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A B S T R A C T   

Developmental delays in infanthood often persist, turning into life-long difficulties, and coming at great cost for 
the individual and community. By examining the developing brain and its relation to developmental outcomes 
we can start to elucidate how the emergence of brain circuits is manifested in variability of infant motor, 
cognitive and behavioural capacities. In this study, we examined if cortical structural covariance at birth, 
indexing coordinated development, is related to later infant behaviour. We included 193 healthy term-born 
infants from the Developing Human Connectome Project (dHCP). An individual cortical connectivity matrix 
derived from morphological and microstructural features was computed for each subject (morphometric simi
larity networks, MSNs) and was used as input for the prediction of behavioural scores at 18 months using 
Connectome-Based Predictive Modeling (CPM). Neonatal MSNs successfully predicted social-emotional perfor
mance. Predictive edges were distributed between and within known functional cortical divisions with a specific 
important role for primary and posterior cortical regions. These results reveal that multi-modal neonatal cortical 
profiles showing coordinated maturation are related to developmental outcomes and that network organization 
at birth provides an early infrastructure for future functional skills.   

1. Introduction 

Developmental delays occur in around 13% of infants in the US 

population (Rosenberg et al., 2008). Delays can be observed in motor, 
cognitive, language and communicative domains, and when they 
persist, they are termed developmental disabilities. These can place a 
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great emotional and financial burden on the individual, their family, and 
the general community (Shahat and Greco, 2021; Stabile and Allin, 
2012). While some infants catch up with their peers, others will continue 
to present difficulties (Riva et al., 2021). Behavioural delays are asso
ciated with a higher likelihood of autism spectrum conditions (ASC), 
attention deficit hyperactivity disorder (ADHD) and schizophrenia 
(Gurevitz et al., 2014; Landa and Garrett-Mayer, 2006; Sorensen et al., 
2010). Within the general population, developmental milestones are 
related to cognitive functions both in childhood and adulthood (Flens
borg-Madsen and Mortensen, 2018; Murray et al., 2007), reiterating 
their importance over the lifespan. 

Risk factors for poor neurodevelopmental outcomes include familial 
history of neurodevelopmental conditions (Ozonoff et al., 2011; Shivers 
et al., 2019; Stromswold, 1998) and inherited or de novo genetic changes 
(Cooper et al., 2011; Marshall et al., 2008), in addition to preterm birth, 
low birth weight (Aylward, 2014; Pascal et al., 2018) and other perinatal 
complications (Mwaniki et al., 2012). However, most infants will have 
no recognized predisposing factor. Adding to this complexity, the pace 
of motor and language development in the first years of life is variable 
within and between individuals even within the ‘normal’ range (Fenson 
et al., 1994; Piek, 2002). Identifying individuals at potentially greater 
likelihood for difficulties allows for early interventions which have been 
found to improve outcome (Dawson et al., 2010; Jeong et al., 2021). 
Specifically, by being able to recognize babies in the general population 
who might need extra support, we can begin to address difficulties or 
potential difficulties very early on, while brain development is still in its 
early sensitive period (Reh et al., 2020). 

Prospectively profiling the developing brain and investigating its 
relationship with adaptive and maladaptive behaviours, promotes our 
understanding of innate and external factors contributing to variability, 
vulnerability, and resilience to adverse outcomes. MRI studies have 
concluded that structural and functional brain networks start to develop 
in the fetal period and continue to fine-tune during childhood (Batalle 
et al., 2018). However how (and when) this emerging brain architecture 
relates to behavioural outcomes in infanthood is yet to be determined. 
The majority of early developmental studies have focused on 
brain-behaviour relationships in preterm neonates, a group that on 
average has a greater likelihood of delayed or atypical development 
(Van’t Hooft et al., 2015). More recently, a conceptual shift attempts to 
move from association to prediction (Rosenberg et al., 2018), with more 
studies examining brain structure in the term-born neonatal population 
with no apparent risks for poorer developmental outcomes (Girault 
et al., 2019b; Wee et al., 2017). Most attention has been given to the 
predictive ability of white matter connectivity (Ball et al., 2015; Girault 
et al., 2019b; Keunen et al., 2017; Wee et al., 2017). 

