance to bring the
equilibrium into limiting condition.

(4) An iterative process is used to find the satisfying value
of FOS.

(5) By using the steps above, a search technique is
employed to find the CSS among all assumed slip
surfaces.

Although all the LEMs havemutual principles, they differ
in utilizing static equilibrium, assumptions, and simplifica-
tions. They can be considered as two-dimensional (2D) and
three-dimensional (3D) methods. 2D methods simplify the
geometry of slopes by transforming the problem into an
assumed 2D form. Consequently, some internal and external
forces are simplified or ignored in this process. Such simplifi-
cations in 2Dmethods may result in different outcomes form
the results of 3D methods. Although the assumptions of 3D
methods are mostly derived from the related 2D basics, some
new definitions are only available in 3D methods due to plus
one dimension that 3D methods have. Ability to consider 3D
shapes of slip surface, asymmetric and complex slopes, sliding
direction, and intercolumn forces are some of the privileges of
3Dmethods. However, 3Dmethods might consider, simplify,
or ignore any of these aspects.

Determining the CSS, despite of utilized 2D or 3D
method, needs a massive search among possible slip sur-
face. Searching problem is usually defined as optimization
problem in engineering. This problem is framed to find
appropriate solution among the candidates by minimizing or
maximizing an objective function. If more than one solution
exists among candidates of a problem, it turns to global
optimization. Global optimization methods try to find the
global solution, while avoiding local solutions.

Particle swarm optimization (PSO) was initially intro-
duced by Kennedy and Eberhart [4] as a global optimization
technique. PSO simulates the birds flock activities when they
randomly search for food in their path. Since PSO has been
released, its successful application in various engineering
problems has begun. The popularity of PSO is mainly due
to its comprehensible performance as well as its simple
operation [5]. Many researchers applied PSO to solve their
problems in the fields of structural [6–8], environmental [9–
11], hydrological [12, 13], and geotechnical [14–16] engineer-
ing.

Cheng et al. [17] tried to determine the CSS of seven
slopes by using PSO as one of the first applications of PSO in
slope stability analysis and came to the conclusion that PSO
produces appropriate and reasonable results. Furthermore, in
a comparison with pattern method, they [17] reported that
PSO is capable of finding the global minimum FOS and its
related CSS in different slopes. Ever since, PSO has been
used progressively as an effective technique to deal with the
problem of determining the CSS, to name a few, Cheng et
al. [17], Cheng et al. [18], Zhao et al. [19], Tian et al. [20],
Li et al. [21], Kalatehjari et al. [22, 23], and W. Chen and P.
Chen [24]. However, the contribution of PSO was limited to
2D slope stability problem. In fact, only a few researchers

published their results in determining the CSS in 3D slope
stability problems and none of them applied PSO [25–30].

Based on the successful performance of PSO in 2D slope
stability analysis as well as other problems of geotechnical
engineering, it is believed that it can contribute well to
determining the CSS of 3D slopes. This paper applies PSO in
3D slope stability problem to determine theCSS of soil slopes.
A detailed description of adopted PSO is presented to provide
a good basis for more contribution of this technique to the
field of 3D slope stability problems.

2. Overview of Particle Swarm Optimization

Kennedy and Eberhart [4] initialized PSO by simulating
the behavior of a birds swarm with defined instructions for
individual behaviors as well as intercommunications. These
instructions help in decision making process of individuals
which is based on the following items [4]:

(i) experience of individual as its best results so far;
(ii) outlay of experience of swarmas the best result among

all individuals.

Swarm intelligence as the ability of each individual to
use the experience of others guides the swarm toward its
optimumgoal.Three principals of the swarmbehavior in PSO
were similar to what described by Reynolds [31].

(i) Individuals are collision-proof.
(ii) Individuals travel toward swarm objective.
(iii) Individuals travel to the center of swarm.

