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ABSTRACT

Increasing evidence shows that promoters and en-
hancers could be related to 3D chromatin struc-
ture, thus affecting cellular functions. Except for
their roles in forming canonical chromatin loops,
promoters and enhancers have not been well stud-
ied regarding the maintenance of broad chro-
matin organization. Here, we focused on the ac-
tive promoters/enhancers predicted to form many
3D contacts with other active promoters/enhancers
(referred to as hotspots) and identified dozens of
loci essential for cell growth and survival through
CRISPR screening. We found that the deletion of an
essential hotspot could lead to changes in broad
chromatin organization and the expression of distal
genes. We showed that the essentiality of hotspots
does not result from their association with individ-
ual genes that are essential for cell viability but
rather from their association with multiple dysreg-
ulated non-essential genes to synergistically impact
cell fitness.

INTRODUCTION

Promoters and enhancers are regulatory elements that con-
trol gene expression in response to intra- and extracel-
lular signals (1–4). In many cases, activated enhancers
appear to engage in direct physical contact with their
nearby promoters (5–7). However, there are also enhancers
whose interacting promoters are distally located in the
linear genome (2,8–13), and they are brought to spatial
proximity by such as chromatin looping (14–17), protein

oligomerization (2,18,19) or Pol II tracking along chro-
matin (2,20). These observations on long-range enhancer-
promoter interactions highlight the important impact of
3D chromatin structure on the activities of these regulatory
elements.

Recently, an increasing number of studies on chro-
mosome spatial structures have indicated that enhancer-
promoter interactions play pivotal roles in forming specific
3D structures. Imaging analyses showed that transcription
factors (TFs) and polymerases are not evenly distributed
in the nucleus but rather concentrated in certain regions
to form spatial clusters; these regions are associated with
high transcriptional activities and a more compact chro-
matin structure (21–23). Transcription could also affect the
3D topology, and a recent study reported that transcrip-
tion elongation can be critical for chromatin organization
(24). These studies suggested a mutual relationship between
promoter/enhancer activity and 3D chromatin structure.
How these regulatory elements positioning in such spatial
clusters with active transcription could contribute to main-
taining broad chromatin structures therefore has become an
emerging question.

Given these observations and evidence, we hypothesized
that if a promoter or enhancer is positioned in 3D space
pivotal for the maintenance or stabilization of the surround-
ing 3D chromatin structure, perturbing such elements may
impact chromatin organization beyond their specific di-
rect enhancer-promoter interaction; namely, perturbation
of such promoter or enhancer would significantly alter
broad chromatin organization and disrupt regulation of
multiple direct and indirect target genes simultaneously.

To investigate our hypothesis, we started with active
promoters/enhancers that likely form many 3D spatial con-
tacts with other active promoters or enhancers, referred to
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as hotspots hereinafter. Using our previously published al-
gorithm EpiTensor (25), we identified hotspots at a high res-
olution of 200-bp based on their covariation of epigenetic
marks across cell types. Interestingly, cancer-specific genetic
variations (we focused on single nucleotide variations) were
discovered to have a significantly higher chance of resid-
ing in hotspot regions. Through high-throughput CRISPR-
Cas9 library screening of hotspots by targeted deletion,
dozens of noncoding loci were identified as essential for
cell growth and survival, referred to as essential hotspots.
We then evaluated the impact of the 3D chromatin struc-
ture by Hi-C technology and gene expression using single
cell RNA-seq upon knocking out hotspots. Importantly, we
found that deleting a hotspot enhancer could alter broad
chromatin organization beyond chromatin looping, which
has not been reported before. Deletion of the hotspot would
further impact the expression levels of multiple individu-
ally non-essential genes concurrently, which exhibited syn-
ergistic effects to affect cell fitness.

MATERIALS AND METHODS

Predicting high-resolution regulatory element contacts by
EpiTensor

Active promoters marked by H3K27ac and H3K4me3 and
active enhancers marked by H3K27ac and H3K4me1 were
identified in 73 normal and 5 cancer cells/tissues that were
available in the NIH Roadmap Epigenomics project (26).
The 3D contacts between these active promoters/enhancers
in each cell/tissue were predicted by EpiTensor (25) with an
EpiTensor score cut-off ≥ sqrt (25000). In a given cell/tissue
sample, these contacts were assembled into a regulatory el-
ement interaction network (REIN) in which each node rep-
resents a promoter/enhancer and an edge represents a pre-
dicted contact.

Identification of sample-specific degree/sample-specific ge-
netic variations (GV)

A distribution-based method was used to evaluate the cell
type specificities for degree: 1) For each node, we col-
lected the normalized degree in all samples that had epige-
nomic data (73 normal and 5 cancer in total); then we cal-
culated the mean and standard deviation for each node
across the normal samples, under the assumption that the
normalized degrees of normal samples obey a Gaussian
distribution; finally, the Z-score for each node in each
sample, i.e. the sample-specific degree Z-score, was cal-
culated using the mean and standard deviation. A node
was considered to have sample-specific degree if the abso-
lute value of the sample-specific degree Z-score was greater
than 1.

We identified sample-specific GVs with a similar method:
for each GV, we first calculated mean and standard devi-
ation of B-allele frequency in all normal samples (45 in
total); then, Z-score for each GV in each sample, i.e. the
sample-specific allele frequency Z-score, was calculated us-
ing the mean and standard deviation. A GV was consid-
ered as sample-specific if the absolute value of the sample-
specific allele frequency Z-score was greater than 1.

Cell culture

K562, H1975 and NAMALWA cells were cultured in
RPMI 1640 medium (Gibco), and 293T, HeLa, A549 and
Huh7.5.1 cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM, Gibco). All media were supplemented
with 10% fetal bovine serum (FBS, Biological Industries)
and 1% penicillin/streptomycin, and cells were cultured
with 5% CO2 at 37◦C.

Design and construction of the CRISPR-Cas9 paired
gRNA (pgRNA) library

To explore the cellular function of hotspots, we selected 751
hotspots identified in the K562 cell line. For each hotspot,
the designed sgRNAs targeted 100-bp inside regions and 1-
kb outside regions flanking the two boundaries of hotspot
loci. If there were not enough sgRNAs satisfying the fol-
lowing design rules, sgRNAs were searched among the 5-kb
outside regions flanking each boundary. All the PAM mo-
tifs in the targeting regions were scanned to identify avail-
able sgRNA targeting sites. All the selected sgRNAs are lo-
cated in noncoding regions and satisfy all the following con-
ditions: (1) the targeting sequence is unique for the intended
locus; (2) the sgRNA contains at least 2 mismatches to any
other locus in the human genome; and (3) the GC content
of the sgRNA ranges from 20% to 80%. We enumerated all
possible pgRNAs from the selected sgRNAs and then re-
tained those satisfying these conditions: (1) the two sgR-
NAs respectively targeted 100-bp inside regions and 1-kb
(or 5-kb) outside regions flanking each hotspot boundary;
(2) the deletion regions should not overlap with any pro-
moter or exonic region of protein-coding genes; and (3) the
sgRNA targeting sites are at least 30 bp away from the exon-
intron boundary of protein-coding genes. The gRNA pairs
were designed with one unique gRNA serving as a decod-
ing barcode, and up to 20 pgRNAs were designed for each
locus.

Finally, 14,399 pairs of gRNAs targeting 751 hotspots
were generated for the hotspot deletion library together
with 473 pgRNAs targeting the promoter regions (5 kb
upstream of the transcription start site) and the first exon
of 29 ribosomal genes (serving as positive controls) and
100 pgRNAs targeting the AAVS1 locus and 100 non-
targeting pgRNAs from a previous library (27) (serving
as negative controls). According to the two-step cloning
method (27), 128-nt oligonucleotides containing pgRNA
coding sequences were synthesized (Agilent Technologies,
Inc.), cloned into a lentiviral expression vector harbouring
an EGFP selection marker (with a minimum representation
of 150 transformed colonies per pgRNA in each cloning
step) and further packaged as previously described (27).

CRISPR-Cas9 pgRNA library screening

To ensure the infection at 1,000–1,500 cells per pgRNA with
an MOI of < 0.3, K562 cells stably expressing Cas9 were
seeded in duplicate in T-175 flasks (Corning). Twenty-four
hours later, each replicate was infected by the pgRNA li-
brary lentiviruses supplemented with 8 �g/ml polybrene.
Seventy-two hours post infection, EGFP+ cells were sorted
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by FACS (Day 0 control group). For each replicate, the ini-
tial EGFP+ pool (1500-fold coverage) was isolated for DNA
extraction, and the same number of cells as the experimental
group was maintained at a minimum coverage of 1,500 cells
per pgRNA at each passage for 30 days. Then, cells from
each condition with 1500x library coverage were respec-
tively subjected to genomic DNA extraction, PCR ampli-
fication of sgRNA-coding sequences and high-throughput
sequencing analysis (Illumina HiSeq2500 platform) as pre-
viously described (27).