Morphometric similarity networks (MSNs) (Seidlitz et al., 2018) are 
based on structural covariance between brain regions whereby simi
larity is thought to reflect synchronized maturation and relatedness 
(Alexander-Bloch et al., 2013a, 2013b). The origins of this coordinated 
development may be the result of sharing an early progenitor, or from 
exposure to similar early signalling, in a process that can be modulated 
by genetic and environmental exposures (Alexander-Bloch et al., 
2013a). Accordingly, related regions likely reflect a joint functional 
purpose, with a similar transcriptomic profile (Yee et al., 2018). It has 
been hypothesized that abnormal patterns of brain covariance may 
result from atypicality in the establishment of the first connections 
innervating the cortical plate, starting at mid-gestation (Bullmore et al., 
1998). This has implications for efficient information transfer and 
functionality and therefore could potentially serve as an early marker for 
the development of mental and motor abilities. 

MSNs incorporate multiple MRI modalities into the estimated 
structural covariance, both microstructural and morphological, to 
overcome the limitations of using individual features with particular 
spatio-temporal trajectories. These provide a more comprehensive 
description of the brain, improving the predictive ability of clinical 
symptoms and behaviour from brain data (Liu et al., 2015; Tulay et al., 

2019). Correspondingly, covariance networks based on multiple MRI 
measures are better at capturing the underlying cellular composition 
compared to structural covariance networks based on a single measure 
(Seidlitz et al., 2018). In adults, MSNs are related to cognitive abilities 
and the expression of genes associated with neurodevelopmental con
ditions (Morgan et al., 2019; Seidlitz et al., 2018, 2020). 

In our previous work, we used this method to characterize the 
developing brain at the neonatal timepoint using structural and diffu
sion indices (Fenchel et al., 2020), reporting a community structure 
largely aligned with known functional distinctions and network tem
poral trajectories, and showing close similarity with cytoarchitectural 
features (Ball et al., 2020). In this current study, we were interested in 
furthering our understanding of how this neonatal cortical organization 
relates to infant developmental outcomes. Therefore, here we asked 
whether cortical profiles at term-birth, derived from MSNs, are associ
ated with- and predictive of- motor, cognitive, language and 
social-emotional abilities at 18 months. We attempted to predict infant 
behaviour from neonatal MSNs using connectome-based predictive 
modelling (CPM), a data-driven linear approach to predict continuous 
measures of behaviours from individual connectivity matrices (Shen 
et al., 2017). Following CPM, we examined if network-strength sum
mary measures at the whole cortex level and within cortical functional 
clusters were able to capture the same brain-behaviour patterns 
observed at the single-edges level. 

2. Methods 

2.1. Subjects 

This study included a sample of term-born healthy neonates 
participating in the Developing Human Connectome Project (dHCP); 
(http://www.developingconnectome.org/), scanned at the Newborn 
Imaging Centre at Evelina London Children’s Hospital, London, UK. 
Images are openly available on the project website. This project has 
received ethical approval (14/LO/1169) and written informed consent 
was obtained from parents. As part of the dHCP project, subjects are 
invited for a follow-up visit to assess infant development at 18 months. 
This assessment includes The Bayley Scales of Infant and Toddler 
Development (Bayley-III) (BSID) (Bayley, 2006) exploring overall 
developmental aspects, as well as the Quantitative Checklist for Autism 
in Toddlers (Q-CHAT) (Allison et al., 2008) for assessment of 
social-emotional development. Out of the 241 subjects included in the 
initial analysis and for which MSNs were constructed (Fenchel et al., 
2020), n = 204 completed the Bayley-III assessment and n = 198 
completed the Q-CHAT assessment. Only subjects with information on a 
proxy of socio-economic status, the Index of Multiple Deprivation (IMD) 
(https://tools.npeu.ox.ac.uk/imd/), were included to control for its 
possible confounding effect. This resulted in a sample size of n = 193 
with Bayley-III data and n = 187 with Q-CHAT data. 

2.2. Image acquisition and processing 

Neonatal MR brain images were acquired on a 3 T Philips Achieva 
scanner without sedation, using a dedicated 32-channels head coil sys
tem (Hughes et al., 2017). Acquisition, reconstruction and processing of 
structural and diffusion images followed optimized protocols for the 
neonatal brain implemented as part of the dHCP pipeline and have been 
previously described in Fenchel et al. (2020). 

