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Abstract

Background: Primitive lung cancers developed on lung fibroses are both diagnostic and therapeutic challenges.
Their incidence may increase with new more efficient lung fibrosis treatments. Our aim was to describe a cohort of
lung cancers associated with idiopathic pulmonary fibrosis (IPF) and other lung fibrotic disorders (non-IPF), and to
characterize their molecular alterations using immunohistochemistry and next-generation sequencing (NGS).

Methods: Thirty-one cancer samples were collected from 2001 to 2016 in two French reference centers for
pulmonary fibrosis - 18 for IPF group and 13 for non-IPF group. NGS was performed using an ampliseq panel to
analyze hotspots and targeted regions in 22 cancer-associated genes. ALK, ROS1 and PD-L1 expressions were
assessed by immunohistochemistry.

Results: Squamous cell carcinoma was the most frequent histologic subtype in the IPF group (44%), adenocarcinoma was
the most frequent subtype in the non-IPF group (62%). Forty-one mutations in 13 genes and one EGFR amplification were
identified in 25 samples. Two samples had no mutation in the selected panel. Mutations were identified in TP53 (n = 20),
MET (n = 4), BRAF (n = 3), FGFR3, PIK3CA, PTEN, STK11 (n = 2), SMAD4, CTNNB1, DDR2, ERBB4, FBXW7 and KRAS (n = 1) genes.
No ALK and ROS1 expressions were identified. PD-L1 was expressed in 10 cases (62%) with only one (6%) case >50%.

Conclusions: This extensive characterization of lung fibrosis-associated cancers evidenced molecular alterations which could
represent either potential therapeutic targets either clues to the pathophysiology of these particular tumors. These findings
support the relevance of large molecular characterization of every lung fibrosis-associated cancer.
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Background
Idiopathic pulmonary fibrosis (IPF) is a chronic paren-
chymal lung disease of severe prognosis, with a median
survival of about 3 years from diagnosis [1]. An in-
creased incidence of lung cancer has been described in
IPF patients, with a significantly adverse impact on
survival [2–6]. IPF and lung cancer are both strongly
associated with tobacco-smoking. Incidence of lung

cancer is also increased in non-idiopathic pulmonary
fibrosis suggesting a role for inflammation and fibrosis
in the development of lung tumors [7]. Common patho-
genic pathways and epigenetic alterations have been de-
scribed in both IPF and cancer but specific molecular
analysis of lung fibrosis-associated tumors has not been
published so far [8].
Lung cancer in IPF patients is a therapeutic challenge as

both surgery and radiotherapy are limited by lung dys-
function and are at high risk of respiratory exacerbation.
Moreover chemotherapy can also be deleterious [5, 9].
However, over the past decade a better knowledge of lung
cancer biology led to major changes in the management
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of lung cancer patients. Targeted therapies based on
biomarkers have shown clinical success. Genetic alter-
ations differ according to histologic subtypes. In
adenocarcinoma (ADC), the most common cancer
type, molecular characterization is now an established
procedure before any therapeutic decision [10]. In
squamous cell carcinoma (SCC), some targets have
been identified but need to be validated [11]. Molecu-
lar alterations in oncogenes may confer constitutive
activation and oncogenic addiction as for EGFR, the
first target identified in lung ADC. More recently
mutated BRAF and MET were also demonstrated to
be addictive oncogenes. Finally, gene fusions, for
instance ALK and ROS1 are other molecular mecha-
nisms leading to oncogene activation and are vali-
dated targets [12]. In parallel identification of the
tumor immune-evasion mechanisms is the basis for
innovative therapies, particularly targeting the PD-1/
PD-L1 pathway. Although in need of standardization,
PD-L1 expression as detected by immunohistochemis-
try may be a predictive biomarker of anti PD-1/PD-
L1 drug’s efficacy [13].
The aim of this study was to describe a retrospect-

ive cohort of lung cancers developed on IPF and
other pulmonary fibroses, and to search for molecular
alterations that could either represent therapeutic tar-
gets or specific oncogenic pathways in these intersti-
tial lung diseases (ILD).

Methods
Patients and tumors
Cases of lung fibrosis-associated lung cancer diagnosed
between 2001 and 2016 were identified from clinical and
pathological databases of Bichat-Claude Bernard and
Georges Pompidou University hospitals (Paris, France),
which are both “Competence Centers for rare pulmon-
ary disorders”. Formalin-fixed and paraffin-embedded
(FFPE) samples were retrieved from Pathology
department archives. Two pathologists (AC, AG) reviewed
all samples to confirm diagnoses of lung fibrosis and can-
cer. Cancers were classified according to the 2015 WHO
Classification of Lung Tumors [14]. IPF and Idiopathic
Interstitial Pneumonias were diagnosed according to
American Thoracic Society–European Respiratory Society
consensus criteria [1, 15]. The relationship between tumor
and UIP lesions was assessed on 2 slides/tumor on surgi-
cal cases of the IPF group. This study was reviewed and
approved by the CEERB Paris Nord ethics committee,
under the number 16–007.

