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Abstract

Memory deficits are observed in a range of psychiatric disorders, but it is unclear whether memory deficits arise from a
shared brain correlate across disorders or from various dysfunctions unique to each disorder. Connectome-based predictive
modeling is a computational method that captures individual differences in functional connectomes associated with
behavioral phenotypes such as memory. We used publicly available task-based functional MRI data from patients with
schizophrenia (n = 33), bipolar disorder (n = 34), attention deficit hyper-activity disorder (n = 32), and healthy controls
(n = 73) to model the macroscale brain networks associated with working, short- and long-term memory. First, we use
10-fold and leave-group-out analyses to demonstrate that the same macroscale brain networks subserve memory across
diagnostic groups and that individual differences in memory performance are related to individual differences within
networks distributed throughout the brain, including the subcortex, default mode network, limbic network, and cerebellum.
Next, we show that diagnostic groups are associated with significant differences in whole-brain functional connectivity
that are distinct from the predictive models of memory. Finally, we show that models trained on the transdiagnostic sample
generalize to novel, healthy participants (n = 515) from the Human Connectome Project. These results suggest that despite
significant differences in whole-brain patterns of functional connectivity between diagnostic groups, the core macroscale
brain networks that subserve memory are shared.
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Introduction
Memory is a fundamental construct in cognitive and clinical
neuroscience. Because the ability to remember and manipu-
late information is critical to everyday life, attempts to under-
stand individual differences in memory have led to an increas-
ingly nuanced breakdown of different memory constructs, each
attempting to capture and explain variability in memory func-
tion across people (Baddeley 1988). For example, working mem-
ory refers to a task-limited storage and manipulation of infor-
mation (Christophel et al. 2017). In contrast, short- and long-
term memory are the capacity for holding, but not manipulating,
information that is readily available for a short or long period of
time (Norris 2017).

Deficits in specialized forms of memory are thought to be
characteristic of different mental illnesses. Working memory
deficits, for example, have long been observed in patients with
schizophrenia (SCZ), and functional magnetic resonance imag-
ing (fMRI) studies have indicated that increased activity in the
dorsolateral prefrontal cortex at higher working memory loads
may provide a brain correlate of this deficit (Callicott et al. 2003).
While similar memory deficits are observed in a range of psy-
chiatric disorders (Etkin et al. 2013), it is unclear whether these
deficits arise from a shared neurobiological dysfunction across
disorders or from ones that are unique to each disorder. Finally, if
shared correlates across psychopathology exist, it is also unclear
whether these correlates can be observed in healthy individuals,
and whether individual differences in memory function arise
from these macroscale brain networks.

Several emerging works support the goal of elucidating
transdiagnostic, brain-phenotype associations. First, group-level
brain imaging studies have shown that the same brain networks
(Goodkind et al. 2015; Vanasse et al. 2018) are implicated in
a range of psychiatric diseases. Second, characterizing mental
health disorders by disrupted cognitive processes with a distinct
neurobiological cause, which may transcend diagnostic group,
promises greater validity than traditional approaches (Insel
et al. 2010; Insel and Sahakian 2012). Third, in the context of
mental health, “health” and “disease” are increasingly viewed
not as strict, binary groupings, but rather as fuzzy boundaries
along a continuous spectrum that may shift depending on
how you define health and disease (Holmes and Yeo 2015).
Finally, a wide range of brain imaging, behavioral, and genomic
studies have shown pervasive heterogeneity within diagnostic
group and overlapping distributions of cognition, including
measures of memory, across diagnostic group and healthy
controls (Consortium C-DGotPG 2013; Holmes and Patrick 2018).