T2-weighted (T2w) images were obtained using a turbo spin-echo 
(TSE) sequence, acquired in sagittal and axial planes with TR= 12 s, 
TE= 156 ms, SENSE factor 2.11 (axial) and 2.58 (sagittal) with over
lapping slices (resolution 0.8 ×0.8 ×1.6 mm). T1-weighted (T1w) im
ages were acquired using an Inversion Recovery TSE sequence with the 
same resolution using TR= 4.8 s, TE= 8.7 ms, SENSE factor 2.26 (axial) 
and 2.66 (sagittal). Structural images were reconstructed to a final res
olution of 0.5 × 0.5 × 0.5 mm, using slice-to-volume registration 
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(Cordero-Grande et al., 2018). Structural processing followed the pipe
line described in (Makropoulos et al., 2018): Motion- and bias-corrected 
T2w images were brain extracted and segmented. White, pial and mid
thickness surfaces were generated, inflated and projected onto a sphere. 
Brains were aligned to the 40-week dHCP surface template (Bozek et al., 
2018) using Multimodal Surface Matching (MSM) (Robinson et al., 
2013, 2014). Cortical features including cortical thickness (CT), pial 
surface area (SA), mean curvature (MC), and the T1w/T2w ratio 
indicative of myelin content (MI) were extracted for each subject 
(Makropoulos et al., 2018). 

Diffusion images were obtained using parameters TR= 3.8 s, TE= 90 
ms, SENSE factor= 1.2, multiband= 4, partial Fourier factor= 0.86, 
resolution 1.5 × 1.5 × 3.0 mm with 1.5 mm overlap (Hutter et al., 2018). 
Diffusion gradient encoding included images collected at b= 0 s/mm2 

(20 repeats), b= 400 s/mm2 (64 directions), b= 1000 s/mm2 (88 di
rections), b= 2600 s/mm2 (128 directions) (Tournier et al., 2020). 
Diffusion images were denoised (Veraart et al., 2016), Gibbs-ringing 
suppressed (Kellner et al., 2016), and the field map was estimated 
(Andersson et al., 2003). Images were corrected for subject motion and 
image distortion with slice-to-volume reconstruction using multi-shell 
spherical harmonics and radial decomposition (SHARD) and were 
reconstructed to a final resolution of 1.5 × 1.5 × 1.5 mm (Christiaens 
et al., 2021). A tensor model was fitted using a single shell (b=1000 
s/mm2), and fractional anisotropy (FA) and mean diffusivity (MD) maps 
were generated using MRtrix3 (Tournier et al., 2019). Neurite density 
index (NDI) and orientation dispersion index (ODI) maps were calcu
lated using the default NODDI toolbox implementation with default 
values (Zhang et al., 2012). Diffusion maps were registered onto indi
vidual T2w images using FSL’s epi_reg (FLIRT) and then projected onto 
the cortical surface using Connectome Workbench. All images were 
visually inspected for motion or image artefacts and data excluded 
accordingly (Fenchel et al., 2020), and images were checked for regis
tration errors. 

2.3. MSNs construction 

MSN construction for this cohort was described previously in Fenchel 

et al. (2020) and is summarized in Fig. 1. Briefly, the cortical surface was 
parcellated into 75 bilateral equal-sized regions with Voronoi decom
position. Seven of these regions were excluded due to diffusion signal 
dropout. Each region was then characterized by an eight-feature vector 
of mean normalized values of four structural features: CT, MC, MI and 
SA and four diffusion features: FA, MD, NDI and ODI. Pearson’s corre
lation between the eight-feature vector for every pair of regions was 
calculated, resulting in a 143 × 143 similarity-based connectivity matrix 
for each subject. Values were Fisher’s-z-transformed before analysis. 

2.4. Behavioural developmental assessment 

Mean age at developmental assessment was 18.69 ± 1.04 months 
(range 17.16–24.46 months), mean corrected age for gestational age 
(GA) at birth was 18.68 ± 1.00 months (range 17.30–24.33 months), the 
latter used for Bayley-III score calculation. The Bayley-III (Bayley, 2006) 
is a commonly used tool for tracking infants’ development, targeting to 
identify possible developmental delays. Standardized scores are divided 
into a motor composite score, derived from gross and fine motor scaled 
sub-scales, a language composite score derived from expressive and 
receptive language scaled sub-scales and a cognitive composite score. 
Bayley-III assessments were completed by trained practitioners. A 
higher score on these scales reflects better performance. 

Social-emotional development was determined by the Q-CHAT 
(Allison et al., 2008), a parent-based report of 25 items including joint 
attention, pretend play, language development, repetitive behaviours, 
and social communication. A higher summary score suggests more 
social-emotional difficulties, possibly indicating early autistic traits. 