Next-generation sequencing
The percentage of tumor cells was assessed by two
pathologists (AC, AG), in a macrodissection area if re-
quired. DNA extraction from FFPE tissues was

performed using Maxwell® 16 (Promega, Fitchburg, Wis-
consin). DNA was quantified by Qubit® 2.0 Fluorometer
(Qubit® dsDNA BR Assay kit-Life Technologies-Thermo
Fisher Scientific, Saint Aubin, France). Sequencing li-
braries were prepared from tumor FFPE DNA using Ion
AmpliSeq™ Colon and Lung Cancer Research Panel V2
(Life Technologies-Thermo Fisher Scientific). This panel
targets over 500 hotspot mutations in 22 colon and lung
cancer-associated genes: AKT BRAF CTNNB1 EGFR
ERBB2 ERBB4 FBXW7 FGFR1 FGFR2 FGFR3 KRAS
MET NOTCH1 NRAS PIK3CA PTEN SMAD4 STK11
TP53 ALK DDR2 MAP2K1. The multiplex barcoded li-
braries were generated with Ion AmpliSeq Library kit
from 3-μL of DNA corresponding to 10–30ng. Using
NGS data, we developed an algorithm that was used to
test the presence of gene amplifications in this series.
Amplifications were subsequently validated by qPCR.
MET mutations in the intronic region before the exon

14 were researched in 3 samples (P15, P24, P30) by
HRM PCR (LC480, Roche, Basel, Switzerland) followed
by Sanger sequencing (abi3130, Thermo Fisher Scien-
tific, Waltham, Massachusetts, USA), using two ampli-
cons of 200 and 212 bp around splice sites (at least 10
bp upstream and downstream).
Mutations were referred to the COSMIC database

[16]. Pathogenicity prediction was studied using SIFT,
Mutation Taster, PolyPhen and UMD pathogenicity pre-
diction softwares [17–20].

Immunohistochemistry
Immunohistochemistry was performed on fresh 5-μm
sections from FFPE blocks on Leica BOND-MAX (Leica
Biosystems, Buffalo Grove, IL) automated staining sys-
tem. Briefly, slides were deparaffinized and subjected to
antigen retrieval in a pH = 9 buffer. Primary antibodies
(ALK – clone 5A4 – Abcam, Cambridge, UK, 1:50
dilution; ROS-1 – clone D4D6 – Genemed Biotechnologies,
San Francisco, CA, 1:100 dilution; PD-L1 – clone E1L3N –
Cell Signaling Technology, Danvers, MA, 1:400 dilution)
were incubated for 60, 60 and 20 min respectively. Revela-
tion was performed with Leica BOND-MAX detection kits.
ALK and ROS1 results were interpreted as positive or
negative. PD-L1 result was expressed as the percentage of
stained tumor cells.

Statistical analysis
Continuous variables are described by their mean and
SD, and compared by use of Student’s t-test. Categorical
variables are described by percentages and compared by
Fisher’s exact test. Statistical analysis used Prism 5
(GraphPad Software, La Jolla, CA). P < 0.05 was consid-
ered statistically significant.
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Results
Patients
Thirty-one tumor samples were collected from 30
patients (Table 1). Eighteen were collected from
patients diagnosed with IPF and 13 from patients suf-
fering from other lung fibrotic disorders: connective

tissue disease-associated interstitial lung disease
(CTD-ILD) n = 6, idiopathic non-specific interstitial pneu-
monia n = 2, pneumoconiosis n = 4, drug-induced lung
fibrosis n = 1.
Men predominate in both groups (89% in IPF group

and 77% in non-IPF group, n = 0.62). No difference was

Table 1 Clinical features

Patient Gender Age (years) Tobacco (P-Y) Disease CT-scan Cancer type Cancer location Sampling site and mode

Idiopathic pulmonary fibrosis

P1 M 86 <5 IPF UIP SCC peripheral Lung, biopsy

P2 F 63 40 IPF UIP SCC peripheral Lung, biopsy

P3 M 60 NP IPF UIP SCC peripheral Lung, surg. resec.

P4 M 55 40 IPF UIP SCC peripheral Lung, surg. resec.

P5 M 41 30 IPF UIP SCC peripheral Lung, biopsy

P6 M 69 45 IPF UIP SCC proximal LN, EBUS

P7 M 75 30 IPF UIP SCC peripheral Lung, surg. resec.

P8 M 66 yes (NS) likely IPF UIP SCC peripheral Lung, surg. resec.

P9 M 68 20 IPF UIP ADC peripheral Lung, biopsy

P10 F 56 35 IPF UIP ADC peripheral Lung, biopsy

P3 M 61 NS IPF UIP ADC peripheral Lung, autopsy

P11 M 62 0 IPF UIP ADC peripheral Pleural liquid

P12 M 58 50 IPF UIP ADC peripheral Lung, surg. resec.

P13 M 64 40 likely IPF UIP ADC peripheral Lung, surg. resec.

P14 M 73 55 IPF UIP ADS proximal Lung, surg. resec.

P15 M 67 10 IPF UIP ADS peripheral Lung, surg. resec.

P16 M 57 60 likely IPF UIP LCNEC peripheral LN, biopsy

P30 M 51 30 IPF UIP SmCC peripheral Lung, biopsy

Connective Tissue Disease-Interstitial Lung Disease

P18 M 57 40 RA NSIP SCC proximal Lung, surg. resec.

P20 F 55 10 RA UIP ADC peripheral Lung, surg. resec.

P21 M 69 100 RA UIP ADC peripheral Lung, surg. resec.

P24 M 62 40 RA NSIP ADS peripheral Lung, surg. resec.

P23 M 66 30 antisynthetase sd NSIP ADC peripheral LN, biopsy

P22 F 59 0 scleroderma UIP ADC peripheral Lung, surg. resec.

Non-specific interstitial pneumonia

P25 M 69 70 NSIP NSIP ADC peripheral Lung, surg. resec.