Identification of functional hotspots involved in cell growth
and proliferation

The raw pgRNA counts were extracted from paired-end se-
quencing FASTQ files by bash script based on AWK. Since
the low reads in the control groups affect the analysis con-
fidence, pgRNAs with raw reads of less than 5 were elim-
inated from the following analysis. The total counts were
further normalized to adjust the sequence depth of each
replicate in the control and experimental groups. To further
filter noisy pgRNAs, we removed pgRNAs whose quan-
tile difference of two replicates was in either 3% tail of the
distribution, and 100 negative control genes were gener-
ated by randomly sampling 20 AAVS1-targeting pgRNAs
with replacement. In each replicate, we calculated the fold
change between the experimental and control group for
each pgRNA, and the mean fold change of all targeting
pgRNAs for each hotspot. Then, the fold changes in the
two replicates were averaged for each specific hotspot. In
summary, two features for each set of hotspots were calcu-
lated: 1) the mean log2FC (log2(fold change)) of all pgR-
NAs in the set, denoted by FChotspot; and 2) the –log10Pvalue
of two-sided Mann-Whitney U test of all pgRNAs in the
set compared with pgRNAs targeting the AAVS1 locus, de-
noted by Photspot. To consider both the fold change and P
value, we defined a screen score for the hotspots as follows:

Screen score = sign(LFC)
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where LFC is the log2FC, μLFCis the mean of the LFC,
σLFCis the standard deviation of the LFC, and LP is the
–log10Pvalue. Hotspots with screen scores of less than -2.5
were identified as essential hotspots.

To further avoid the potential issue of cellular toxic-
ity generated from multiple cleavages by some pgRNAs,
we retrieved the GuideScan specificity score (a score re-
flecting the sgRNA cutting specificity) to evaluate each
sgRNA (28). A specificity score was further assigned for
each pgRNA, which was calculated as half of the harmonic
mean of the specificity scores of the two sgRNAs. The for-
mula is as follows:

pgRNAspecific score = 1
1

sgRNA1specific score
+ 1

sgRNA2specific score

.

From the identified essential hotspots through the above
analysis, those targeting pgRNAs were further selected,
whose specificity score is > 0.1 and log2(fold change) is
< -1. To further avoid the copy number effects on drop-
out screening, the copy number of each hotspot locus in

the K562 cell line was analysed based on ENCODE con-
sortium copy number data (https://www.encodeproject.org/
files/ENCFF486MJU/). After filtering hotspot loci with
copy number amplification, the remaining hits were re-
garded as essential hotspots.

Individual validation of functional hotspots by cell prolifera-
tion assay

For each candidate hotspot without immediate overlap with
the promoter or gene body of protein-coding genes, two
or three pgRNAs were used for the individual validation,
which were selected from the library that were consistently
depleted or newly designed. To ensure the targeting speci-
ficity of all the selected pgRNAs, we required that the speci-
ficity scores are all greater than 0.15 and that the score
of at least one pgRNA for each hotspot is more than 0.2.
For the newly designed pgRNA, to ensure the cleavage ef-
ficiency, we further required that they don’t include ≥ 4-bp
homopolymer stretches, and their GC contents are between
0.4 and 0.7. We further ensured that each sgRNA targeting
site is 400 bp inside and 1 kb outside the two boundaries
of the hotspot loci. All the pgRNAs targeting each hotspot
locus to be validated were individually cloned into a lentivi-
ral expression vector containing an EGFP selection marker.
The cell proliferation assay was performed as previously de-
scribed (27). The experiments lasted for 15 days after the
first FACS analysis, and at least 10,000 cells were analysed.

For the hotspots overlapping with the promoter or
within the intron of possible essential protein-coding genes,
three pgRNAs were selected for subsequent validation. The
cDNA of each neighbouring coding gene was cloned into
a lentiviral vector containing a puromycin selection marker
and individually transduced into K562 cells. Three days af-
ter virus infection, the cells with candidate gene overexpres-
sion were enriched by puromycin treatment, and then the
corresponding pgRNAs targeting the neighbouring hotspot
were respectively transduced into these cells as well as into
wild-type K562 control cells. The cell proliferation assay
was performed as described above.

Hi-C library preparation and data analysis

Hi-C library preparation. The pgRNA Hotspot 10 25-pg2
was delivered into K562 cells via lentiviral infection at an
MOI of < 1. EGFP-positive cells were then collected by
FACS sorting at day 9 post infection. Before the Hi-C li-
brary preparation, the sorted cells were allowed to recover
under normal cell culture conditions for 2 h. Finally, one
million cells were used for Hi-C library preparation by the
Arima-HiC kit (Arima Genomics, San Diego) following the
manufacturer’s instructions. The K562 hotspot 10 25 Hi-
C library was sequenced using the Illumina NovaSeq plat-
form.

Hi-C data processing. An in-house pipeline Juicer (29) was
implemented to process the Hi-C data. Hi-C contact reads
were first aligned to hg19 (GRCh37), and the reads were re-
served if MAPQ greater than 30. Then, the vanilla coverage
(VC) method (14) was applied to the Hi-C raw reads. Be-
tween the expected VC-normalized reads and the observed

https://www.encodeproject.org/files/ENCFF486MJU/
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VC-normalized reads, we conducted a Poisson distribution
fitting. The normalized contacts were considered significant
if the P-value is ≤ 0.05. HiCExplorer (30,31) and HiCPlot-
ter (32) were utilized to visualize the processed Hi-C data.

Chromatin loops identification. The HiCCUPS software
(https://github.com/aidenlab/juicer/wiki/HiCCUPS) was
utilized to call the loops at 10-kb resolution in both the
wild-type and hotspot-deleted K562 cells. All the other
parameters in HiCCUPS were set to default.

Topological associated domain (TAD) identification. The
Insulation Score method was used to call the TAD for the
wild-type and hotspot 10 25-deleted cells at 10 kb resolu-
tion. TADs were visualized using HiCExplorer.

A/B compartment analysis. We performed the A/B com-
partment analysis on the wild-type and hotspot 10 25
deleted cells at 50-kb resolution. The eigenvectors for
each individual chromosome were extracted from VC-
normalized Hi-C reads using the Juicer pipeline (29). All
the parameters were set to default. To determine the di-
rection of A or B compartments in each chromosome, the
K562 Pol II peak file was obtained from ENCODE (https:
//www.encodeproject.org/). A correlation score between the
first eigenvector of each chromosome and the K562 Pol II
peak density in 50 kb-sized bins was calculated.

Hi-C comparison. We used HiCRep (33,34) to calculate
the Stratum-adjusted correlation coefficient (SCC) to mea-
sure the Hi-C reproducibility. We performed HiCcompare
R bioconductor package (35) to detect the Hi-C contact dif-
ferences across all the chromosomes. All the analyses were
done at 25-kb resolution.

Evaluation of the potential off-target effects by the CRISPR-
Cas9 system through whole genome sequencing (WGS)

K562 cells were infected with the validated pgRNA
hotspot 10 25-pg2 at an MOI of < 1. Eight days after
lentiviral infection, the pgRNA-infected cells were sorted
by FACS, and were further subjected to genomic DNA ex-
traction. The whole genome sequencing (WGS) library was
prepared following the manufacturer’s instructions and se-
quenced using the Illumina HiSeq 4000 platform. Using the
WGS data, we evaluated the potential off-target effects after
targeted deletion of hotspot 10 25.