Given growing evidence that complex cognitive processes
are represented by distributed, rather than focal, patterns of
activity, functional connectivity is particularly well suited to elu-
cidate distributed, transdiagnostic correlates of memory. Func-
tional connectomes, or functional connectivity matrices, repre-
sent how brain activity from spatially distinct regions covaries
over time. Each brain region is considered a node, and temporal
correlation in the activity between two nodes are considered
functional connections or edges. An individual’s connectome
has been shown to be unique to an individual (Finn et al. 2015),
stable over a period of years (Horien et al. 2019), and predic-
tive of clinical and cognitive traits in novel subjects (Rosenberg
et al. 2016; Dubois et al. 2018; Lake et al. 2019). Importantly,
predictive models of memory from connectomes have shown
promise in understanding the networks underlying working
memory impairment (Yamashita et al. 2018; Avery et al. 2020).

Functional connectivity derived from task-based data may be
particularly well suited for investigating transdiagnostic prop-
erties of memory. While connectomes are typically generated
using resting-state fMRI data, using task-based data has been
shown to improve the prediction of individual cognitive traits
and more clearly delineate brain–behavior associations (Greene
et al. 2018; Jiang et al. 2020).

We sought to uncover models using task-based connectomes
that predict memory function, to test if these models general-
ize across diagnostic groups, and to test whether whole-brain
patterns of functional connectivity differed across psychiatric
patients and healthy controls. To this end, we used connectome-
based predictive modeling (CPM) (Shen et al. 2017) to train
and test a model for working, short-, and long-term memory
measures across patients diagnosed with SCZ, bipolar affec-
tive disorder (BPAD), and attention deficit hyper-activity disor-
der (ADHD), and healthy individuals. In line with our previous
work, we show that individual differences in memory function
are related to individual differences within shared networks
across diagnosis, as demonstrated by the successful use of a
single model to predict memory scores in all groups. Next, we
show that—in addition, to these shared networks of memory—
whole-brain patterns of functional connectivity differ across
diagnostic groups, using a mass multivariate analysis (MMA)
(Dadashkarimi et al. 2019). While these differences were over-
represented in similar canonical brain networks as the mem-
ory models, the specific node and network patterns of these
differences were distinct. Finally, we test whether the model
trained on patient data generalizes to novel subjects from an
independent, external dataset of healthy individuals. Altogether,
our results suggest that despite significant differences in whole-
brain patterns of functional connectivity between diagnostic
groups, the macroscale brain networks that subserve memory
are shared across these groups.

Materials and Methods
We used two independent datasets in our analyses. We used the
UCLA Consortium for Neuropsychiatric Phenomics (CNP) for the
primary analysis and the Human Connectome Project (HCP) 900
Subjects release—the most recent release available when this
work began—for external validation.

CNP Participants

The overarching goal of the UCLA CNP is to understand the
dimensional structure of memory and cognitive control in
patients and healthy controls. To this end, the CNP includes
extensive set of MRI and behavioral data which is openly
available through the Open fMRI project, and is formatted
according to the Brain Imaging Data Structure (BIDS) standard.
Details of the CNP data may be referenced elsewhere (Poldrack
et al. 2016). From the CNP data, we restricted this larger sample
to subjects who had full-brain structural images and task-
based functional MRI acquisitions during the balloon analog
risk task (BART), Paired Associative Memory encoding (PAM-E),
Paired Associative Memory retrieval (PAM-R), Spatial Working
Memory Capacity (SCAP), Stop Signal (SS), and Task Switching
(TS) (see Fig. 1A). We excluded 100 subjects (55 controls, 20 SCZ,
14 bipolar, and 11 ADHD) because the above whole-brain image
volumes were unavailable for all 6 tasks, because they had
excessive head motion defined a priori as >0.15 mm grand mean
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Figure 1. Overview of processing pipeline. (A) We use six fMRI tasks and five categories of phenotypic measures from the Neuropsychiatric Phenomics Consortium

dataset (see Methods and Supplementary Materials). (B) We preprocess and divide fMRI volumes using the Shen 268 node atlas. We then create a cross-correlation
matrix of internode connectivity, hereafter described as edges. (C) We separate behavior and (D) fMRI data into train and test groups. We perform a principal component
analysis to summarize one behavioral construct score per subject; we use the training data’s PCA coefficients to transform the behavioral test data into component

space. (D) Across training subjects, we correlate each edge to the phenotypic scores and restrict subsequent analyses to edges with a correlation strength above P < 0.01
(see Supplementary Materials for different statistical thresholds). (E) We use a ridge regression algorithm to train a predictive model wherein edges from all 6 fMRI
tasks predict a phenotypic score. We apply this model to the selected edges to predict phenotypic scores for each individual in the test group. Model performance
measures are described in Methods.