P26 F 54 60 NSIP NSIP ADC peripheral Lung, surg. resec.

Pneumoconiosis

P17 M 64 50 pneumoconiosis Em-UIP SCC peripheral Lung, surg. resec.

P27 M 59 17 asbestosis UIP ADC peripheral Lung, biopsy

P19 M 58 yes (NS) Iikely asbestosis UIP SCC peripheral Lung, biopsy

P29 M 73 50 asbestosis Em-UIP SmCC peripheral Lung, biopsy

Drug-induced lung fibrosis

P28 M 87 60 NC (amiodarone?) ILD ADC peripheral Lung, biopsy

ADC adenocarcinoma, ADS adenosquamous carcinoma, EBUS endobronchial ultrasound, Em emphysema, IPF idiopathic pulmonary fibrosis, LCNEC large cell neuro-endocrine
carcinoma, LN lymph node, NS not specified, NSIP non-specific interstitial pneumonia, P-Y pack-years, RA rheumatoid arthritis, SCC squamous cell carcinoma, SmCC small cell
carcinoma, surg. resec surgical resection, UIP usual interstitial pneumonia
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observed in age (63 +/− 9.9 vs 64 +/− 9.1, p = 0.75) and
tobacco use (never smoker: 5.5% vs 7.6%, p = 0.74).
Samples were collected from surgical resection (n = 16),

lung core biopsy (n = 10), lymph node core biopsy/cy-
tology (n = 3), autopsy (n = 1) and pleural fluid (n = 1).
Age of FFPE material ranged from 0 to 13 years
(mean = 3.5 +/− 3.3).

Pathologic characterization
Pathologic characterization is summarized in Table 2. In the
IPF group, histologic subtypes were SCC (n = 8, 44%), ADC
(n = 6, 33%), adenosquamous carcinoma (ADS) (n = 2,
11%), small cell carcinoma (SmCC) (n = 1, 6%) and large cell
neuro-endocrine carcinoma (LCNEC) (n = 1, 6%). In the
non-IPF group, histologic subtypes were ADC (n = 8, 62%),
SCC (n = 3, 23%), ADS (n = 1, 8%) and SmCC (n = 1, 8%).
Six of the 11 SCC (55%) were keratinizing and one

was basaloid (Fig. 1a). In ADC, acinar (n = 6, 43%) and
solid (n = 4, 29%) were the most frequent subtypes, both
observed in IPF and non-IPF groups. Papillary (n = 2,
14%) subtype was observed in the non-IPF group and
mucinous (n = 1, 7%) subtype in the IPF group (Fig. 1b).
A high proportion of tumors were peripheral in both
groups: 16/18 (89%) in IPF group and 12/13 (92%) in
non-IPF group. In the IPF group, 7/9 surgically removed
tumors were developed in close contact with peripheral
honeycomb regions (Fig. 1c). Two out of 9 were in con-
tact with emphysema lesions.

Immunohistochemistry
PD-L1 expression was assessed in all surgical resections
and in the autopsy specimen, corresponding to 16 cases
(6 SCC, 7 ADC and 3 ADS). Among them, 6 had less
than 1% of stained tumor cells, 3 had 1% to <5%, 6 had
5% to <50% and one ADC had more than 50% of stained
tumor cells. Overall, 10 tumors (62%) should be consid-
ered as expressing tumor cell membrane PD-L1 antigen
in more than 1% of cells (Table 2 and Fig. 1d), and one
(6%) with a high level of expression.
ALK and ROS1 expression was assessed in all ADC

from surgical resections and autopsy specimen (n = 10).
For two other patients, ALK expression was assessed
during the patient management (P9 and P12). In all
tested cases, ALK and ROS1 were negative.

Next-generation sequencing
In 27/31 samples (87%), DNA quality was sufficient for
proper analysis. The mean coverage was 10,646 (median
5,687, range from 247.8 to 34,874).
NGS results are presented in Tables 3 and 4. One or

more mutations were found in 25/27 samples (93%).
Eleven samples (41%) had one mutation, eight (30%) two
mutations, five (19%) three mutations, and one (4%) pre-
sented an EGFR gene amplification.

Forty-four molecular alterations were identified in 14
genes. Twenty TP53 mutations were detected (Table 3).
Nine molecular alterations were found in four genes
coding for tyrosine kinase receptors: point mutations in
MET (4) (Fig. 2a), FGFR3 (2), ERBB4 (1) and DDR2 (1)
and one EGFR amplification. Seven mutations were
described in the PI3K pathway, involving PIK3CA (3),
PTEN (2) and STK11 (2) genes. Four mutations involv-
ing the MAPK pathway were identified in BRAF (3)
(Fig. 2b) and KRAS (1) (Table 4). Single TP53 mutations
were observed in 11 patients. Single mutation in another
oncogenic gene was found in one case (MET gene for
P22). Multiple oncogenic activations were found in 12
patients.
Mutations classified by histologic subtype are in SCC:

TP53 (n = 8, 80%), MET (n = 2, 20%), BRAF, PTEN,
SMAD4, STK11 and FBXW7 (n = 1, 10%); in ADC:
TP53 (n = 6, 50%), BRAF and PIK3CA (n = 2, 17%),
MET, FGFR3, STK11, CTNNB1, ERBB4, KRAS and
EGFR amplification (n = 1, 8%). Two mutations of TP53
and one mutation of PIK3CA, MET and DDR2 were
found in the 2 ADS.
Mutations analysed according to parenchymal disease

subtype are, in IPF group: TP53 (n = 11, 73%), MET
(n = 3, 20%), PTEN, SMAD4, FBXW7, STK11,
PIK3CA and EGFR amplification (n = 1, 7%); in non-
IPF group: TP53 (n = 8, 67%), BRAF (n = 3, 25%),
FGFR3 and PIK3CA (n = 2, 17%), STK11, DDR2,
MET, KRAS, ERBB4 and CTNNB1 (n = 1, 8%).