2.5. Prediction of developmental outcomes from MSNs 

We utilized Connectome-based Predictive Modeling (CPM) (Shen 
et al., 2017) to explore the predictive ability of neonatal MSNs for four 
developmental outcomes measures, the three Bayley-III composite 
scores (cognitive, language and motor) and the Q-CHAT score. The 
model is trained each time on n-1 subjects and is tested on the left-out 
subject for calculation of the predicted behavioural scores 

Fig. 1. Pipeline Morphometric Similarity Networks construction and behavioural analysis. a. Regions are defined using Voronoi tessellation of the cortical surface; b. 
A feature vector of averaged normalized values of cortical thickness (CT), mean curvature (MC), myelin index (MI), surface area (SA), fractional anisotropy (FA), 
mean diffusivity (MD), neurite density index (NDI) and orientation dispersion index (ODI) is derived for each region; c. Each pair of regions is correlated using 
Pearson’s r, resulting in an individual similarity-based connectivity matrix. d. Network strength at a whole-network level and single-edges level is related to 
behavioural measures by means of association and prediction respectively. 
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(leave-one-out cross-validation, LOOCV). Each individual edge was 
partially correlated (Spearman’s r) with the behavioural measure, con
trolling for postmenstrual age (PMA) at scan, sex, total intracranial 
volume (ICV), IMD and time from birth to scan. Positive edges (associ
ated with higher behavioural scores) and negative edges (associated 
with lower behavioural scores) with p < 0.05 were then selected. For 
each subject in the training set, these edges are summed separately to 
create a positive network sum and a negative network sum. Linear 
regression with no intercept (Rosenberg et al., 2018a, 2018b; Shen et al., 
2017) linking the positive and negative sums was then performed. The 
predicted behaviour for the left-out subject is calculated by fitting this 
subject’s sum of positive and negative edges identified in the training 
set, adjusted for covariates, with the beta coefficients derived from the 
training model. Model performance was assessed by computing Spear
man’s r between the observed and predicted behaviours and the root 
mean square error (RMSE). This performance was assessed by gener
ating a null distribution of r values from N = 999 random permutations 
of the behavioural data. The resulting p-value is calculated as the 
number of r values equal or larger to the original r value divided by 
N + 1. Successful models using LOOCV were further examined for 
robustness using 10-fold cross-validation for 100 iterations. In each 
iteration, subjects are randomly assigned to each of 10 groups, where 
each time a different group serves as the test set and the remaining nine 
groups serve as the training set. Spearman’s r, associated p-value, and 
RMSE were calculated for each iteration and then averaged. 

Predictive networks were determined as significant if passed both 
cross-validation methods. These were defined by taking edges appearing 
in at least 90% of testing runs in the LOOCV. For clarity and ease of 
interpretation, predictive edges were examined in the context of the 
seven clusters reported before in Fenchel et al. (2020): occipital & pa
rietal, limbic, anterior frontal, insular & medial frontal, fronto-temporal, 
cingulate and somatosensory & auditory. For each cluster, we (1) sum
med separately the number of predictive positive and negative edges 
within the cluster and divided that by the number of all possible edges 
within that cluster to control for cluster size and (2) summed separately 
the number of positive and negative edges between each pair of clusters 
and divided that by the number of all possible edges between those 
pairs. 

2.6. Association between MSNs summary measures and developmental 
measures 

The association between whole-network average strength (across the 
entire cortex) and the eight developmental measures was examined by 
averaging a symmetric triangle of the connectivity matrix, excluding 
self-connections. This was entered together with PMA at scan, sex, ICV, 
IMD and time from birth to scan into a general linear model where the 
developmental measure was the dependent variable. Partial R2 for the 
brain network measure was calculated as (SSE reduced model-SSE full 
model)/SSE reduced model. Although PMA at scan, ICV and time from 
birth to scan were significantly correlated (r = 0.71, p < 0.001), no 
variance inflation factor (VIF) exceeded 5 (Craney and Surles, 2002) and 
therefore we retained all covariates for all analyses. 

3. Results 

3.1. Demographics and behavioural scores 

Demographics of the sample and mean behavioural scores are pre
sented in Table 1. All Bayley-III items were positively correlated with 
each other and negatively correlated with the Q-CHAT (Supplementary 
Table 1). Corrected age at assessment was not associated with either the 
Bayley-III scores or the Q-CHAT score. 

3.2. Single edges prediction- CPM 

Neonatal MSNs successfully predicted the Q-CHAT score (rs =0.196, 
p = 0.007, p permute=0.019, RMSE=9.53) and the language composite 
score (rs =0.182, p = 0.011, p permute=0.024, RMSE=16.30) (Fig. 2, 
Supplementary Fig. 1). However, only the Q-CHAT network remained 
significant following 10-fold cross-validation (Q-CHAT rs =0.188, 
p = 0.015, RMSE=9.60; language rs =0.116, p = 0.163, RMSE=16.80) 
and was therefore retained as the only robust predictive model. 