The standard flowchart of PSO is shown in Figure 1. This
process starts by randomly generating a certain number of
individuals, namely particles, where each represents a possi-
ble solution for the problem [4, 17].The structure of a particle
may contain three sections that separately record its current
position, best position so far, and velocity, respectively, as
coordinates of current position, coordinates of best position
so far, and velocity vectors in a D-dimensional space, where
D starts from one [32]. Consequently, a 3 × D-dimensional
particle is fitting for a particle in D-dimensional space.

PSO reaches its goal if meets the termination criteria.
These criteria are set to guarantee the ending of iterative
search process. Appropriate termination criteria are neces-
sary to accomplish a successful search by avoiding premature
or late convergence [33]. The commonly used termination
criteria are set as follows:

(i) reaching a maximum number of iterations;
(ii) finding a satisfactory solution;
(iii) achieving a constant fitness for a certain number of

iterations.

The closeness of each particle to the best possible solution
is defined by the objective function which is aimed to be
minimized or maximized by PSO. A fitness function related
to the objective function is usually set to calculate fitness
value of each particle by assessing its current position. The
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Figure 1: Standard flowchart of PSO.

velocity of particles is determined by (3) based on their
best position and global best position in the swarm. To
continue the search, (4) updates the position of all particles
based on their current position and the obtained velocity.
Through an iterative process, the improvement of fitness of
particles continues until PSO meets the termination criteria.
The global solution is then achieved by the current position
of the best particle in the last iteration:

V
𝑛(𝑖)

= V
𝑛(𝑖−1)

+ 𝑢 (0, 𝜗
1
) (𝑏𝑝

𝑛(𝑖)
− 𝑥
𝑛(𝑖)
)

+ 𝑢 (0, 𝜗
2
) (𝑏𝑔

𝑛(𝑖)
− 𝑥
𝑛(𝑖)
) ,

(3)

𝑥
𝑛(𝑖+1)

= 𝑥
𝑛(𝑖)

+ V
𝑛(𝑖)
, (4)

where V
𝑛(𝑖−1)

and V
𝑛(𝑖)

are, respectively, the velocity of 𝑛th
particle in past and current iterations, 𝑢(0, 𝜗

1
) and 𝑢(0, 𝜗

2
)

are the vectors of random numbers of 𝑛th particle uniformly
distributed, respectively, in [0, 𝜗

1
] and [0, 𝜗

2
], 𝑏𝑝
𝑛(𝑖)

is the best
position of 𝑛th particle so far, 𝑏𝑔

𝑛(𝑖)
is the position of the

best particle of the swarm so far, and 𝑥
𝑛(𝑖−1)

and 𝑥
𝑛(𝑖)

are the
positions of 𝑛th particle, respectively, in the current and the
next iterations.

Initial, cognitive, and social parts are three components
of velocity equation. The values of 𝜗

1
and 𝜗
2
in this equation

control the exploration and exploitation behaviours of the
swarm. While equal values of 2 are commonly used for
these parameters in early search, greater values of 𝜗

1
and

𝜗
2
, respectively, provide faster convergence to the solution

and enhance discovering the searching space. The velocity
of particles may increase surprisingly by adjusting these

parameters, so a limiting bound of velocity as [−Vmax, Vmax]
is attached to PSO as constriction coefficients [34]. Shi and
Eberhart [35] modified the original equation of velocity to
reduce the role of constriction coefficient and introduced (5)
by introducing 𝜔 as the inertia weight of particles. Later on,
Clerc and Kennedy [36] demonstrated that inertia weights
of greater than one may cause converge problems in PSO
and proposed (6) by introducing 𝜉 as the constant multiplier
in (7). This modification prevents the swarm to explode,
guarantees the mature converge, and almost eliminates the
need of constriction coefficient. Principally, interior param-
eters (inertia weight and velocity coefficient) and exterior
parameters (swarm size and topology) of PSO should be
carefully adjusted to provide the best results:
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V
𝑛(𝑖)

= 𝜉 [V
𝑛(𝑖−1)

+ 𝑢 (0, 𝜗
1
) (𝑏𝑝

𝑛(𝑖)
− 𝑥
𝑛(𝑖)
)

+ 𝑢 (0, 𝜗
2
) (𝑏𝑔

𝑛(𝑖)
− 𝑥
𝑛(𝑖)
)] ,

(6)

𝜉 =

2

(𝜗
1
+ 𝜗
1
) − 2 +

√
(𝜗
1
+ 𝜗
1
)

2

− 4 (𝜗
1
+ 𝜗
1
)

,

(𝜗
1
+ 𝜗
1
) > 4.