The K562 (wild-type) WGS data were downloaded
as controls from ENCODE with accession code
ENCFF313MGL, ENCFF004THU, ENCFF506TKC
and ENCFF066GQD. A strict off-target evaluation was
conducted according to the whole-genome sequenc-
ing approach (36,37). The putative off-target sites for
hotspot 10 25 were output by Cas-OFFinder in the hg19
genome (36). To avoid missing any potential off-target lo-
cus, we considered two scenarios to detect the potential off-
target loci: 1) no more than 4 base mismatches without any
bulge mismatch (mismatch ≤ 4, bulge = 0) and 2) no more
than 2 base mismatches with no more than 2 bulge mis-
matches 2 (mismatch ≤ 2, bulge ≤ 2). In total, we examined
746 potential off-target loci. In order to detect the candidate

mutations and indels in the wild-type and hotspot 10 25-
deleted K562 cells, we performed variant call according
to the approaches described in GATK Best Practices
(https://gatk.broadinstitute.org/hc/en-us). The sequencing
reads were firstly aligned to the human reference genome
(hg19) using BWA-0.7.17. Then we used the GATK4 tools
MarkDuplicatesSpark (https://gatk.broadinstitute.org/hc/
en-us/articles/360037224932-MarkDuplicatesSpark) to
remove the duplicated reads. Finally, the reads were pro-
cessed via base quality score recalibration with the GATK4
tools. Germline mutations (compared to the hg19 reference
genome) were called in both wild-type and hotspot 10 25
deleted K562 cells by GTAK HaplotypeCaller (version
4.1.4.1) with default parameters. SNVs and indels in
pgRNA-infected K562 cells compared to wild type K562
cells were identified via the tools GATK Mutect2 (version
4.1.4.1) with default parameters. These SNVs and indels
were further compared with generated putative off-target
loci.

For further confirmation, we applied the BCFTOOLS
suite (version 1.9, http://www.htslib.org/doc/bcftools.html)
to call variants. BCFTOOLS mpileup and call commands
with default settings were used to generate raw variants.
Then, variants with ‘%QUAL < 30 || DP < 30’ were marked
as low-quality variants by the BCFTOOLS filter command
and filtered out in addition to the homozygous variants with
the feature ‘GT = 1/1’. We also used the BCFTOOLS isec
command with parameter ‘-n -1 -c all’ to filter the Mills
and 1000G gold standard indels obtained from the GATK
resource bundle (https://gatk.broadinstitute.org/hc/en-us/
articles/360035890811-Resource-bundle). The putative off-
target sites generated by Cas-OFFinder were checked with
the variants called by the above BCFTOOLS pipelines, and
no overlaps were found.

Bulk RNA-seq and data analysis

Bulk RNA-seq data processing. We downloaded the K562
bulk RNA-seq data with pgRNA targeting AAVS1, which
was generated by our previously published research (38)
(GEO accession code GSE176503). In the bulk RNA-seq
library, the sequencing reads were aligned to the human
reference genome (GRCh37/hg19) using HISAT2 (2.0.4)
(39–41) and assembled and quantified by StringTie (1.3.5)
(39,42).

Single-cell RNA-seq and data analysis

Single-cell library preparation. K562 cells were infected
with the validated pgRNA hotspot 10 25-pg2. Eight days
after lentiviral infection, the pgRNA-infected cells were
subjected to FACS for single-cell library preparation. The
single-cell library was prepared according to a previously
established Drop-seq protocol (43). PolyA + RNA was re-
verse transcribed through tailed oligo-dT priming directly
in whole-cell lysates (single droplet) using Moloney Murine
Leukaemia Virus Reverse Transcriptase (MMLV RT) and
temperature switch oligos. The resulting full-length cDNA
contains the complete 5′ end of the mRNA as well as an
anchor sequence that serves as a universal priming site for
second strand synthesis. The cDNA was pre-amplified us-
ing 15 cycles with Kapa HiFi Hotstart Readymix and then
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tagmented at 55◦C for 5 min in a 20 �l reaction following
the Illumina Nextera DNA preparation kit. 5 microliters of
neutralization buffer was added to the tagmentation reac-
tion mix to quench the reaction. The tagmented DNA was
amplified by 12 cycles of standard Nextera PCR. The DNA
was then purified with Ampure beads (sample to beads ra-
tio of 1:0.6). The prepared hotspot 10 25-deleted single cell
library of K562 was sequenced on an Illumina HiSeq 4000
instrument.

Single cell RNA-seq processing. The single cell RNA-seq
data were processed using the Drop-seq pipeline developed
by the McCarroll lab (43). Low-quality reads (lower than
Q10) and PCR duplicates were removed. Cells were ranked
in descending order by the total number of read counts.
Cells ranked before the inflection point of the cumulative
distribution were selected for the following analysis. Each
cell was first normalized by counts per million (CPM). The
value Ei was computed as the sum of CPMs for a given gene
across all the cells. Etotal was calculated as the sum of Ei for
all the genes. Then, a Pi was computed as Pi= Ei /Etotal. In a
given cell j, the normalized gene expression of all genes was
assumed to independently and identically follow the bino-
mial distribution Gi j ∼B (Nj, Pi), where Gi j is the expected
read of gene i in cell j and Nj is the total read for cell j. A
P-value was computed to evaluate how each gene expres-
sion in each cell significantly deviated from the expectation
based on the binomial distribution. We also calculated P-
values for genes in the negative control (�AAVS1) and wild-
type bulk RNA-seq data in the same way.

Single-cell trajectory branching and pseudotime analysis.
Because hotspot deletion severely hampered cell prolifera-
tion, we focused on analysing the apoptosis-related genes
annotated in the KEGG database (44). The 99 apoptosis-
related genes that showed differential expression upon
deleting hotspot 10 25 (chr10: 74,123,469–74,124,868) in at
least 10% ∼ 15% of cells (P-value < 0.05) were selected.
All the normalized single cells and bulk data were clustered
with trajectory branching and pseudotime analysis using
Monocle (45,46). Monocle assigned a specific pseudotime
value and a ‘state’ to each cell. Cells with the same ‘state’
and similar pseudotime were clustered together (46), and
then the relative gene expression in each cluster was com-
puted.

Differentially expressed genes identified from pseudo-
time analysis. To identify differentially expressed genes
(DEGs) pairwise between different cell states, a Wilcoxon
Rank-Sum Test (47) was used to identify genes that showed
significantly up- and downregulated in the cell state pair.

Validation of synthetic lethal pairs by cell proliferation assay

Selection of the targeting sgRNA for each gene. To ex-
plore the synthetic lethal pairs among the four signifi-
cantly downregulated genes located within the same TAD
of hotspot 10 25 after hotspot deletion, we first determined
the targeting sgRNA to ensure efficient knockdown of each
gene. Three sgRNAs were selected to target the promoter re-
gion of each gene from the hCRISPRi-v2 library (48), and

a non-targeting sgRNA was set as a control. These sgRNAs
were further cloned into the lentiviral expression vector
with an EGFP selection marker and then transduced into
K562 cells stably expressing KRAB-dCas9 protein through
lentiviral infection. Three days after infection, the EGFP-
positive cells were sorted by FACS, and the total RNA of
each sample was extracted using a RNeasy Mini Kit (QI-
AGEN 79254). cDNA was synthesized from 2 �g of total
RNA using the Quantscript RT Kit (TIANGEN KR103-
04), and real-time qPCR was performed with TB Green™
Premix Ex Taq™ II (Tli RNaseH Plus, TAKARA) to detect
the expression of each indicated gene as well as of the refer-
ence gene GAPDH. The sgRNAs showing the most signifi-
cant knockdown effect were selected for subsequent experi-
ments to evaluate the synergistic effect. All the primers used
in real-time qPCR are listed in Supplementary Table S4.

Evaluation of the growth effect of each individual gene and
gene pair in K562 cells. The above four selected sgRNAs
were grouped into six gRNA pairs targeting six gene pairs.
The four sgRNAs and six pgRNAs were respectively cloned
into the lentiviral expression vector with an EGFP selection
marker and then transduced into K562 cells stably express-
ing KRAB-dCas9 protein at an MOI of < 1. The cell pro-
liferation assay was performed as described above. The first
time point of FACS analysis was at 6 days after lentiviral
infection, and the experiment lasted for another 12 days.