The positive and negative predictive networks for the Q-CHAT 
included 1.6% and 2.8% of all possible connections, respectively. The 
proportion of edges within each of the seven clusters included in the 
predictive networks is presented in Fig. 3. For Q-CHAT, the highest 
proportion of positive predictive edges was within the anterior frontal 
and occipital and parietal clusters, while the cingulate did not show any 
within-cluster predictive edges. For the negative predictive network 
however, the highest proportion of edges was observed in the cingulate 
cluster. Limbic edges were not part of the negative or positive networks 
(Fig. 3). 

The proportion of predictive edges connecting between clusters is 
presented in Fig. 4. While the relationship emerging between clusters is 
complex, the highest proportion of predictive edges was observed for the 
occipital and parietal cluster. Interestingly, although we do not consider 
the language network as a robust enough predictor, the observed pat
terns of the language network seem to be closely related to the Q-CHAT 
network (Supplementary Fig. 2): the positive network of the Q-CHAT 
was similar to the negative network of the language composite, and the 
negative network of the Q-CHAT was similar to the positive network of 
the language composite (Fig. 4, Supplementary Fig. 2). Therefore we 
looked at the overlap between these networks and found that 16.6% of 
edges in the negative language network overlapped with the positive Q- 
CHAT network and 26.8% of edges in the positive language network 
overlapped with the negative Q-CHAT network. No overlapping edges 
were found between the two positive networks or the two negative 
networks. 

3.3. Whole-network average strength 

There were significant positive associations between whole-network 
average strength and language composite and expressive language sub- 
scores, and a negative significant association with the Q-CHAT scores. 
No associations were found for the motor composite and associated sub- 
scales or the cognitive composite (Fig. 5, Table 2). Variance explained by 
the full model was 7% for expressive language, 10% for language 
composite, and 14% for Q-CHAT, with specific contribution of network 

Table 1 
Demographics and behavioural scores.   

N (%)/Median (range) 

Demographics Sex (male) 101 (52.3%) 
GA at birth (weeks) 40.14 (37.29–42.14) 
PMA at scan (weeks) 40.86 (37.43–44.43) 
Time from birth to scan (weeks) 0.29 (0–5.28) 
IMD 26.12 (1.55–61.37)   

Mean±SD 

Bayley-III Cognitive composite 99.95 ± 10.19 
Language composite 96.39 ± 15.41 
Expressive language 8.81 ± 2.58 
Receptive language 9.90 ± 3.14 
Motor composite 101.41 ± 9.70 
Fine motor 11.39 ± 2.20 
Gross motor 9.02 ± 1.92 

Q-CHAT  30.65 ± 9.19 

GA- gestational age, PMA- postmenstrual age, IMD- Index of Multiple Depriva
tion, Bayley-III- Bayley Scales of Infant and Toddler Development, Q-CHAT- 
Quantitative Checklist for Autism in Toddlers 
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strength estimated at 4%, 3% and 4% respectively (partial R2) (Table 2). 
To elucidate whether network strength is valuable in the context of 

the community structure (clusters) of neonatal MSNs reported previ
ously (Fenchel et al., 2020), we examined the average network strength 
within each of the seven clusters. The network strength within the 
insular and medial frontal cluster was related to scores on the language 

composite (β = 25.82, 95% CI=3.30–48.33, p < 0.05, R2 full=0.11, R2 

partial=0.03), receptive language sub-scale (β = 5.37, 95% 
CI=0.84–9.91, p < 0.05, R2 full=0.13, R2 partial=0.03), cognitive 
composite (β = 15.44, 95% CI=0.30–30.58, p < 0.05, R2 full =0.08, R2 

partial=0.02), and Q-CHAT (β = − 14.86, 95% CI=− 28.45-(− 1.26), 
p < 0.05, R2 full= 0.13, R2 partial= 0.03). Further, network strength 

Fig. 2. Prediction of Q-CHAT scores from neonatal MSNs using CPM- CPM. Plots of significant correlation between predicted and observed Q-CHAT scores (left) and 
results of null r values with permutation testing (right) using Connectome-based Predictive Modeling (CPM). 

Fig. 3. Proportion of within-cluster edges involved in social-emotional networks. Proportion of edges included in successful prediction model of social-emotional 
outcomes connecting nodes within each of the seven clusters. 