(7)

Topology in the method of intercommunication between
particles controls the convergence of a swarm. Topology is
divided into static and dynamic categories. In static topolo-
gies, the number of connected neighbors to a particle is
constant throughout the optimization process. However, this
number increases by the progress of optimization process in
dynamic topologies to enhance the searching abilities [37].

The original PSO aided a conical static topology based
on intercommunication of all particles with the global best
particle. However, Eberhart and Kennedy [38] proposed
another static topology by introducing intercommunication
between individuals and local best particles. In this model,
each particle was connected to 𝐾 number of its neighbors in
the swarm array. The main advantage of this method was the
ability of subconvergence in different regions of the search
space. Although the convergence of this method was slower
than the conical method, it was able to better escape from
local optima. For each problem, the appropriate topology can
be defined by performing sensitivity analysis on convergence
and execution time of PSO. Figure 2 illustrates conical and
local (𝐾 = 2) topologies for randomly generated 100 particles
in a 2D search space.

The size of swarm is defined as the number of its particles.
While a small swarm may fail to converge over a global
solution, a large swarm may have late convergence. The size
of swarm commonly varies from 20 to 50, but the optimum
number is usually determined through sensitivity analysis on
the convergence parameter of the swarm [36].
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Figure 2: (a) Local and (b) global topologies in 2D search space.

3. Application of PSO in Slope
Stability Analysis

PSO is mainly applied in stability analysis of soil slopes
within the framework of LEM [1]. This analysis involves two
consequent steps, that is, calculating FOS of candidate slip
surfaces and determining the CSS among all candidates [39].
PSO commonly contributes to the second step to determine
the shape and location of the CSS which are generally
unknown in soil slopes [40].

PSO can be applied in both 2D and 3D slope stability
analyses [32]. In 2D analysis, it can be employed to determine
the shape of the CSS in a predefined 2D section of the slope.
Different shapes are possible for slip surfaces in 2D analysis,
such as circular, ellipse, spiral, and polygonal or arbitrary
surfaces [22, 41, 42]. In contrast, 3D slip surfaces such as
spherical, ellipsoidal, and Nonuniform Rational B-Splines
(NURBS) are commonly assumed in 3D analysis [23, 43, 43,
44].

Figure 3 shows flowchart of PSO to determine the CSS
in slope stability analysis. The optimization procedure is
started by setting initial parameters of PSO. Then, a certain
number of particles (𝑁) is generated in a random pattern
over the search space. Since the improvement of swarm has
just begun, personal bests of all particles in initial swarm
are identical to the particles themselves. Based on the same
reason, the velocity of all initial particles is set to zero. After
setting up the initial values, the first particle is arranged as
its corresponding slip surface. This surface is qualified if it

can satisfy the conditions of the problem. Otherwise, it is
disqualified. A predefined minimum fitness value is given to
disqualify slip surfaces. This value represents a predefined
maximum FOS. For a qualified surface, FOS is calculated and
the corresponding fitness values of particle are assigned by
the fitness function of PSO. This process is repeated for all
particles of the swarm.

Current positions of particles that improved their fitness
values are recorded to update their personal bests, while
previous personal bests are used for other particles. The
global best particle is defined by the greatest fitness value in
the current swarm. Through an iterative process, subsequent
swarms are generated by updating velocities and positions
of former particles. The optimization process is terminated
by meeting the termination criteria. Eventually, the global
best particle of the last swarm represents the CSS of the
slope.