RESULTS

Small-world network formed by 3D contacts between promot-
ers and enhancers

To identify regulatory elements (promoters or enhancers)
that are likely to be important for chromatin organiza-
tion, we chose to start with those involved in many in-
teractions with other loci in the genome. We first identi-
fied active promoters (marked by H3K27ac and H3K4me3)
and enhancers (marked by H3K27ac and H3K4me1) in
73 normal and 5 cancer cell lines/tissues with all 3 marks
using data from the Roadmap Epigenomics project (26).
The 3D contacts between these active promoters/enhancers
in each cell line/tissue predicted by EpiTensor (25) were
assembled into a regulatory element interaction network
(referred to as REIN hereinafter), in which nodes are
promoters/enhancers and edges represent 3D contacts (see
Materials and Methods). We resorted to computational pre-
diction by EpiTensor (25) because Hi-C data with suffi-
cient resolution to define the interactions between promot-
ers and enhancers were rare. We have previously shown
that chromatin contacts could be successfully predicted by
EpiTensor (25), which detects epigenetic covariation pat-
terns between promoter-enhancer, promoter-promoter and
enhancer-enhancer pairs at 200-bp resolution via tensor
analysis. Such a covariation indicates that possible 3D con-
tacts can be formed between active regulatory elements in a
cell type-specific manner. Therefore, when considering spa-
tial contacts in a particular cell type or tissue, we only con-
sidered those formed between active promoters and/or en-
hancers, as marked by open chromatin or H3K27ac, be-
cause these contacts are likely to establish functional regu-
lation. EpiTensor predictions were shown to be highly con-
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cordant with the Hi-C, ChIA-PET and eQTL results in dif-
ferent cell types (25).

In REIN, each node represents a promoter/enhancer in
the given cell line/tissue, and each edge represents a con-
tact predicted by EpiTensor. The degree of a given node re-
flects its total contacts. We examined the topological prop-
erties of REIN using SNAP software (49). Through compu-
tational simulations, the cluster coefficients of REIN (the
percentage of node pairs that connected when they were
connected to another node) were found to be similar to
an equivalent (same number of nodes and edges) regular
lattice network (50), and their path length (the largest re-
quired number of steps between node pairs) was similar to
that of the equivalent random network (51) (Figure 1A).
These properties showed that the REINs are small-world
networks. Small-world networks are characterized by ro-
bustness in that they are resistant to random attacks (ran-
dom removal of nodes) but vulnerable to targeted attacks
(removal of specific nodes) on high-degree nodes that have
significantly more contacts than the other nodes (52). We se-
lected the top 10% high-degree nodes in REIN as ‘hotspots’
for further analysis.

Mutations in hotspot enhancers and promoters could alter 3D
contacts

We collected all the genomic loci identified as hotspots in
at least one cell line/tissue. In total, we found 48,110 re-
gions, the majority of which are enhancers, and 12,754 of
them overlap with promoter regions (1 kb around the tran-
scription start sites). Consistent with our previous anal-
ysis (25), these loci tend to be active (overlapping with
H3K27ac signals) in more cell types than the non-hotspot
loci (Figure 1B). We noticed that the number of interactions
a hotspot forms varies significantly across cell types/tissues,
and on average, a locus was identified as a hotspot only in 7
out of 78 cell types/tissues. Particularly, promoter hotspots
are shared by more cell types/tissues (on average 17 out
of 78) than enhancer hotspots (on average 4 out of 78),
which is not unexpected as enhancers are known to be cell
type/tissue specific.

Given the importance of high-degree nodes in a small-
world network, mutations in hotspot loci may have a severe
impact on the network structure. To investigate this possi-
bility, we analysed the loci that are active in all examined cell
lines but show a significant change in degree. We first iden-
tified nodes with sample-specific degrees: using the degree
numbers of each node in all 73 normal samples as the back-
ground distribution, we identified nodes that are active in
a specific sample and whose degree also significantly devi-
ates from the mean. We then determined the sample-specific
genetic variations (GVs). We collected 1,197,917 GVs in
45 normal and 17 cancer samples (DCC accession number
ENCFF105JRY). For each GV in each sample, if its B-allele
frequency significantly deviates from the mean in the 45 nor-
mal samples, we considered this GV specific to the sample
(see Materials and Methods).

The nodes with a sample-specific degree containing at
least one sample-specific GV, which are called degree-GV
correlated nodes (Figure 1C), are suitable candidates to in-
vestigate the relationship between GV and degree. We first

analysed 4 normal (GM12878, H1, HEK293 and IMR90)
and 4 cancer cell lines (HeLaS3, HepG2, K562 and MCF-7)
and found that degree-GV correlated nodes are more fre-
quently observed in cancer cell lines than in normal cell
lines (Figure 1D). First, we collected 21,064 nodes, which
contain at least one sample-specific GV and show specific
high/low degree in at least one of the 78 samples (73 nor-
mal and 5 cancer samples). Note that GV and high/low
degree do not necessarily occur in the same cell line. For
example, the degree of a node can be significantly high in
GM12878, while the allele frequency of GV covered by
this node is significantly high in K562. We found that the
majority (62.59%) showed specificities in both cancer and
normal cells, among which 18.36% were specific to can-
cer and 19.05% specific to normal cells (Figure 1F). Simi-
larly, among the 629,547 cell-specific GVs, 58.86% showed
specificities in both cancer and normal cells, 32.08% to only
cancer cells and 9.06% to only normal cells (Figure 1E).
However, the degree-GV-correlated nodes were dominated
by cancer-specific nodes (87.18%), compared to 8.53% in
both cancer and normal cells and 4.29% only in normal
cells (Figure 1F). We observed the same trend for degree-
GV-correlated hotspots, including 86.52% cancer-specific,
4.52% normal-specific, and 8.96% in both cancer and nor-
mal cells (Figure 1F). In summary, the majority of degree-
GV-correlated nodes appear in cancer cells.

We further examined two groups of nodes in 8 dis-
tinct cell lines: one group had a significantly higher de-
gree in one cell line than in other cell lines, which in-
dicates cell-type-specific contact formation (one-cell-type-
specific nodes), and the other had a significantly lower
degree in one cell line than in the others, which indi-
cates cell-type specific contact disruption (seven-cell-type-
specific nodes). The percentages of HepG2-specific nodes
and K562-specific nodes in the one-cell-type-specific group
(cell-type-specific contact formation) are 28.5% and 7.4% in
all nodes, 64.4% and 17.4% in degree-GV-correlated nodes
and 64.3% and 18.1% in degree-GV-correlated hotspots, re-
spectively (Figure 1G). Similarly, the percentages of HeLa-
S3-specific nodes and K562-specific nodes in the seven-
cell-type-specific group (cell-type-specific interaction dis-
ruption) are 41.8% and 13.2% in all nodes, 49.2% and
37.8% in degree-GV-correlated nodes and 61.3% and 27.1%
in degree-GV-correlated hotspots, respectively (Figure 1H).
Taken together, our analyses suggested that cancer-specific
GVs are highly correlated with the node-degree change that
alters the REIN.

CRISPR/Cas9 library screening identified hotspots essential
for cell growth and survival

To further investigate the function of hotspots, 751 hotspots
identified as enhancers were randomly selected for targeted
deletion to analyse their impact on cell growth and survival
(Supplementary Table S1). These hotspots do not overlap
with coding regions of any protein-coding gene or noncod-
ing RNA. In total, 14,399 paired gRNAs (pgRNAs) were
designed to delete these loci (see Materials and Methods),
including 473 positive control pgRNAs targeting 29 ribo-
somal genes, 100 negative control pgRNAs targeting the
AAVS1 locus and 100 non-targeting pgRNAs (Supplemen-
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Figure 1. Small-world network analysis and mutation effects on 3D contact for hotspot enhancers and promoters. (A) The path length and cluster coefficient
of REINs compared with equivalent regular lattice networks and equivalent random graph networks. (B) Comparison of H3K27ac peaks between hotspots
and non-hotspots in 121 cell lines, primary cells and tissues characterized by the NIH Roadmap Epigenomics Project. (C) Definition of degree-GV-
correlated nodes. In this example, the node has a low degree in the HUVEC cell line and a high degree in other cell lines, which is correlated with the GV
profile with a G > T SNP in HUVEC that is not present in other cell lines. (D) The percentage of degree-GV-correlated nodes in normal cell lines and
cancer cell lines. (E) The distribution of GV specificities in samples. Normal, cancer and both indicate GVs with specificities only in normal cells, only
in cancer cells and in both cell types, respectively. (F) The distribution of normal or cancer cell line specificities in the nodes which contain at least one
sample-specific GV and show specific high/low degree in at least one of the 78 samples (those nodes denoted as ‘All nodes’), degree-GV-correlated nodes
and degree-GV-correlated hotspots. Note that for the nodes in the first group (All nodes), GV and high/low degree do not necessarily occur in the same
cell line. For example, the degree of a node can be significantly high in GM12878, while the allele frequency of GV covered by this node is significantly
high in K562. (G) The distribution of one-cell-line hotspot formation in all nodes, degree-GV-correlated nodes and degree-GV-correlated hotspots. (H)
The distribution of one-cell-line hotspot disruption in all nodes, degree-GV-correlated nodes and degree-GV-correlated hotspots.

tary Table S1). Through lentivirus infection at a low MOI
(Multiplicity of Infection), the pgRNA library was trans-
duced into K562 cells stably expressing Cas9 protein. The
pgRNA-infected samples were FACS-sorted 3 days post in-
fection, serving as the control group, and then continuously
cultured for 30 days to obtain the experimental group. The
library cells from the control and experimental groups were
sequenced to determine the abundance of each pgRNA
(Figure 2A). The read distribution of pgRNAs showed a
high correlation between the two biologically independent
replicates for all groups (see Supplementary Figure S1A-C
and Table S2), indicating high reproducibility.