Discussion
The aim of this study was to describe a cohort of lung
cancers developed on IPF and other pulmonary fibroses,
and to characterize their molecular alterations. SCC was
the most frequent histologic subtype in our IPF group,
as mostly reported in previous studies encompassing a
large period of time [3, 21]. This squamous histology
could suggest specific oncogenic events in the IPF
micro-environment where peripheral honeycomb-
associated squamous metaplasia and dysplasia has been
reported [22]. In contrast, ADC was the most frequent
subtype in the heterogeneous non-IPF group, like in the
general population. Acinar subtype was the most fre-
quent ADC subtype in our cohort (43%), and invasive
mucinous subtype was rare (7%), as reported in a 89
idiopathic interstitial pneumonia-associated ADC cases
recent Japanese series (35.95% and 11.24% respectively),
described by Kojima [23]. In another recent Japanese
series on 44 UIP-associated ADC reported by Masai,
invasive mucinous subtype was predominant (29.5% of
ADC) [6].
Among the genes assessed in the NGS panel, we

detected 43 mutations in 13 genes and an EGFR gene
amplification in 25 samples.
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We detected TP53 mutations in 8 SCC (80% of SCC)
and 6 ADC (50% of ADC), with the same frequency as
reported in the literature [11]. We also detected TP53

mutations in all other cancer subtypes. Allelic ratios sug-
gest a loss of the second TP53 allele, as usually in can-
cers [24]. Detected mutations occurring in the DNA

Table 2 Pathological features

Patient Cancer type Cancer
differenciation

Diagnostic immunohistochemistry (IHC) Therapeutic IHC

TTF1 p40/p63 others ALK ROS1 PDL1

Idiopathic pulmonary fibrosis

P1 SCC keratinizing / / / / /

P2 SCC nonkeratinizing TTF1- p40+ / / /

P3 SCC basaloid, / p63+ CK7- / / <1%

keratinizing

P4 SCC keratinizing TTF1- p40+ / / 5%

P5 SCC nonkeratinizing TTF1- p63+ NapsinA- CK5/6+ / / /

P6 SCC keratinizing TTF1- p63+ / / /

P7 SCC keratinizing TTF1- p40+ / / 10%

P8 SCC nonkeratinizing TTF1- p40+ / / 0%

P9 ADC acinar TTF1+ CK7+ neg / /

P10 ADC acinar TTF1- p63- / / /

P3 ADC solid TTF1+ p63- neg neg <1%

P11 ADC NS TTF1- p63- NapsinA+ / / /

P12 ADC mucinous TTF1- / CK7+ CK20+ neg / /

P13 ADC acinar TTF1+ p40- CK7+ CD56- neg neg 1%

P14 ADS acinar TTF1- p40+ CK7+ neg neg 20%

P15 ADS papillary TTF1+ p40+ neg neg 15%

P16 LCNEC / TTF1- / chromoA+ CD56+ / / /

synapto + CK5/6-

P30 SmCC / TTF1+ / chromoA+ CD56+ / / /

synapto+

Connective Tissue Disease-Interstitial Lung Disease

P18 SCC keratinizing TTF1- p40+ / / 40%

P20 ADC papillary TTF1+ / neg neg <1%

P21 ADC solid TTF1+ p40- neg neg 70%

P24 ADS solid TTF1+ p40+ neg neg 10%

P23 ADC solid TTF1+ p63- NapsinA+ / / /

P22 ADC acinar TTF1+ / CK7+ neg neg 0%

Non-specific interstitial pneumonia

P25 ADC acinar TTF1+ p40+ neg neg <1%

P26 ADC papillary TTF1+ / neg neg 1%

Pneumoconiosis

P17 SCC keratinizing TTF1- p40+ / / 1%

P27 ADC solid TTF1+ p40+ / / /

P19 SCC nonkeratinizing TTF1- p63+ CK5/6+ / / /

P29 SmCC / TTF1- / CD56+ / / /

Drug-induced lung fibrosis

P28 ADC acinar TTF1+ / NapsinA+ / / /

ADC adenocarcinoma, ADS adenosquamous carcinoma, LCNEC large cell neuro-endocrine carcinoma, SCC squamous cell carcinoma, SmCC small cell carcinoma
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binding domain (from codon 125 to 300), especially the
hotspot codons in CpG sites, are similar to those already
described, according to the COSMIC public database [16].
More than one third are G > T transversions, in accord-
ance with the high proportion of smokers [25]. Thus a
specific carcinogenesis process differing from tobacco
smoke DNA signature and linked to chronic lung inflam-
mation could not be inferred from this molecular analysis.
Four MET mutations were detected in our cohort:

p.Arg359Gln and p.Arg988Cys in SCC (20%),
p.Thr1011Ala in one ADC (8%) and c.2942-36G > A in
one ADS. In the literature, MET mutations are reported
in 2% to 7% of lung ADC and in 1% of lung SCC [12].
Codon 359 is located within the SEMA domain, involved
in binding with the MET-specific ligand HGF. Codons
988 and 1011 are located in the exon 14, and c.2942-
36G > A in the intronic region before the exon 14, re-
quired for negative regulation of MET. Mutations in-
volving exon 14 splicing site have been described in lung
ADC, they mostly result in exon 14 skipping and ultim-
ately in MET protein stabilization [12, 26]. Case reports
have demonstrated responses to MET-inhibitors in ADC
patients with METex14 alterations [26]. METex14 muta-
tions were, so far, not reported in lung SCC. These three
exonic mutations have been described as rare polymor-
phisms. However their functional impact remains
unclear as discordant results are obtained with patho-
genicity prediction softwares. For instance p.Arg988Cys,

although described as a germline polymorphism
(rs34589476), has been reported in numerous lung can-
cers, and its pathogenic role remains elusive, in vitro
data supporting functional consequences [27, 28]. Inter-
estingly, in our cohort, three MET mutations occurred
in IPF and 1 in CTD-ILD with an UIP pattern on CT-
scan. Whether these variants represent true oncogenic
drivers or significant polymorphisms in the fibrotic
process, this could suggest a specific pathway in IPF/UIP
lung with activation of the HGF/MET axis [29]. The
search for MET mutations in non-tumoral IPF lung
would be mandatory to test these hypotheses. Of note,
we looked for mutations in flanking introns of exon 14
in only three cases. Thus we cannot exclude the possibil-
ity of more MET mutations. Whether such alterations
could be targetable would deserve specific clinical trials.
A p.Trp259Arg DDR2 mutation was observed in an

ADS. In the literature, DDR2 mutations are found in 4%
of lung SCC and in 1% of lung ADC, without hotspot
mutations. Clinical response to dasatinib was reported in
rare case-reports of patients with lung SCC [30].
No mutation of EGFR was observed in our cohort, al-

though reported in 10–15% of lung ADC [12]. This re-
sult, in addition to the absence of ALK and ROS1
rearrangement, is consistent with the predominance of
male smokers in our cohort. Three recent Japanese stud-
ies also described a significantly lower EGFR mutation
frequency in ILD/IPF patients [5, 6, 23].

Fig. 1 Pathological and immunohistochemical characteristics of lung tumors. a Keratinising squamous cell carcinoma (P4, HES, x20 objective, scale
bar:100μm) (b) Papillary adenocarcinoma (P26, HES, x20 objective, scale bar:100μm) (c) Peripheral squamous cell carcinoma developed in honeycomb
lung (HES, x5 objective, scale bar:500μm) (d) Positive PD-L1 staining (P21, anti-PD-L1 immunohistochemistry, x20 objective, scale bar:100μm)