Fig. 4. Proportion of between-cluster edges involved in social-emotional networks. Proportion of edges included in Q-CHAT prediction model connecting nodes 
between clusters. On the left the positive network is shown and, on the right, the negative network. 
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within the somatosensory and auditory cluster was associated with 
language composite (β = 18.94, 95% CI=1.39–36.50, p < 0.05, R2 

full=0.10, R2 partial=0.02) and expressive language sub-scale 
(β = 3.97, 95% CI=0.97–6.96, p < 0.01, R2 full=0.07, R2 parti
al=0.04) (Fig. 6). 

4. Discussion 

In this study, we found that neonatal MSNs can successfully predict 
social-emotional behaviours at 18 months in a large group of healthy 
term-born babies. We show that the pattern of cortical maturation at 
birth already captures variability in infant development. This associa
tion between brain structure at birth and infant developmental out
comes was not limited to information held in individual edges of the 
network but was also evident in summary measures of network strength 
over the entire cortex, specifically in somatosensory-auditory, insular 
and medial frontal areas. On a regional level, the predictive networks 
were complex and widespread across the cortex, albeit suggesting spe
cific important involvement of primary and posterior cortical regions. 
No consistent or significant results were found for the cognitive or motor 
measures. 

Both language and social-emotional development result from a 
combination of fetal and postnatal brain programming, together with in- 
and ex-utero experiences. However exactly how these factors come 
about and interact to create these complex behaviours is still under 
investigation. Our results indicate that some of the neural foundations 
crucial for developmental capacities in infanthood, observed through 
the pattern of structural covariance, originate during the fetal period 
and are already present at birth. Social-emotional abilities were pre
dicted by the individual edges comprising the network and associated 
with the average whole-network strength (Figs. 2 and 5) implying this 
relationship is observed both at the micro and macro scale properties of 
the network. 

Fig. 5. Scatterplots of whole-network average and behaviour. Plots of average MSN strength across the cortex against language, motor, cognitive and social- 
emotional measurements 18 months. 

Table 2 
Linear regression results for whole-network average strength and behaviour.   

Beta (95% CI) SE T- 
value 

R2 full ANOVA 
model 

Cognitive 
composite 

114.78 (− 19.19 to 
248.75)  

67.91 1.69  0.07 

Language 
composite 

221.91 
(23.14–420.67)  

100.75 2.20*  0.10 

Expressive 
language 

45.58 (11.67–79.49)  17.90 2.65 
**  

0.07 

Receptive 
language 

31.02 (− 9.32 to 71.36)  20.45 1.52  0.11 

Motor 
composite 

39.97 (− 91.57 to 
171.51)  

66.68 0.6  0.01 

Fine motor 6.0 (− 23.50 to 35.50)  14.95 0.4  0.03 
Gross motor 7.19 (− 18.73 to 33.10)  13.14 0.55  0.02 
Q-CHAT -153.78 (− 271.31- 

(− 36.26))  
59.56 -2.58*  0.14 

SE-Standard error, Q-CHAT- Quantitative Checklist for Autism in Toddlers. 
* p < 0.05 
** p < 0.01 
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Specifically, as a predictive network, neonatal MSNs reflect that 
optimal brain functioning is reliant on a delicate equilibrium of positive 
and negative structural covariance, where the skeleton for future infant 
development is established long before overt behaviours could be 
assessed. Our results suggest that within functional cortical divisions (i. 
e., insular & medial frontal and somatosensory & auditory clusters), 
greater structural similarity at birth is associated with better language 
and social-emotional skills in infanthood. This was also observed on a 
whole-brain level. This is in agreement with the hypothesized basis of 
structural covariance in the brain, whereby regions participating in 
similar functions show comparable structural signatures, implying joint 
developmental trajectories. 

Predictive networks included 1%− 3% of edges, consistent with 
other studies utilizing CPM (Cai et al., 2020; Rosenberg et al., 2016; Suo 
et al., 2020; Yip et al., 2019). The resulting predictive networks for 
social-emotional features encompassed the entire cortex, with predictive 
edges observed both within functional clusters and between functional 
clusters revealing both local and distributed networks (Figs. 3 and 4). 
The predictive ability (correlation between predicted and observed 
values) was modest. Variance explained by whole-network strength 
ranged between 2%− 4%, similar to previous estimates of the contri
bution of MRI features in explaining cognitive development in a mixed 
sample of term and preterm neonates (Girault et al., 2019a), but lower 

than estimates reported in preterm infants only (Ball et al., 2015). 
Combining with whole brain connectivity measures (e.g., fMRI) may 
provide a pathway to increasing predictive values. This reinforces the 
importance of other postnatal factors such as development, experience 
and environment (Iso et al., 2007; Koo et al., 2003) and variability in the 
stage and recording of cognitive development at 18 months. 