Compared with the control group, pgRNAs targeting ri-
bosomal genes and hotspots in Day 30 experimental cells
were both decreased more than those targeting the AAVS1
locus and non-targeting pgRNAs. For all the pgRNAs of

each hotspot, we calculated their fold changes and P val-
ues by comparing them with the pgRNAs targeting AAVS1
using the Mann-Whitney U test (53,54), which is focused
on analysing screening data with the in-library controls and
could more accurately reflect the fitness effect of each lo-
cus. By randomly sampling the pgRNAs targeting AAVS1,
we generated a distribution of negative controls and fur-
ther computed the hotspots’ P values. The screen score of
each hotspot was calculated by combining its mean fold
change and corrected P values (see Materials and Meth-
ods and Supplementary Table S3), and 49 hotspots with
screen scores ≤ -2.5 were considered to significantly affect
cell fitness upon deletion (Figure 2B). To avoid cellular tox-
icity caused by potential off-target effects (55–58), we as-
sessed the specificities of sgRNAs with 2 or 3 mismatches
to off-target loci using the GuideScan specificity score and
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Figure 2. Identification of essential hotspots for cell growth and proliferation in the K562 cell line through pgRNA deletion-based CRISPR screening.
(A) Schematic of the pgRNA library design, cloning and functional screening of selected hotspot loci. (B) Volcano plot of the fold change and P-value
of hotspots in the K562 cell line. Negative control genes were generated by randomly sampling 20 AAVS1-targeting pgRNAs with replacement per gene,
and ribosomal genes served as positive controls in the screening. The dotted red line represents a screen score = -2.5. (C) Selection of candidate essential
hotspots by the fold change and specificity score of each pgRNA. These essential hits were selected under the threshold of a specificity score > 0.1 and
log2(fold change) < -1.

calculated the specificity score for each pgRNA (see Ma-
terials and Methods) (28). Because AAVS1-targeting pgR-
NAs with specificity scores ≤ 0.1 could cause a dropout ef-
fect in K562 cells (Figure 2C and Supplementary Figure
S1D), we only kept pgRNAs with specificity scores > 0.1
and log2(fold change) < -1 for subsequent analysis. Further-
more, hotspots with copy number amplification were also
removed to avoid cell death caused by multiple cleavages
(59). Using such stringent criteria, we identified 43 hotspots
essential for the cell fitness of K562 cells (Figure 2C).

Based on the ranking of the screen score, 7 top-ranked
hotspots in K562 cells were chosen for individual validation
by cell proliferation assay. None of them overlapped with
any promoter, protein-coding gene or noncoding RNA.
Three or two pgRNAs with high targeting specificity were
separately constructed for each hotspot, and the cell prolif-
eration assay was performed as previously reported (54). We
found that deletion of these hotspots led to significant cell
death or cell growth inhibition (Figure 3A and Supplemen-
tary Figure S2A), which was consistent with the screening

results, indicating that these hotspots played critical roles in
cell fitness.

In our design, we assured that the deletion regions were
not associated with any coding regions of protein-coding
genes, but there were a few essential hotspots located near
the promoter regions or in the introns of coding genes. To
rule out the possibility of affecting the expressions of cer-
tain genes essential for cell growth and survival (essential
genes) after hotspot deletion, we further investigated two
identified hotspots located near the gene promoter or in
the intronic regions, whose deletion may affect the expres-
sion of the corresponding genes. For hotspot 19 32 located
in the intron of an essential gene GATAD2A, we chose 2
highly specific pgRNAs to respectively delete this locus in
K562 cells and observed significant cell growth inhibition
(Figure 3B). Importantly, we found that overexpression of
GATAD2A did not rescue the cell death caused by hotspot
deletion (Figure 3B), indicating that the hotspot deletion it-
self has a profound impact on cell growth. By detecting the
expression level of the GATAD2A gene under each condi-
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Figure 3. Validation of candidate essential hotspot loci in K562 cells and multiple cell lines. (A) Validation of the top-ranked essential hotspot in K562 cells
by cell proliferation assay. AAVS1-pg1 and AAVS1-pg2 are pgRNAs targeting the AAVS1 locus and serve as negative controls. The asterisk (*) represents P-
value compared with pgRNAs targeting AAVS1-pg1 at Day 15, which were calculated by two-tailed Student’s t-test and adjusted for multiple comparisons
by Benjamini-Hochberg procedure. Data are presented as the mean ± s.d. (n = 3 biologically independent samples). * P < 0.05; ** P < 0.01; *** P <

0.001; **** P < 0.0001; NS, not significant. The pgRNAs for individual validation of each hotspot are listed in Supplementary Table S4. (B) Validation
of essential hotspots overlapped with the intronic region of an essential gene in K562 cells by cell proliferation assay. Left: WT K562 cells infected with
pgRNAs targeting hotspot 19 32. Right: GATAD2A-overexpressed K562 cells infected with pgRNAs targeting hotspot 19 32. (C) The expression levels of
GATAD2A in WT and GATAD2A-overexpressed K562 cells infected with pgRNAs targeting AAVS1 or hotspot 19 32. (D) Validation of hotspots 10 25
in multiple cancer cell lines, including A549, H1975, HeLa, Huh7.5.1 and NAMALWA cell lines. Asterisk (*) represents P-value compared with pgRNAs
targeting AAVS1-pg1 at Day 15, which were calculated by two-tailed Student’s t-test and adjusted by Bonferroni correction accounting for multiple testings.
* P < 0.05; ** P < 0.01; *** P < 0,001; **** P < 0.0001; NS, not significant. (E) No significant difference between the numbers of essential genes contacting
essential and non-essential hotspots from Hi-C or EpiTensor in K562 cells. The pgRNAs used above are listed in Supplementary Table S4.

tion by real-time qPCR, we confirmed that the gene was
successfully overexpressed in K562 cells and that the cell
death caused by the hotspot deletion was not rescued by
GATAD2A overexpression (Figure 3C). A similar result was
obtained for hotspot 1 36, which is located approximately
3 kb upstream of the transcriptional start site of an essential
gene SLC2A1. We performed the cell proliferation assay us-
ing 2 pgRNAs in wild-type K562 cells and K562 cells stably

overexpressing SLC2A1. A similar level of influence on cell
fitness was observed in both conditions for each pgRNA
deletion, and real-time qPCR further confirmed that the
growth phenotype was not due to affecting the expression
level of SLC2A1 (Supplementary Figure S2B and C).

To further assess the essentialities of the identified
K562-essential hotspots in other cancer cell lines, we
chose hotspot 10 25 (chr10: 74,123,469–74,1248,68), which
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showed a significant growth defect in K562 if deleted, for
parallel validations in HeLa (cervical cancer cells), H1975
(non-small cell lung cancer cells), A549 (non-small cell lung
cancer cells) and NAMALWA (Burkitt’s lymphoma) cells.
Surprisingly, compared with the negative control AAVS1-
targeting pgRNAs, hotspot 10 25 showed no significant ef-
fect in any of the five tested cell lines, indicating that its role
in K562 cells is cell-type specific (Figure 3D and Supple-
mentary Figure S2D).

The essentiality of hotspots does not result from any associa-
tion with essential genes

To understand how these identified essential hotspots ex-
ert their functional roles, we first examined whether di-
rect interaction with essential genes determines the essen-
tialities of these hotspots. We retrieved the essential genes
whose knockdown would lead to cell death according to
the CRISPRi-based screen (48) and identified all possible
spatial contacts they formed that were detected by Hi-C
(P-value ≤ 0.05) in wild-type K562 cells (60). There is no
distinction between essential and non-essential hotspots re-
garding their association with essential genes (the Wilcoxon
Rank-Sum test P-value = 0.98, indicating no significant dif-
ference) (Figure 3E). We also performed the same compar-
ison using the spatial contacts predicted by EpiTensor and
reached the same conclusion (the Wilcoxon Rank-Sum test
P-value = 0.61) (Figure 3E). According to the above anal-
ysis, the essentiality of hotspots is not determined by their
direct contact with essential genes.