3.1. Coding of the Particles. The structure of particles followed
the standard PSO particles involving three sections as current
position, previous best position, and the velocity. A rotating
ellipsoid was selected as the general 3D shape of slip surfaces.
This ellipsoid can rotate on𝑥-𝑦plane (0 ≤ 𝜃

𝑥𝑦
≤ 𝜋) to provide

various slip surfaces (Figure 4).
In order to achieve the equation of rotated ellipsoid, the

parametric equation of general ellipsoid was transferred into
new axes by the rotation angle, 𝜃

𝑥𝑦
. The result presents the

rotated ellipsoid in (8). It should be noted that this ellipsoid
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Figure 3: Flowchart of PSO to determine the CSS in slope stability
analysis.

can be easily transformed to spherical and cylindrical slip sur-
face by, respectively, setting equal three and two semiradiuses:

(cos 𝜃
𝑥𝑦
(𝑥 − 𝑋

𝑐
) − sin 𝜃
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𝑐
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2

𝑅

2
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−
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𝑐
) + sin 𝜃
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𝑐
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2

𝑅

2

𝑦

+

(𝑧 − 𝑍
𝑐
)

2

𝑅

2

𝑧

= 1,

(8)

where 𝜃
𝑥𝑦

is rotation angle of the ellipsoid in 𝑥-𝑦 plane, 𝑋
𝑐
,

𝑌
𝑐
, and 𝑍

𝑐
are coordinates of center of ellipsoid in 𝑥-, 𝑦-, and

𝑧-directions, 𝑅
𝑥
, 𝑅
𝑦
, and 𝑅

𝑧
are semiradiuses of ellipsoid in

𝑥-, 𝑦-, and 𝑧-directions, and 𝑥, 𝑦, and 𝑧 are coordinates of an
arbitrary point on the surface of ellipsoid.

Based on the parameters of the rotating ellipsoid, Figure 5
shows schematic structure of a PSO particle. The section of
current position records the coordinates of center of ellipsoid,
its semiradiuses, and its rotation angle. Considering best
position and velocity sections, PSO has seven-dimensional
search space and twenty-one-cell particles.

Rx

Ry

𝜃xy

X

Y

𝜃xy = 0

𝜃xy = 𝜋/4

𝜃xy = 𝜋/2

𝜃xy = 3𝜋/4

𝜃xy = 𝜋

Figure 4: Projection of rotating ellipsoid on 𝑥-𝑦 plane.

Xc Yc Zc Rx Ry Rz 𝜃xy

X
cp

Y c
p

Z c
p

R x
p

R y
p

R z
p

𝜃 p

V
x
c

V
y
c

V
zc

V
ry

V
rx

V
rz

V
𝜃

Current position

Be
st 

po
sit

ionVelocity

Figure 5: Schematic structures of PSO particles.

3.2. Fitness Function. The quality of particles can be cal-
culated by the fitness function. This function is related to
the objective function and provides quantitative tracking of
improvement of particles. Consequently, it makes it possible
to compare and rank particles in the swarm, wheremaximum
fitness shows the best particle andminimum fitness identifies
the worst particle of the swarm. PSO attempts to increase the
maximum fitness of swarms during its iterations. Since the
objective function of 3D slope stability analysis is equation of
FOS, PSO attempts to find the CSS with the minimum FOS
by maximizing the fitness value in

Fitness
𝑛(𝑖)

=

1

FOS (𝑥
𝑛(𝑖)
)

, (9)

where Fitness
𝑛(𝑖)

is fitness value of the 𝑛th particle in 𝑖th
iteration and FOS(𝑥

𝑛(𝑖)
) is FOS of 3D slip surface described

by 𝑥
𝑛(𝑖)

.

3.3. Sensitivity Analysis on PSO Parameters. The best per-
formance of PSO is guaranteed by initializing appropriate
parameters for it. A sensitivity analysis can help to do so.
The optimum values PSO parameters in 3D slope stability
analysis were defined by designing and performing several
independent tests on swarm size, coefficients of velocity, and
inertia weight of the swarm. In addition, the convergence
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Table 1: Properties of slope in sensitivity analysis.