The large variability in brain phenotypes during early development 
was demonstrated with the network predicting language abilities: While 
a significant predictive network emerged using LOOCV, it could not be 
replicated using a 10-fold cross-validation. In this case, a removal of only 
10% of the subjects diminished the predictive capacity of the model. 
This illustrates the need for large cohorts in imaging studies of norma
tive development in infanthood, which are now feasible through en
deavours such as the dHCP. Although not robust enough, the language 
network revealed interesting patterns: There was some overlap between 
predictive networks for social-emotional and language scores. This is not 
surprising as these measures are conceptually related (i.e., language is 
critical for social communication) and correlated (r = − 0.52). It is not 
only that producing and understanding speech is critical to communi
cating with others, but it is also postulated that social interaction and 
social learning experiences are crucial for the proper development of 
language skills (Kuhl, 2007). The overlap in the predictive networks of 
Q-CHAT and language scores reached a maximum of 26%, suggesting 

Fig. 6. Scatterplots of significant associations between within-cluster average network strength and developmental outcomes. Plots of significant associations be
tween within-cluster average MSN strength and social-emotional, language and cognitive measures at 18 months. Top: insular & medial frontal cluster, bottom: 
somatosensory & auditory cluster. 
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that while these scores are correlated, they also represent additional 
behavioural phenotypes and mechanisms. The robustness of Q-CHAT 
predictions but not of language skills alone may imply that utilizing a 
measure such as the Q-CHAT, which combines additional behaviours 
together with communication and language indices, may improve our 
ability to predict infant outcomes from brain data. 

A large Australian study (Reilly et al., 2007) found that risk factors 
for developmental language delays such as gender, prematurity and 
birth weight, birth order, socioeconomic status, maternal mental health 
and education, and family history of language difficulties explain a small 
amount of variability in language abilities at age two (up to 7% of 
variance). Moreover, the authors found that the most predictive factor of 
language performance at 12 months is language performance at 8 
months and that performance at 24 months is best predicted by abilities 
at 12 months (Reilly et al., 2006, 2007), thus indicating early trait sta
bility. These findings support our observations that the brain basis for 
early capabilities begins to shape in very early life, supporting a sig
nificant role for genetic and intrauterine factors that are further influ
enced over post-natal development. Moreover, this shows how 
predicting developmental outcomes from known risk factors has very 
little power. 

Our results point to specific involvement of occipital-parietal, so
matosensory-auditory and insular-medial frontal regions. This resonates 
with established trajectories of brain development, whereby synapses, 
dendritic growth and myelination are first established in primary 
cortical regions (Huttenlocher and Dabholkar, 1997; Kinney et al., 
1988), with cortical grey matter following a lower- to higher-order 
regional developmental (Gogtay et al., 2004). All of the 
above-mentioned regions are required for language, communication and 
social behaviours (Demonet et al., 2005; Porcelli et al., 2019). These 
larger cortical divisions include specific brain regions traditionally 
associated with language, such as Broca’s area (within the insular and 
medial/inferior frontal cluster) and the supramarginal gyrus (as part of 
the occipital and parietal cluster), which has been implicated in studies 
of toddlers with developmental language disorders using MRI (Morgan 
et al., 2016). Moreover, the contribution of the cortical primary motor 
areas complements the association between motor skills and language in 
both ASC and the general population (Bedford et al., 2016; Gonzalez 
et al., 2019), whereby better motor development is related to better 
language development, revealing a close relationship between these 
seemingly ‘independent’ domains. 

Problems with social functioning and communication are associated 
with a variety of neurological and psychiatric conditions, most notably 
ASC. Research on adolescents and adults suggests that social behaviour 
is reliant on the proper structure and function of stand-alone brain re
gions, as well as of brain-wide networks (e.g., ‘amygdala network’, 
‘empathy network’). Structures identified include but are not limited to 
the temporo-parietal junction, prefrontal cortex, superior temporal 
gyrus, and amygdala (Kennedy and Adolphs, 2012). From a network 
perspective, in young children with ASC, grey matter covariance showed 
patterns of decreased connectivity in the cortex, that also predicted 
communication scores (He et al., 2021). Nodal efficiency of tractog
raphy networks in infants who were later diagnosed with ASC was also 
found to be reduced in primary somatosensory, auditory and language 
areas (Lewis et al., 2017), where changes were detected as early as six 
months and related to the level of autistic symptoms at 24 months. 