Deleting essential hotspots can affect broad chromatin orga-
nization

We next investigated whether deleting hotspots affects
chromatin organization. We selected hotspot 10 25 (chr10:
74,123,469–74,124,868) for further analysis, which showed
unique essentiality in K562 cells (Figure 3A, D and Supple-
mentary Figure S2D) yet does not interact with any essen-
tial protein-coding gene identified in the previous CRISPRi
screening (48) in the Hi-C analysis. We first performed
whole genome sequencing (WGS) to confirm that there was
no off-target effect. The validated pgRNA hotspot 10 25-
pg2 was chosen (Figure 3A), and the WGS library was gen-
erated 8 days after pgRNA infection in K562 cells. Com-
pared to the hg19 human genome, we identified 4.1 million
germline mutations in hotspot 10 25-deleted K562 cells,
which showed 86.2% consistency with the published wild-
type K562 WGS data. The high percentage of the germline
mutation discovery rate indicated good quality of the li-
brary. We used Cas-OFFinder to identify 746 potential off-
target loci with loose cut-off values (base mismatch ≤ 4,
bulge ≤ 2) to avoid missing any possible off-target loci. We
manually examined the putative off-target loci with the in-
dels detected from the edited cells that differed from the
wild-type cells (Supplementary Table S5). Except for the
significant indels found in the two on-target loci with clear
cleavages in the pileup reads in the genome browser view
(Supplementary Figure S3), there was no cleavage in the
pileup reads on any of the putative off-target loci (two exam-
ples of possible off-target loci are shown in Supplementary

Figure S3). These analyses confirmed that the cell growth
defects did not result from off-target effects.

We subsequently performed Hi-C analysis on the edited
K562 cells and compared it with the wild-type cells (60)
(see Materials and Methods). The 100 kb-resolution Hi-C
contact maps of the wild-type and hotspot-deleted cells are
overall similar (Supplementary Figure S4A), and no dis-
tinct flips between A and B compartments were observed
on the entire chr10 at 50-kb resolution (Supplementary
Figure S4B). We compared the chromosome-wide similar-
ity and detected differential Hi-C contacts using HiCRep
(33,34) and HiCcompare (35). The high Stratum-adjusted
correlation coefficient (SCC > 0.7) and the small percent-
age of differential Hi-C contacts suggested an overall sim-
ilarity between the wild-type and hotspot 10 25-deleted
K562 cells (Supplementary Table S6). Topologically asso-
ciated domains (TADs) largely remained similar, with a few
TADs merge and split in the regions of chr10: 12230000–
14540000, chr10: 15210000–15910000, chr10: 71220000–
72220000, chr10: 89850000–91010000, chr10: 95290000–
96350000 and chr10: 99450000–100140000 (Supplemen-
tary Figure S4C). Interestingly, using HiCCUPS (https://
github.com/aidenlab/juicer/wiki/HiCCUPS), we found that
hotspot deletion did affect chromatin loops (Supplemen-
tary Table S7). We next investigated whether deleting a
hotspot could affect relatively broad genomic regions in
spatial proximity. Using a sliding window with a bin step of
1 Mb and a flanking region of 2 Mb in the linear genome,
we assembled all the Hi-C contacts (5-kb resolution with P-
value ≤ 0.05) in each 5-Mb window into a sub-network. The
modularity score and effective diameter were computed for
each of these sub-networks in the wild-type and hotspot-
deleted K562 cells. These two metrics of all the sliding win-
dows of chr10 showed a high correlation between before
and after hotspot deletion, with Pearson correlation coef-
ficients of 0.84 and 0.91 for the effective diameter and mod-
ularity, respectively (Figure 4A and B). Notably, significant
changes were observed on the 6–8 Mb regions surround-
ing the deleted hotspot for both effective diameter (chr10:
69–75 Mb for bin 71 and 72) and modularity (chr10: 68–76
Mb for bin 70, 71 and 73) (Figure 4A and B). Some other
genomic regions interacting with the hotspot neighboring
regions were also affected, such as chr10: 11–17 Mb (bin 13
and 14), showing a significant change in modularity (Figure
4B and Supplementary Figure S5). We further examined the
Hi-C contact alteration within chr10: 11–17 Mb and chr10:
68–76 Mb (Figure 4C and E). In the region of chr10: 12–14
Mb with observed Hi-C contact changes (Figure 4C), we
also found consistent TAD splits (Supplementary Figure
S4C), disruption and formation of chromatin loops upon
hotspot deletion (Supplementary Table S8). These chro-
matin changes led to alteration of promoter-enhancer in-
teractions, such as the enhanced and weakened contacts be-
tween the CELF2, RSU1, FAM149B1 and CCAR1 promot-
ers and their interacting enhancers upon hotspot deletion
(Figure 4D and F). Notably, these affected promoters and
enhancers are not only located close to but also can be as far
as 62 Mb away from the deleted hotspot 10 25 located at
chr10: 74,123,469–74,124,868. These observations showed
that hotspot deletion resulted in broad alterations in chro-
matin structure beyond its linear neighbor genome.

https://github.com/aidenlab/juicer/wiki/HiCCUPS
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Figure 4. Deletion of an essential hotspot impacts broad chromatin structure. (A-B) The effective diameter (A) and modularity (B) before and after hotspot
deletion in the sliding 5-Mb sub-networks on chr10 (left). The outliers are labeled, and their genomic locations are shown on the right. (C) Hi-C contact
maps of chr10: 11–17 Mb at 5-kb resolution (left) and 12–14 Mb at 5-kb resolution (right), before and after hotspot deletion. (D) Two examples, CELF2
and RSU1, for enhancer-promoter interactions altered after hotspot deletion within chr10: 11–17 Mb. (E) Hi-C contact maps of chr10: 68–76 Mb at
5-kb resolution (left) and chr10: 72–75 Mb at 5-kb resolution (right), before and after hotspot deletion. (F) Two examples, FAM149B1 and CCAR1, for
enhancer-promoter interactions altered after hotspot deletion within chr10: 68–76 Mb. In Figure 4D and F, Black dash line indicates decreased interactions
in hotspot 10 25-deleted K562 cells, red dash line indicates enhanced interactions in hotspot 10 25-deleted K562 cells.

Essential hotspots tend to reside in dense chromatin structures

If essential hotspots are critical for maintaining the chro-
matin structure in the spatial neighbourhood, it is likely that
the 3D contacts around them are dense. Therefore, we com-
pared the sub-network effective diameters, modularity and
chromatin loops in the 5-Mb regions centered at the essen-
tial and non-essential hotspots in wild-type K562. We found
that essential hotspots were surrounded by higher effec-
tive diameters (Wilcoxon Rank-Sum test, P-value = 7.3E-
6), higher modularities (P-value = 0.1) and higher loop
densities (P-value = 4.7E-4) than non-essential hotspots

(Supplementary Figure S6A-C). In fact, using these three
metrics in wild-type K562 cells, a random forest classifi-
cation model could distinguish essential and non-essential
hotspots with an AUC of 0.73 in 10-fold cross validations.
This result resonates with the above observations and sug-
gests that hotspots are pivotal for stabilizing dense chro-
matin contacts in the spatial neighborhood.

Hotspot deletion synergistically affects gene expression

We next performed single-cell RNA-seq using Drop-seq
(43) to analyse the changes in gene expression upon
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hotspot 10 25 deletion. We transduced the individually val-
idated pgRNA hotspot 10 25-pg2 (Figure 3A) targeting
this essential hotspot into K562 cells, among which 482 sin-
gle cells passed the quality control. We also included the
bulk RNA-seq data of wild-type and AAVS1-deleted cells
as controls. All the data were normalized together to make
them comparable (see Materials and Methods). As dele-
tion of this hotspot has an impact on cell viability or cell
growth, we focused on genes related to apoptosis pathways
to confirm their activation. We selected 99 apoptosis-related
genes documented in the KEGG database and clustered the
cells into five states by trajectory branching and pseudotime
analysis using Monocle (Figure 5A) (45). The wild-type and
AAVS1-deleted K562 cells (negative control) were located
in state 1, suggesting that cells in this state resemble the wild-
type cells. The apoptosis genes fell into three groups, with
distinct expression patterns along the pseudotime but over-
all all increasing from cell state 1 to cell state 5, for example,
CASP2, CASP8, CASP9, and CASP10 in cluster 1, CASP6
in cluster 2, and CASP7 in cluster 3 (Figure 5B). Taken to-
gether, the single cell transcriptomic analysis showed that
apoptosis pathways are activated upon hotspot deletion.