Parameters
𝛾 (kN/m3) 𝑐

󸀠 (kN/m2) 𝜙

󸀠 (∘)
Layer 1 19.78 12 17
Layer 2 17.64 24.5 20

Table 2: Results of sensitivity tests on swarm size.

Test number
1 2 3 4 5 6 7

Swarm size 5 15 25 35 45 55 65
Total CPU time (s) 365 625 549 1726 2792 2241 10101

behavior of PSO as the average fitness of swarms was
observed during the tests. A 3D soil slope was designed
with complex geometry, layers of soil, and piezometric line
(Figure 6). It should be noted that coding of the study was
done by the authors in MATLAB software (Licensed by
Universiti TeknologiMalaysia).The overall shape of the slope
shows two imbalanced hills with steep sides makes it difficult
to find the CSS for conventional slope stability analyses.
This specific shape was selected to verify the effectiveness of
PSO in complex 3D slopes. The properties of soil layers are
described in Table 1.

The size of the swarm is defined based on the condition
of search space, dimension of particles, and/or other specifi-
cations of the problem. The most common population sizes
are 20 to 50 [25]. However, Clerc and Kennedy [36] proposed
a relationship to determine the optimum value of swarm size
as follows:

𝑁
𝑠
= 10 + [√𝐷

𝑠
] , (10)

where 𝑁
𝑠
is swarm size, 𝐷

𝑠
is dimension of the particles,

and [ ] is calculator of integer part. Since the dimension
of particles in the present problem is seven, the proposed
optimum swarm size by this equation is 12. Considering
the most common range of the swarm size and the result
of equation, an interval of swarm sizes was prepared for
sensitivity test. It should be noted that the first swarm of
all tests was produced by the same random pattern and the
maximum iteration number was set to 100 for all tests. Table 2
shows the results of tests.The phrase “CPU time” in this table
means the exact amount of time that CPU spent on each test.
CPU time was used to produce fair comparisons, since some
factors including the operating system and available memory
can affect the overall duration of the tests.

Figure 7 illustrates the convergence behavior of PSO
in corresponding swarm sizes of Table 2. Three different
convergence behaviors as good, late, and failure can describe
these trends. Swarm sizes 5, 15, 25, 35, and 55 provided
good convergence over maximum iterations, while swarm
sizes 45 and 65, respectively, delivered delay and failure
in convergence. Among all the tests, the best convergence
was obtained by swarm size of 35 that provided the best
convergence with the highest average fitness.
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Figure 7: Convergence behavior of PSO with different swarm sizes.

The next tests were performed to find the optimumvalues
of coefficients 𝜗

1
and 𝜗

2
of velocity equation. Based on the

original coefficients of Kennedy and Eberhart [4] and the
modified coefficients of Clerc and Kennedy [36], a series
of combinations were established as shown in Table 3. All
tests were performed by the same initial swarm with the size
of 35 (previously obtained as optimum) and the maximum
iterations of 100.

The results can be presented in two separated groups
including unequal and equal coefficients. Figure 8 illustrate
the results of the tests. The first group failed to converge over
the maximum iteration period, but the second group showed
different performances. Overall, the best convergence and the
greatest average fitness belonged to equal coefficients of 1.75
that makes it the optimum coefficient of velocity equation.
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Figure 8: Results of sensitivity tests on (a) unequal and (b) equal coefficients.

Table 3: Combinations of velocity equation coefficients in different
tests.