Guyard et al. Respiratory Research  (2017) 18:120 Page 6 of 11



Ta
b
le

3
N
G
S
re
su
lts
,T
P5
3
m
ut
at
io
ns

G
en

e
M
ut
at
io
n

C
O
SM

IC
re
fe
re
nc
e

Pa
th
og

en
ic
ity

pr
ed

ic
tio

n
Pa
tie
nt

A
lle
lic

fre
qu

en
cy

%
tu
m

ce
lls

Lu
ng

di
se
as
e

C
an
ce
r

TP
53

C
hr
17
:g
.7
57
93
83
T
>
G

c.
30
4A

>
C

p.
Th
r1
02
Pr
o

/
be

ni
gn

P0
9

11
.0

N
S

IP
F

A
D
C

C
hr
17
:g
.7
57
84
61
C
>
A

c.
46
9G

>
T

p.
Va
l1
57
Ph

e
C
O
SM

10
67
0

pa
th
og

en
ic

P1
8

54
.0

70
C
TD

-IL
D

SC
C

C
hr
17
:g
.7
57
84
57
C
>
A

c.
47
3G

>
T

p.
A
rg
15
8L
eu

C
O
SM

10
71
4

pa
th
og

en
ic

P2
0

27
.8

40
C
TD

-IL
D

A
D
C

C
hr
17
:g
.7
57
84
54
G
>
A

c.
47
6C

>
T

p.
A
la
15
9V
al

C
O
SM

11
14
8

pa
th
og

en
ic

P1
5

44
N
S

IP
F

A
D
S

C
hr
17
:g
.7
57
84
06
C
>
T

c.
52
4G

>
A

p.
A
rg
17
5H

is
C
O
SM

10
64
8

pa
th
og

en
ic

P2
1

42
.2

70
C
TD

-IL
D

A
D
C

C
hr
17
:g
.7
57
83
88
C
>
G

c.
54
2G

>
C

p.
A
rg
18
1P
ro

C
O
SM

45
04
6

pa
th
og

en
ic

P0
9

22
.1

N
S

IP
F

A
D
C

C
hr
17
:g
.7
57
82
72
G
>
T

c.
57
7C

>
A

p.
H
is
19
3A

sn
C
O
SM

43
93
5

pa
th
og

en
ic

P0
3-
A
D
C

59
.3

70
IP
F

A
D
C

C
hr
17
:g
.7
57
82
72
G
>
A

c.
57
7C

>
T

p.
H
is
19
3T
yr

C
O
SM

10
67
2

pa
th
og

en
ic

P0
1

22
.4

50
IP
F

SC
C

C
hr
17
:g
.7
57
75
74
T
>
C

c.
70
7A

>
G

p.
Ty
r2
36
C
ys

C
O
SM

10
73
1

pa
th
og

en
ic

P3
0

84
.0

70
IP
F

Sm
C
C

C
hr
17
:g
.7
57
75
59
G
>
A

c.
72
2C

>
T

p.
Se
r2
41
Ph

e
C
O
SM

10
81
2

pa
th
og

en
ic

P2
7

16
.4

20
pn

eu
m
oc
on

io
si
s

A
D
C

C
hr
17
:g
.7
57
75
59
G
>
A

c.
72
2C

>
T

p.
Se
r2
41
Ph

e
C
O
SM

10
81
2

pa
th
og

en
ic

P2
9

84
.7

>
50

pn
eu
m
oc
on

io
si
s

Sm
C
C

C
hr
17
:g
.7
57
75
39
G
>
A

c.
74
2C

>
T

p.
A
rg
24
8T
rp

C
O
SM

10
65
6

pa
th
og

en
ic

P1
1

42
.8

70
IP
F

A
D
C

C
hr
17
:g
.7
57
75
35
C
>
A

c.
74
6G

>
T

p.
A
rg
24
9M

et
C
O
SM

43
87
1

pa
th
og

en
ic

P0
8

28
.9

40
IP
F

SC
C

C
hr
17
:g
.7
57
75
35
C
>
A

c.
74
6G

>
T

p.
A
rg
24
9M

et
C
O
SM

43
87
1

pa
th
og

en
ic

P2
4

61
.0

70
C
TD

-IL
D

A
D
S

C
hr
17
:g
.7
57
71
20
C
>
A

c.
81
8G

>
T

p.
A
rg
27
3L
eu

C
O
SM

10
77
9

pa
th
og

en
ic

P1
6

68
.1

40
IP
F

LC
N
EC

C
hr
17
:g
.7
57
71
15
du

p
c.
82
3d

up
p.
C
ys
27
5L
eu
fs
*3
1

/
pa
th
og

en
ic

P0
4

16
.2

25
IP
F

SC
C

C
hr
17
:g
.7
57
71
08
C
>
A

c.
83
0G

>
T

p.
C
ys
27
7P
he

C
O
SM

10
74
9

pa
th
og

en
ic

P0
2

42
.5

40
IP
F

SC
C

C
hr
17
:g
.7
57
70
96
_7
57
70
99
de

l
c.
83
9_
84
2d

el
p.
A
rg
28
0T
hr
fs
*6
4

/
pa
th
og

en
ic

P0
5

63
.6

30
IP
F

SC
C

C
hr
17
:g
.7
57
70
46
C
>
A

c.
89
2G

>
T

p.
G
lu
29
8*

C
O
SM

10
71
0

pa
th
og

en
ic

P1
9

65
.1

40
pn

eu
m
oc
on

io
si
s

SC
C

C
hr
17
:g
.7
57
39
76
T
>
A

c.
10
51
A
>
T

p.
Ly
s3
51
*

C
O
SM

15
22
20
2

pa
th
og

en
ic

P1
7

61
.1

90
pn

eu
m
oc
on

io
si
s

SC
C

A
D
C
ad

en
oc
ar
ci
no

m
a,
AD

S
ad

en
os
qu

am
ou

s
ca
rc
in
om

a,
CT
D
-IL
D
co
nn

ec
tiv
e
tis
su
e
di
se
as
e
as
so
ci
at
ed

-in
te
rs
tit
ia
ll
un

g
di
se
as
e,
IP
F
id
io
pa

th
ic
pu

lm
on

ar
y
fib

ro
si
s,
LC
N
EC

la
rg
e
ce
ll
ne

ur
o-
en

do
cr
in
e
ca
rc
in
om

a,
N
SI
P
no

n-
sp
ec
ifi
c

in
te
rs
tit
ia
lp

ne
um

on
ia