To investigate the impact of hotspot deletion on the spa-
tial neighborhood, we analysed the genes whose promoters
were predicted to interact with the essential hotspot 10 25
by EpiTensor. Among the 14 genes located within the same
TAD of hotspot 10 25, 4 showed significantly downregu-
lated (P-value < 0.05) in the progression from state 1 to
5, including P4HA1 (downregulated from state 1 to 2, Fig-
ure 5C) and DNAJB12, ASCC1 and ECD (downregulated
from state 2 to 4, Figure 5D-E and Supplementary Fig-
ure S7A). By individually knocking down each gene by
CRISPR interference (Figure 5F and Supplementary Fig-
ure S7B), only ECD knockdown showed a weak impact on
cell growth, and all the other genes showed no detectable
effects (Figure 5G and Supplementary Figure S7C). As
the hotspot interacted with multiple genes, we investigated
whether knocking down a pair of genes would have a syn-
ergistic effect on cell growth. Applying the CRISPRi strat-
egy, we knocked down 6 pairs of genes (Supplementary Ta-
ble S4) in K562 cells using paired gRNAs, respectively. We
found that simultaneous knockdown of P4HA1-ECD and
ASCC1-ECD showed a much more significant impact on
cell growth (Figure 5G). These results indicated that dis-
rupting hotspot 10 25 could affect the expression levels of
multiple interacting genes, and their synergistic effect could
lead to cell death. Note that we were limited to examining
pairs of genes, but hotspot deletion can affect multiple genes
together with more significant synergic effects.

DISCUSSION

In this study, we analysed the hotspot promoters/enhancers
that were predicted by EpiTensor (25) to form a large
number of 3D contacts with other promoters/enhancers.
The unsupervised learning method EpiTensor predicts all
possible 3D contacts of promoter-promoter, promoter-
enhancer and enhancer-enhancer pairs. In a particular cell
line, we focused on the predicted contacts between ac-
tive promoters/enhancers denoted by histone marks. The
hotspot promoters/enhancers are defined by their 3D con-

tacts with many active promoters/enhancers, which makes
them a class of high-degree nodes in the REIN. We showed
that REIN is a small-world network that is vulnerable to
targeted perturbation to high-degree nodes. Therefore, it is
reasonable to infer that hotspots can be important for sta-
bilizing REIN and the 3D contacts formed between active
promoters/enhancers.

We found that the occurrence of genetic variations (GVs)
is much more strongly correlated with the alteration of
3D contact degrees (degree-GV-correlated nodes) in the
hotspots in cancer cells than in normal cells. Furthermore,
we showed that cancer-specific hotspots (only formed or
disrupted in one particular cancer cell) are enriched with
degree-GV-correlated nodes. Taken together, these obser-
vations suggest that GVs occurring in hotspots can lead to
chromatin structure changes and dysregulated cellular func-
tions.

To confirm the functional importance of the hotspots, we
performed CRISPR/Cas9 library screening on hotspot en-
hancers by paired-gRNA deletion in the K562 cancer cell
line. By calculating the screen score for each hotspot and
further filtering loci with potential off-target effects or copy
number amplifications, we identified 43 hotspots essential
for cell growth and survival. Nine randomly selected loci
were individually validated by cell proliferation assay, in-
cluding 7 top-ranked hotspots in K562 cells without any
overlap with coding genes and 2 loci overlapped with pro-
moter or intronic regions of certain genes. We further iden-
tified that hotspot 10 25 was essential for cell fitness specifi-
cally in K562 cells through multiple validations in four other
cancer cell lines.

We thus selected a hotspot enhancer (hotspot 10 25) as
a representative of cancer-specific hits for in-depth analysis,
which ensured that no off-target cleavages occurred through
WGS analysis. Note that this selected hotspot is not unique
compared to the other essential hotspots, and the insights
obtained here are expected to be generalizable. Hi-C and
scRNA-seq analyses showed that deleting this 1.4-kb long
hotspot could impact a broad chromatin structure of 8-Mb
regions surrounding the hotspot and affect the expression
of numerous distal genes not even directly associated with
the hotspot. These observations indicate that the hotspot
enhancer has a pivotal role in chromatin organization be-
yond forming chromatin loops.

Importantly, this hotspot does not directly interact with
any essential gene, and thus, the cell death resulting from
its deletion is not due to directly disrupting the expres-
sion of essential genes. Single cell RNA-seq revealed that
hotspot 10 25 deletion could affect the expression levels of
multiple interacting genes located within the same TAD of
the hotspot. By knocking down individuals and pairs of
these genes, we found that although none of these dysregu-
lated genes has a significant impact on cell fitness individu-
ally, altered expression of gene pairs showed significant syn-
ergistic effects leading to cell death.

We have revealed the understudied ‘structural impor-
tance’ of noncoding regulatory elements, especially en-
hancers. We are aware that establishing the causal rela-
tionship between broad chromatin organization changes
and cell proliferation or gene expression remains techni-
cally challenging. However, to our knowledge, this is the
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Figure 5. Synergistic change in gene expression after hotspot deletion. (A) Pseudotime clusters of hotspot 10 25-deleted and wild-type K562 cells based
on apoptosis gene expression. (B) Global analysis of the expression levels of 99 KEGG apoptosis genes in state 1, 2, 4 and 5. Genes were clustered into 3
groups. (C-E) The relative expression levels of three representative downregulated genes P4HA1, ASCC1, ECD in different states as determined by single
cell RNA-seq. (F) The knockdown efficiency of the indicated sgRNAs targeting each downregulated gene in K562 cells stably expressing KRAB-dCas9.
The expression level of each gene was detected by real-time qPCR. sgRNANT represents the non-targeting sgRNA serving as the negative control. (G)
Validation of the synergistic effects of two sets of gene pairs on K562 cell fitness by cell proliferation assay. Asterisk (*) represents P-value compared
with pgRNAs targeting AAVS1-pg at Day 12, which were calculated by two-tailed Student’s t-test and adjusted for multiple comparisons by Benjamini–
Hochberg procedure. * P < 0.05; ** P < 0.01; NS, not significant. The sgRNAs, pgRNAs and primers used are listed in Supplementary Table S4.

first report about the observations that enhancers could
maintain a broad chromatin organization, which goes far
beyond the direct interaction between promoters and en-
hancers. A logical inference towards the causal relationship
based on our observations is that the impact of hotspot
deletion is propagated through the 3D contact network
and could impact distal genes that are important for cell
fitness.

DATA AVAILABILITY

All data needed to evaluate the conclusions in the paper are
present in the paper and/or the Supplementary Materials.
The sequencing data in this paper are accessible through
NCBI Sequence Read Archive (SRA) under BioProject ID
PRJNA749478.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We acknowledge the staff of the BIOPIC High-throughput
Sequencing Center (Peking University) for their assistance
in next-generation sequencing analysis, the National Cen-
ter for Protein Sciences (Beijing) at Peking University for
their assistance with fluorescence-activated cell sorting and
analysis, and Dr. Hongxia Lv and Ms. Liying Du for their
technical help. We acknowledge Dr. Ying Yu (Peking Uni-
versity) for her assistance in preparing the NGS library. We
acknowledge the staff of the UC San Diego IGM Genomics
Center for sequencing services and the UC San Diego Hu-
man Embryonic Stem Cell Core Facility for cell sorting ser-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkac197#supplementary-data


Nucleic Acids Research, 2022, Vol. 50, No. 8 4353

vices. We acknowledge Ms. Jia Xu (UC San Diego) for her
assistance in preparing a single cell RNA-seq library.
Author contributions: W.Wei and W.Wang conceived and su-
pervised the project. W.Wei, W.Wang, Y.L. and B.D. de-
signed the experiments. B.D. and L.Z. constructed network
analysis and identified and characterized hotspot regions.
Y.G. designed the pgRNA library for hotspot screening.
Y.L. and P.X. performed the pgRNA library construction
and screening. Y.L. performed the experiments, including
individual validation of candidate hotspots in multiple cell
lines, whole-genome sequencing (WGS), bulk RNA-seq and
examination of the synergistic effects with the help of P.X.
and Q.P. Z.L. performed the bioinformatics analysis of the
screening data and designed the pgRNAs used for individ-
ual validation. P.W. and Z.C. performed the Hi-C exper-
iments on hotspot-deleted K562 cells. P.W. and Y.Z. per-
formed single cell RNA-seq on hotspot-deleted K562 cells.
L.Z. and B.D. performed the bioinformatics analyses of the
WGS, Hi-C and single-cell RNA-seq data. Y.L., B.D., L.Z.,
W.Wang and W.Wei wrote the manuscript with contribu-
tions from all other authors.