Test number Relationship 𝜗
1

𝜗
2

𝜗
1
+ 𝜗
2

1 𝜗
1
= 0.25𝜗

2
0.800 3.200 4

2 𝜗
1
= 0.50𝜗

2
1.333 2.667 4

3 𝜗
1
= 0.75𝜗

2
1.714 2.286 4

4 𝜗
2
= 0.25𝜗

1
3.200 0.800 4

5 𝜗
2
= 0.50𝜗

1
2.667 1.333 4

6 𝜗
2
= 0.75𝜗

1
2.286 1.714 4

7 𝜗
1
= 𝜗
2

2.500 2.500 5
8 𝜗

1
= 𝜗
2

2.000 2.000 4
9 𝜗

1
= 𝜗
2

1.750 1.750 3.5
10 𝜗

1
= 𝜗
2

1.500 1.500 3
11 𝜗

1
= 𝜗
2

1.000 1.000 2
12 𝜗

1
= 𝜗
2

0.500 0.500 1

The last sensitivity tests were performed to find the
optimum inertia weight (𝜔) of velocity equation. The same
initial swarm with size of 35 and equal coefficients of velocity
equation as 1.75 (previously defined as optimum values) were
applied for all the tests. Five tests with inertia weights of 0,
0.25, 0.5, 0.75, and 1, respectively, were performed based on
the proposed values of Shi and Eberhart [35] and Clerc and
Kennedy [36]. Figure 9 shows the convergence behavior of
PSO in the tests. The results showed successful convergence
in all tests, except test 3. It should be noted that test 5 was
identical with the original PSO, where no inertia weight
was present in velocity equation. Immature convergence
has occurred for tests 1 and 2. Although fast convergence
appears an advantage at first, it is a sign of trapping a
swarm in local solutions. Test 3 failed to converge, test 4 had
instable convergence, and test 5 failed to improve its average
fitness over themaximum iterations. Consequently, it was not
possible to introduce an optimum inertia weight to guarantee
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Figure 9: Results of sensitivity tests on inertia weight.

the convergence of PSO and improvement of average fitness
over the maximum iteration number simultaneously.

A dynamic inertia weight was utilized by the present
study to overcome the convergence problem of PSO.The pro-
posed strategy started with the most anticonvergence inertia
weight (0.5), continued with the normal convergence inertia
weight (0.75), and ended upwith themost stable convergence
(0.25). The switching levels of inertia weights were defined as
one-third and two-thirds of maximum iterations. Figure 10
shows the results of sensitivity tests on dynamic inertiaweight
with different maximum iterations from 50 to 300 by steps
of 50. All tests performed well to converge and improve the
average fitness over their maximum iterations, so dynamic
inertia weight was adopted for PSO.

4. Example Problems

Two example problems were analyzed to verify the perfor-
mance of PSO in determining the CSS. The properties of the
slope materials are shown in Table 4. Example problem 1 was
performed to verify the performance of PSO in determining
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Figure 10: Results of sensitivity tests on dynamic inertia weight.

Table 4: Properties of slopes in example problems.

Properties 𝑐󸀠 (kN/m2) 𝜙

󸀠 (degree) 𝛾 (kN/m3) 𝜐 𝐸 (kN/m2)
Problem 1 15 20 17 0.3 1𝐸 + 6

Problem 2 10 10 18 — —

the CSS in comparison with PLAXIS-3D finite element soft-
ware (License byUniversiti TeknologiMalaysia). Alkasawneh
et al. [44] applied different search techniques to determine
the CSS in 2D slope stability analysis. Figure 11 illustrates the
geometry of the slope. A 3D model was developed based on
this 2D section inwhich the third dimensionwas extended by
100 meters. Figure 12 shows the generated 3D models of the
slope by the present study and PLAXIS-3D. In both methods,
cylindrical slip surface was employed to determine the CSS of
the slope.

PSO improved average and best fitness of the swarm
as shown in Figure 13. Figure 14 shows the minimum FOS
versus iterations. PSO provided continuous reduction of FOS
to find the CSS. The present study obtained FOS of 1.78
versus theminimumFOS of 1.77 of the PLAXIS-3D. Figure 15
shows the CSS obtained by the present study and the result
of PLAXIS-3D. The present study and PLAXIS-3D obtained
similar FOS for the CSS with a small difference of 0.3%. This
result demonstrates the ability of PSO to determine the CSS
with the minimum FOS in 3D slope stability analysis.