,S
CC

sq
ua
m
ou

s
ce
ll
ca
rc
in
om

a,
Sm

CC
sm

al
lc
el
lc
ar
ci
no

m
a

Guyard et al. Respiratory Research  (2017) 18:120 Page 7 of 11



Ta
b
le

4
N
G
S
re
su
lts
,o
th
er

m
ut
at
io
ns

G
en

e
M
ut
at
io
n

C
O
SM

IC
re
fe
re
nc
e

Pa
th
og

en
ic
ity

pr
ed

ic
tio

n
Pa
tie
nt

A
lle
lic

fre
qu

en
cy

%
tu
m

ce
lls

Lu
ng

di
se
as
e

C
an
ce
r

M
ET

C
hr
7:
g.
11
63
40
21
4G

>
A

c.
10
76
G
>
A

p.
A
rg
35
9G

ln
C
O
SM

12
86
16
4

pr
ob

ab
ly
be

ni
gn

P0
1

49
.4

50
IP
F

SC
C

C
hr
7:
g.
11
64
11
86
7G

>
A

c.
29
42
–3
6G

>
A

P1
5

N
S

IP
F

A
D
S

C
hr
7:
g.
11
64
11
92
3C

>
T

c.
29
62
C
>
T

p.
A
rg
98
8C

ys
C
O
SM

16
66
97
8

un
kn
ow

n
P0
5

33
.9

30
IP
F

SC
C

C
hr
7:
g.
11
64
11
99
2A

>
G

c.
29
77
A
>
G

p.
Th
r1
01
1A

la
/

un
kn
ow

n
P2
2

27
.6

50
C
TD

-IL
D

A
D
C

BR
AF

C
hr
7:
g.
14
04
81
40
2C

>
G

c.
14
06
G
>
C

p.
G
ly
46
9A

la
C
O
SM

46
0

pa
th
og

en
ic

P1
7

71
.8

90
pn

eu
m
oc
on

io
si
s

SC
C

C
hr
7:
g.
14
04
81
40
2C

>
G

c.
14
06
G
>
C

p.
G
ly
46
9A

la
C
O
SM

46
0

pa
th
og

en
ic

P2
8

46
.9

70
dr
ug

-in
du

ce
d
LF

A
D
C

C
hr
7:
g.
14
04
53
13
4T

>
C

c.
18
01
A
>
G

p.
Ly
s6
01
G
lu

C
O
SM

47
8

pa
th
og

en
ic

P2
0

27
.6

40
C
TD

-IL
D

A
D
C

PI
K3
CA

C
hr
3:
g.
17
89
36
08
2G

>
A

c.
16
24
G
>
A

p.
G
lu
54
2L
ys

C
O
SM

76
0

pa
th
og

en
ic

P2
8

64
.2

70
dr
ug

-in
du

ce
d
LF

A
D
C

C
hr
3:
g.
17
89
36
08
2G

>
A

c.
16
24
G
>
A

p.
G
lu
54
2L
ys

C
O
SM

76
0

pa
th
og

en
ic

P1
5

48
N
S

IP
F

A
D
S

C
hr
3.
g.
17
89
38
84
7A

>
T

c.
20
89
A
>
T

p.
M
et
69
7L
eu

/
un

kn
ow

n
P2
5

8.
5

50
N
SI
P

A
D
C

FG
FR
3

C
hr
4:
g.
18
06
14
9G

>
C

c.
11
68
G
>
C

p.
Va
l3
90
Le
u

/
un

kn
ow

n
P2
5

9.
6

50
N
SI
P

A
D
C

C
hr
4:
g.
18
07
89
1G

>
C

c.
19
50
G
>
C

p.
Ly
s6
50
A
sn

C
O
SM

39
93
56
8

pa
th
og

en
ic

P2
9

16
.3

>
50

pn
eu
m
oc
on

io
si
s

Sm
C
C

PT
EN

C
hr
10
:g
.8
97
20
72
9d

el
c.
88
0d

el
p.
Se
r2
94
Va
lfs
*1
3

/
pa
th
og

en
ic

P0
2

20
.1

40
IP
F

SC
C

C
hr
10
:g
.8
97
20
85
2C

>
T

c.
10
03
C
>
T

p.
A
rg
33
5*

C
O
SM

51
51

pa
th
og

en
ic

P0
2

34
.5

40
IP
F

SC
C

ST
K1
1

C
hr
19
:g
.1
22
12
49
de

l
c.
77
2d

el
p.
A
sp
25
8T
hr
fs
*2
9

/
pa
th
og

en
ic

P0
6

93
.6

50
IP
F

SC
C

C
hr
19
:g
.1
22
31
25
C
>
G

c.
10
62
C
>
G

p.
Ph

e3
54
Le
u

C
O
SM

21
36
0

be
ni
gn

P2
0

49
.1

40
C
TD

-IL
D

A
D
C

SM
AD

4
C
hr
18
:g
.4
85
91
86
5C

>
G

c.
10
28
C
>
G

p.
Se
r3
43
*

C
O
SM

14
11
1

pa
th
og

en
ic

P0
5

17
.7

30
IP
F

SC
C

CT
N
N
B1

C
hr
3:
g.
41
26
61
13
C
>
G

c.
11
0C

>
G

p.
Se
r3
7C

ys
C
O
SM

56
79

pa
th
og

en
ic

P2
6

34
.4

50
N
SI
P

A
D
C

D
D
R2

C
hr
1:
g.
16
27
29
68
9T

>
A

c.
77
5T

>
A

p.
Tr
p2

59
A
rg

/
pa
th
og

en
ic

P2
4

33
.0

70
C
TD

-IL
D

A
D
S

ER
BB
4

C
hr
2:
g.
21
25
76
80
9C

>
A

c.
10
90
G
>
T

p.
G
ly
36
4T
rp

/
pa
th
og

en
ic

P2
5

18
.2

50
N
SI
P

A
D
C

FB
XW

7
C
hr
4:
g.
15
32
49
37
0G

>
A

c.
14
08
C
>
T

p.
H
is
47
0T
yr

/
pr
ob

ab
ly
pa
th
og

en
ic

P0
6

29
.5

50
IP
F

SC
C

KR
AS

C
hr
12
:g
.2
53
98
28
5C

>
A

c.
34
G
>
T

p.
G
ly
12
C
ys

C
O
SM

51
6

pa
th
og

en
ic

P2
6

35
.1

50
N
SI
P

A
D
C

EG
FR

am
pl
ifi
ca
tio

n
(6
.5
co
pi
es
)