frame-to-frame displacement across all 6 tasks, or >0.20 mm
mean frame-to-frame displacement on any individual task.
After these criteria, we included 172 subjects (HC = 75, SCZ = 30,
BPAD = 35, and ADHD = 32). From the UCLA neuropsychological
battery, working memory was measured using the Wechsler
Memory Scale (WMS) symbol span, WMS digit span, and Wech-
sler Adult Intelligence Scale (WAIS) letter–number sequencing;
short-term memory was measured using the Verbal recall I, and
California Verbal Learning Task (CVLT) short-delay free recall;
and long-term memory was measured using Verbal recall II,
CVLT long-delay free recall, and CVLT scene recognition overall
accuracy.

CNP Connectivity Processing

Whole-brain functional connectivity was assessed as described
previously (Finn et al. 2017; Greene et al. 2018). Standard pre-
processing procedures were applied including brain extraction,
motion correction, nonlinear registration to MNI-152 standard
space, and spatial smoothing (6-mm FWHM). Next, the task fMRI
data was further processed by removal of motion-related com-
ponents of the signal; regression of mean time courses in white
matter, cerebrospinal fluid, and gray matter; removal of the
linear trend; and low-pass filtering. Task-based connectomes
were calculated using the “raw” task time courses, without
the removal of task-evoked activity. Using the Shen 268 node
atlas, for every node, a mean time course was calculated by
averaging across voxels within node (see Fig. 1B). We selected
the Shen 268 node atlas in line with previous work showing
that Pairwise Pearson correlation was computed between all
pairs of nodes. Correlations were Fisher z-transformed to yield
symmetric 268 × 268 connectivity matrices.

HCP Participants

HCP S900 Release Data were obtained from the HCP 900-
participant release of December 2015 (Essen et al. 2013). From
this dataset, we restricted our analyses to those individuals who
participated in all the nine fMRI conditions (7 task, 2 rest), whose
mean frame-to-frame displacement was less than 0.1 mm and
whose maximum frame-to-frame displacement was less than
0.15 mm, and for whom memory measures were available
(n = 515; 241 males; ages 22–37). For measures of memory,
we selected the list sorting working memory and the picture
sequence memory task from the NIH Toolbox for Assessment
of Neurological and Behavioral function (http://www.nihtoo
lbox.org) and Penn word memory test from the University of
Pennsylvania Computerized Neurocognitive Battery. These tasks
have previously been shown to cluster into a single memory
factor (Dubois et al. 2018).

HCP Connectivity Processing

The HCP minimal preprocessing pipeline was used on these data
(Glasser et al. 2013), which includes artifact removal, motion cor-
rection, and registration to standard space. All subsequent pre-
processing was performed in BioImage Suite and was identical
to the CNP processing.

Predictive Modeling Framework

Figure 1 shows an overview of our predictive modeling approach.
Given that a single behavioral measurement is an incomplete
approximation of a behavioral construct with substantial noise
due to subject and administration variability, we concatenated
across multiple individual measures (i.e., working, short-, and
long-term memory). We used a principal components analysis

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa371#supplementary-data
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(PCA) to create latent memory phenotypes for predictive model-
ing with CPM. A similar strategy has been successfully employed
to create a phenotypic measure of intelligence across individual
measures of crystallized ability, processing speed, visuospatial
ability, and memory (Dubois et al. 2018). To maintain separate
train and test groups, for each iteration, each PCA was limited
to the training datasets and the PCA coefficients applied to the
test dataset (see Fig. 1C).