In previous work with smaller sample size and the inclusion of both 
term and preterm neonates, cortical FA at birth was found to signifi
cantly predict cognitive and language scores at two years using support 
vector regression (Ouyang et al., 2020), with language-related features 
including the inferior frontal gyrus, insula and post-central gyrus, re
gions that were also identified in this current work. A longitudinal study 
of 33 term-born infants examined the relationship between 
deformation-based surface distance at neonatal timepoint and the 
Bayley-III scores at four different time points in the first two years of life 
(Spann et al., 2014). The authors found significant associations between 

neonatal volume changes and motor and cognitive scores at 6, 12, 18 
and 24 months, an association we were not able to replicate in this 
current work. In that study, associations with language scores were also 
found across all time points, highlighting the cingulate and posterior 
parietal areas. Interestingly, at 18 months this relationship was weaker 
compared to performance at 12 or 24 months. 

The ontogeny of different cortical regions, and of different behav
ioural skills is distinct. Grossly speaking, the first cortical regions to 
mature are the primary areas of motor, sensory, visual and auditory 
functions, followed by their associative regions, and lastly maturing are 
the higher-order (frontal) regions (Gogtay et al., 2004). This is the case 
for behavioural development as well; the infant will first establish vi
sual, somatosensory and auditory functions, before engaging in complex 
activities requiring language and cognitive functions. Therefore, in the 
immediate postnatal period, sensory, primary regions may have reached 
a maturational stage where enough variance is presented to detect a 
linear relationship with outcome. On the other hand, other regions may 
have not reached maturity at this point. Moreover, as the development 
of motor, language, cognitive, and social-emotional abilities emerge and 
refine at different timepoints and timescales, at 18 months, the level of 
expertise in these skills is different. This may indicate that certain re
lationships are only apparent when pairing different ages at scan and 
outcome and is therefore a substantial challenge when designing studies 
exploring early development. This was demonstrated by Hazlett et al. 
(2017), reporting that differences in brain volume in infants with ASC 
could be detected at 24 months, but not before that. Lack of results for 
the motor domain may relate to a narrower spread of performance in 
motor scores: As can be observed from Fig. 5, the variability in motor 
scores, especially in the composite motor scores, is smaller compared to 
other outcome measures and could influence the ability to detect any 
meaningful differences. 

4.1. Limitations 

CPM has its own limitations as outlined in (Shen et al., 2017), for 
example, modelling only a linear relationship between variables. How
ever, it does provide a clear data-driven framework for the imple
mentation and interpretation of behaviour prediction models based on 
connectivity. We were not able to perform out-of-sample cross-
validation for prediction results, only a within-sample validation and as 
such it remains to be confirmed whether the results generalise to a 
different neonatal sample. 

As a limitation we should also highlight that the brain-behaviour 
associations reported here exclude subcortical structures and the cere
bellum as structural features. In this work we focused on surface-based 
measurements as developmental indices and therefore our analysis was 
limited to the cortex. Future work should examine the contribution of 
subcortical regions and the cerebellum, as they are likely to also be 
implicated in the development of social-emotional, cognitive, language 
and motor abilities. Moreover, the cortical parcellation for generating 
the networks’ nodes was based on 150 regions. While we are aware 
network analysis is highly reliant on parcellation scheme, we have 
shown in a previous paper (see Supplementary Fig. 1 in Fenchel et al., 
2020), that MSNs could be replicated using random partitions of 
different sizes. Given that the neonatal brain is also substantially 
smaller, in this current work we chose the n = 150 parcellation as a 
middle ground between granularity and interpretability, while not 
sampling very small patches. 

When interpreting scores from developmental assessments, such as 
the ones used in this study, one should understand their nature: One 
assessment at 18 months is only a transient screenshot of infant devel
opment and is not necessarily indicative of future difficulties at the in
dividual level. Both language delays and the appearance of social- 
emotional difficulties at an early age do not inevitably mean the 
continuation of language difficulties or a later autism diagnosis. In 
addition, these features or delays might not be evident at 18 months but 
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only emerge at a later age. Therefore, any interpretation of infant as
sessments in the context of future functionality should be done with 
caution and preferably include follow-up at preschool and school-age 
(Duff et al., 2015; Fountain et al., 2012; Waizbard-Bartov et al., 2021). 

4.2. Conclusions 

In this work, we showed that multi-feature multi-modal cortical 
similarity at birth represented by MSNs are predictive of social- 
emotional abilities in a large group of infants. Cortical regions 
involved were widespread, with predictive features including connec
tivity within and across functional cortical domains. Earlier developing 
cortical regions seemed to be specifically important in this context. 
These results support the use of neonatal cortical profiles for means of 
early detection and support of developmental difficulties. 
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