Example problem 2 was performed to verify the ability
of PSO to determine the CSS with general ellipsoid shape in
a comparison with previous studies from the literature. This
example was initially analyzed by Yamagami et al. [45] and
was reanalyzed by Yamagami and Jiang [25] Yamagami et al.
[45] used random generation of surfaces to determine the
CSS of this slope, while Yamagami and Jiang [25] employed a
combination of dynamic programming and random number
generation to do so. It should be noted that the same equation
of FOS as previous studies was used to make fair comparison
of the results. The example involved a homogeneous slope
with gradient of 2 : 1 subjected to a square load of 50 kPa on
the top. The uniform load was applied on a square surface
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Figure 11: Geometry of 2D section of example problem 1.
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Figure 12: Generated 3D models of example problem 1 by (a) the
present study and (b) PLAXIS-3D.

with 8 meters sides at the top center of the slope. Figure 16
illustrates the geometry of example problem 1.

Figure 17 shows the generated 3D model by the present
study for example problem 2. Figure 18 plots the process of
PSO to improve fitness of the swarm.The trend of average fit-
ness value of the swarm experienced some instability during
the process. The main reason of this behavior is the presence
of disqualified slip surfaces in the swarm that dramatically
decreases the average fitness value.These surfaces were rarely
presented in the previous example due to adopted simpler
cylindrical shape compared with more complicated ellipsoid
shape in this example. The trend of minimum FOS versus
iterations is shown in Figure 19. Continuous decrement of
FOS by PSO leads to determining the CSS of the slope.

In spite of similar equation of FOS, the present study
found the CSS with a smaller FOS than other methods which
is the best result so far. The minimum FOS obtained by PSO
was 0.95 compared with 1.14 and 1.03 of random generation
of surfaces [45] and DP with RNG [25], respectively. This
result demonstrates the ability of PSO to accurately determine
the ellipsoid CSS in 3D slope stability analysis. Figure 20
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Figure 15: (a) The CSS obtained by the present study and (b) exag-
gerated displacement vectors of PLAXIS-3D in example problem 1.
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Figure 16: (a) Half-plan view and (b) central cross-section of slope
in example problem 2.
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Figure 17: Generated 3D models of example problem 2 by the
present study.

illustrates the CSS obtained by the present study in example
problem 2.

5. Conclusion

Determining the critical slip surface of a soil slope is a
traditional problem in geotechnical engineering which is still
challenging for researchers. This problem needs a massive
searching process. Although classical searching methods
work for relatively simple problems, they are surrounded by
local minima. Moreover, their processes become particularly
slow by increasing the number of possible solutions. To
eliminate these limitations, PSO has been applied in slope
stability analysis based on its successful results in advanced
engineering problems. However, this contribution was lim-
ited to 2D slope stability analysis. This paper applied PSO in
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Figure 20: The CSS obtained by the present study in example
problem 2.

3D slope stability problem to determine theCSS of soil slopes.
A detailed description of adopted PSO was presented to
provide a good basis for more contribution of this technique
to the field of 3D slope stability problems.

The application of PSO in slope stability analysis was
described by presenting a general flowchart. A general rotat-
ing ellipsoid shape was introduced as the specific particle for
3D slope stability analysis. In order to find the optimum val-
ues of parameters of PSO, a sensitivity analysis was designed
and performed. The related codes were prepared by the
authors in MATLAB. A 3D model with complex geometry,

soil layers, and piezometric line was used in the analysis.
This analysis included three steps to find the optimum swarm
size, coefficients, and inertia weight of the velocity equation,
respectively. Moreover, the performance of PSO to converge
over a global optimum solution was verified during the
tests. Based on the obtained values of parameters, PSO was
prepared for 3D slope stability analysis.

The applicability of PSO in determining the CSS of 3D
slopes was evaluated by analyzing two example problems.
The first example presented a comparison between the results
of PSO and PLAXI-3D finite element software. The second
example compared the ability of PSO to determine the CSS
of 3D slopes with other optimization methods from the
literature. Both of the example problems demonstrated the
efficiency and effectiveness of PSO in determining the CSS of
3D soil slopes. Based on the results, it is believed that PSO is
highly capable of contributing to the field of 3D slope stability
analysis.
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