P1
0

10
IP
F

A
D
C

Guyard et al. Respiratory Research  (2017) 18:120 Page 8 of 11



Mutations involving the MAP kinase pathway are fre-
quent in ADC [12]. We described a p.Gly469Ala BRAF
mutation in a SCC (10% of SCC), a p.Lys601Glu and a
p.Gly469Ala BRAF mutation in 2 ADC (17% of ADK).
In the literature, BRAF mutations are reported in about
4% of lung SCC and in 10% of lung ADC [11, 12]. BRAF
mutations p.Lys601Glu and p.Gly469Ala have already
been described in lung ADC. Non-V600E mutations are
usual, representing about half of BRAF mutations [31].
Conversely, p.Gly469Ala has never been described in
lung SCC. Both are activating BRAF mutations. BRAF
and MEK inhibitors can target p.V600E BRAF mutations
[31, 32]. Response rates for lung cancer patients with
non-V600 mutations are unknown. Only one ADC was
KRAS mutated (representing 8% of adenocarcinomas)
whereas KRAS mutations are reported in more than 30%
of lung ADC [12], especially in smokers. While the ab-
sence of EGFR mutation could be explained by the high
smoking rate in our population, the low incidence of
KRAS mutations could suggest the implication of other
oncogenic drivers possibly related to the chronic lung
injury during the fibrotic process. Interestingly the re-
cent series described by Masai et al. included frequent
invasive mucinous ADC (29,5%), associated with numer-
ous KRAS mutations (30,2%) [6]. This could suggest
carcinogenesis differences linked to ethnicity or be the
reflect of our limited number of patients. However these
results were not confirmed by Kojima et al. who re-
ported a low rate of invasive mucinous subtype (11,24%)
and no difference of KRAS mutation rate between non-
UIP-ADC and UIP-ADC [23].
One SMAD4 mutation was found in one SCC-IPF tu-

mors. SMAD4 is a tumor-suppressive gene that can
cause cell cycle arrest and apoptosis of epithelial cells,
and is inactivated by mutation in over half of pancreatic
cancers [33]. It acts as a central mediator in the trans-
forming growth factor-β (TGF-β) signalling pathway.

SMAD4 mutations are uncommon in lung cancer, ac-
cording to COSMIC database. However this signalling
pathway, targeted by TGF-beta, could be of particular
relevance in a lung fibrosis context. pSer343* predicted
as pathogenic is located in the MH2 region which is im-
plicated in the oligomerization of the protein which is
essential for TGFbeta signalling [34].
A p.Ser37Cys CTNNB1 mutation was detected in an

ADC (8%). The codon 37 is a known hotspot mutation,
implied in the constitutive activation of the Wnt signalling
pathway, and the p.Ser37Cys mutation has been reported
in lung ADC [35]. Mutated beta-catenin (CTNNB1) accu-
mulation is followed by translocation to the nucleus and
action in a transcriptional complex involving other tran-
scriptional regulators like YAP1 to modulate apoptosis,
proliferation or epithelial-mesenchymal transition [36].
A p.His470Tyr FBXW7 mutation was detected in a

SCC (10%). FBXW7 mutations are uncommon in lung
cancer, according to COSMIC. FBXW7 is implicated in
proteasome degradation of specific substrates and con-
trol tumorigenesis, acting on cell cycle, differentiation
and apoptosis [37]. It is also involved in epithelial-to-
mesenchymal transition by controlling mTOR pathway
[38]. A p.Arg465His FBXW7 mutation was reported in a
lung ADC; the patient benefited from the mTOR inhibi-
tor temsirolimus [39].
Besides molecular targeted therapies, immunotherapy

using checkpoint inhibitors is a new efficient therapy
against lung cancer. PD-L1 is an immune-checkpoint
protein, interacting with its ligand PD-1 expressed by T-
cells, used by the tumoral cell to escape the antitumor
immune response. Several drugs target the PD-1/PD-L1
interaction. An association between therapeutic response
and PD-L1 expression on tumor cells has been de-
scribed, although it is not a binary predictive marker and
the PD-L1 assays need further standardization and valid-
ation [13]. PD-L1 expression was assessed in 16 surgical

Fig. 2 MET and BRAFmutations. a Three exonic mutations: p.Arg359Gln, p.Arg988Cys and p.Thr1011Ala and one intronic mutation: c.2942-36G > A
were detected within MET gene. b Two p.Gly469Ala and one p.Lys601Glu BRAF mutations were detected. Diagrams were made with the Lollipops
software (https://github.com/pbnjay/lollipops)
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cases in the current work. All ADC but one had less
than 5% of stained tumor cells, which, in addition to the
pulmonary adverse effects of these molecules, may not
plead for a first-line use of immunotherapy in these
patients. This has to be investigated in larger series. As
far as SCC are concerned PD-L1 expression seems to
be less correlated to efficacy, at least in second-line
of treatment [40].

Conclusion
We report here for the first time, to our best knowledge,
an extensive pathological and molecular analysis of lung
fibrosis-associated lung cancers. We found potentially
actionable alterations in MET, FGFR3, ERBB4, DDR2,
EGFR, BRAF, PI3KCA genes in various histologic
subtypes. While most detected mutations are likely
tobacco-associated TP53 mutations, others may suggest
alternative oncogenesis mechanisms: notably we found
MET, FGFR3, SMAD4 and CTNNB1 mutations, all genes
that could potentially be involved in the lung fibrosis
process, either participating to epithelial-mesenchymal
transition or the regulation or TGFβ pathway. Con-
versely, the low prevalence of KRAS mutations, contrast-
ing with the high percentage of smokers, also supports a
role for endogenous carcinogenic mechanisms linked to
lung fibrosis. Although limited by the size of the cohort,
our series shows the feasibility of such systematic mo-
lecular characterization, for both therapeutic and patho-
physiological purposes. The high mortality of fibrotic
lung diseases implies that cancer remains a rare compli-
cation since possibly occurring late in the course of fi-
brosis. Two recently approved drugs, pirfenidone and
nintedanib, have been shown to slow IPF progression
[41], and are expected to extend survival. If confirmed
this may lead to an increase of challenging cancer cases
and encourage to perform a large molecular
characterization to every lung fibrosis-associated cancer.
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