FUNDING

This project was supported by funds from CIRM (RB5-
07012) and the NIH (R01HG009626) (to Wei Wang); the
National Science Foundation of China (NSFC31930016),
Beijing Municipal Science & Technology Commission
(Z181100001318009), the Beijing Advanced Innovation
Center for Genomics at Peking University and the Peking-
Tsinghua Center for Life Sciences (to Wensheng Wei);
China Postdoctoral Science Foundation (2020M670031, to
Ying Liu).
Conflict of interest statement. None declared.

REFERENCES
1. Andersson,R., Gebhard,C., Miguel-Escalada,I., Hoof,I.,

Bornholdt,J., Boyd,M., Chen,Y., Zhao,X., Schmidl,C., Suzuki,T.
et al. (2014) An atlas of active enhancers across human cell types and
tissues. Nature, 507, 455–461.

2. Furlong,E.E.M. and Levine,M. (2018) Developmental enhancers and
chromosome topology. Science, 361, 1341–1345.

3. Tippens,N.D., Vihervaara,A. and Lis,J.T. (2018) Enhancer
transcription: what, where, when, and why?Genes Dev., 32, 1–3.

4. Plank,J.L. and Dean,A. (2014) Enhancer function: mechanistic and
genome-wide insights come together. Mol. Cell, 55, 5–14.

5. van Arensbergen,J., van Steensel,B. and Bussemaker,H.J. (2014) In
search of the determinants of enhancer-promoter interaction
specificity. Trends Cell Biol., 24, 695–702.

6. Ernst,J., Kheradpour,P., Mikkelsen,T.S., Shoresh,N., Ward,L.D.,
Epstein,C.B., Zhang,X., Wang,L., Issner,R., Coyne,M. et al. (2011)
Mapping and analysis of chromatin state dynamics in nine human
cell types. Nature, 473, 43–49.

7. Chepelev,I., Wei,G., Wangsa,D., Tang,Q. and Zhao,K. (2012)
Characterization of genome-wide enhancer-promoter interactions
reveals co-expression of interacting genes and modes of higher order
chromatin organization. Cell Res., 22, 490–503.

8. Fitz,J., Neumann,T., Steininger,M., Wiedemann,E.-M., Garcia,A.C.,
Athanasiadis,A., Schoeberl,U.E. and Pavri,R. (2020) Spt5-mediated
enhancer transcription directly couples enhancer activation with
physical promoter interaction. Nat. Genet., 52, 505–515.

9. Pombo,A. and Dillon,N. (2015) Three-dimensional genome
architecture: players and mechanisms. Nat. Rev. Mol. Cell Biol., 16,
245–257.

10. Long,H.K., Prescott,S.L. and Wysocka,J. (2016) Ever-changing
landscapes: transcriptional enhancers in development and evolution.
Cell, 167, 1170–1187.

11. Schoenfelder,S. and Fraser,P. (2019) Long-range enhancer-promoter
contacts in gene expression control. Nat. Rev. Genet., 20, 437–455.

12. Ghavi-Helm,Y., Klein,F.A., Pakozdi,T., Ciglar,L., Noordermeer,D.,
Huber,W. and Furlong,E.E.M. (2014) Enhancer loops appear stable
during development and are associated with paused polymerase.
Nature, 512, 96–100.

13. Sanyal,A., Lajoie,B.R., Jain,G. and Dekker,J. (2012) The long-range
interaction landscape of gene promoters. Nature, 489, 109–113.

14. Rao,S.S.P., Huntley,M.H., Durand,N.C., Stamenova,E.K.,
Bochkov,I.D., Robinson,J.T., Sanborn,A.L., Machol,I., Omer,A.D.,
Lander,E.S. et al. (2014) A 3D map of the human genome at kilobase
resolution reveals principles of chromatin looping. Cell, 159,
1665–1680.

15. Hansen,A.S., Pustova,I., Cattoglio,C., Tjian,R. and Darzacq,X.
(2017) CTCF and cohesin regulate chromatin loop stability with
distinct dynamics. Elife, 6, e25776.

16. Shen,Y., Yue,F., McCleary,D.F., Ye,Z., Edsall,L., Kuan,S.,
Wagner,U., Dixon,J., Lee,L., Lobanenkov,V.V. et al. (2012) A map of
the cis-regulatory sequences in the mouse genome. Nature, 488,
116–120.

17. Siersbæk,R., Madsen,J.G.S., Javierre,B.M., Nielsen,R., Bagge,E.K.,
Cairns,J., Wingett,S.W., Traynor,S., Spivakov,M., Fraser,P. et al.
(2017) Dynamic rewiring of promoter-anchored chromatin loops
during adipocyte differentiation. Mol. Cell, 66, 420–435.

18. Morcillo,P., Rosen,C., Baylies,M.K. and Dorsett,D. (1997) Chip, a
widely expressed chromosomal protein required for segmentation and
activity of a remote wing margin enhancer in drosophila. Genes Dev.,
11, 2729–2740.

19. Deng,W., Lee,J., Wang,H., Miller,J., Reik,A., Gregory,P.D., Dean,A.
and Blobel,G.A. (2012) Controlling long-range genomic interactions
at a native locus by targeted tethering of a looping factor. Cell, 149,
1233–1244.

20. Kong,S., Bohl,D., Li,C. and Tuan,D. (1997) Transcription of the HS2
enhancer toward a cis-linked gene is independent of the orientation,
position, and distance of the enhancer relative to the gene. Mol. Cell.
Biol., 17, 3955–3965.

21. Rickman,C. and Bickmore,W.A. (2013) Transcription. Flashing a
light on the spatial organization of transcription. Science, 341,
621–622.

22. Teves,S.S., An,L., Hansen,A.S., Xie,L., Darzacq,X. and Tjian,R.
(2016) A dynamic mode of mitotic bookmarking by transcription
factors. Elife, 5, e22280.

23. Liu,Z., Legant,W.R., Chen,B.-C., Li,L., Grimm,J.B., Lavis,L.D.,
Betzig,E. and Tjian,R. (2014) 3D imaging of Sox2 enhancer clusters
in embryonic stem cells. Elife, 3, e04236.

24. Heinz,S., Texari,L., Hayes,M.G.B., Urbanowski,M., Chang,M.W.,
Givarkes,N., Rialdi,A., White,K.M., Albrecht,R.A., Pache,L. et al.
(2018) Transcription elongation can affect genome 3D structure. Cell,
174, 1522–1536.

25. Zhu,Y., Chen,Z., Zhang,K., Wang,M., Medovoy,D., Whitaker,J.W.,
Ding,B., Li,N., Zheng,L. and Wang,W. (2016) Constructing 3D
interaction maps from 1D epigenomes. Nat. Commun., 7, 10812.

26. Roadmap Epigenomics Consortium, Kundaje,A., Meuleman,W.,
Ernst,J., Bilenky,M., Yen,A., Heravi-Moussavi,A., Kheradpour,P.,
Zhang,Z., Wang,J. et al. (2015) Integrative analysis of 111 reference
human epigenomes. Nature, 518, 317–330.

27. Zhu,S., Li,W., Liu,J., Chen,C.-H., Liao,Q., Xu,P., Xu,H., Xiao,T.,
Cao,Z., Peng,J. et al. (2016) Genome-scale deletion screening of
human long non-coding RNAs using a paired-guide RNA
CRISPR-Cas9 library. Nat. Biotechnol., 34, 1279–1286.

28. Perez,A.R., Pritykin,Y., Vidigal,J.A., Chhangawala,S., Zamparo,L.,
Leslie,C.S. and Ventura,A. (2017) GuideScan software for improved
single and paired CRISPR guide RNA design. Nat. Biotechnol., 35,
347–349.

29. Durand,N.C., Shamim,M.S., Machol,I., Rao,S.S.P., Huntley,M.H.,
Lander,E.S. and Aiden,E.L. (2016) Juicer provides a one-click system
for analyzing loop-resolution Hi-C experiments. Cell Syst., 3, 95–98.

30. Ramı́rez,F., Bhardwaj,V., Arrigoni,L., Lam,K.C., Grüning,B.A.,
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