To generate predictive models of latent memory phe-
notypes, we combined all task connectomes into a single
predictive model using a modified CPM framework based
on ridge regression, called ridge regression CPM (rCPM; Gao
et al. 2010). Using multiple connectomes improves predictive
modeling and facilitates a more holistic characterization
of brain–behavior associations (Gao et al. 2019; Jiang et al.
2020). However, there is a high degree of similarity between
connectomes from different tasks, and edges from these
connectomes are not independent. In brief, rCPM accounts
for these dependencies in a principled manner. For feature
selection, we use a significance threshold of P < 0.01 to select
edges that are positively and negatively correlated with the
latent memory phenotype across individuals in the training
data. We controlled for motion at this feature selection step
using partial correlation (Hsu et al. 2018). A schematic of
additional analysis to control for confounds such as motion,
P-value, and edge number can be found in Supplementary
Figure 1.

Model Validation

We used three validation approaches, each with an explicit goal.
First, we used 10-fold cross-validation to train transdiagnostic
models of memory. For 10-fold cross-validation, we randomly
divided the whole sample (N = 172)—regardless of diagnostic
group—into 10, approximately equal-sized groups; on each fold,
the model was trained on 9 groups and tested on the excluded
10th group. Unless otherwise specified (cf., the Supplementary
Materials), we repeat this procedure for 1000 random divisions.
Second, we used leave-one-group-out cross-validation to test
whether a model trained on all but a single diagnostic category
generalizes to that left-out group (see Fig. 3). We did not iterate
over the leave-one-group-out analysis since the possibilities are
exhausted with one set. Third, we used an external validation
set to test whether models trained on UCLA data generalize to
the independently acquired HCP dataset.

Assessing Prediction Performance

For the 10-fold cross-validation analyses, we evaluated model
performance with a cross-validated R2

R2
CV = 1 −

∑n
i=1

(
yi − ŷ

)2

∑n
i=1

(
yi − y

)2

.
√
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CV is reported as it is comparable to, but less biased than,

the typically used Pearson correlation value when using cross-

validation. In the text, we report the median
√

R2
CV value for 1000

random 10-fold divisions. To assess significance of
√

R2
CV, we use

permutation testing, where we randomly shuffle the correspon-
dence between behavioral variables and connectivity matrices
1000 times and rerun the rCPM analysis with the shuffled data

to generate null distributions of
√

R2
CV. Based on these null

distributions, the P-values for predictions were calculated as: p =(
#
{
ρnull > ρmedian

} + 1
)/

1001, where #
{
ρnull > ρmedian

}
indicates

the number of permutated predictions numerically greater than
the median of the unpermutated predictions. As we expected a
positive association between predicted and actual values, one-
tailed P-values are reported. For the leave-one-group-out and
external validation analyses, as they do not involve averaging
prediction performance across different folds, we used Pear-
son correlation between actual and predicted cognitive pheno-
type to measure prediction performance. To determine if the
diagnostic category has added information in the leave-one-
group-out analysis, we randomly permuted group membership
(200 times), keeping the relationship between behavioral pheno-
types and CPM matrices intact. We maintained the same group
size throughout permutations (i.e., the SCZ group remained
n = 33, even though it was randomly filled with participants).
The hypothesis was that if prediction performance in null distri-
bution trials moved above/below the 97.5/2.5 percentiles, diag-
nostic category was detracting/contributing information from
prediction success. False Discovery Rate (FDR) at P < 0.001 was
used to correct for multiple comparisons.

Mass Multivariate Analysis of Diagnostic Category

To measure differences in task connectomes among standard
DSM-IV diagnostic categories, we used an extension of a tradi-
tional mass univariate, edge-wise analysis that uses multivari-
ate approaches to combine all task connectomes in a single anal-
ysis, labeled Mass Multivariate Analysis (MMA) (Dadashkarimi
et al. 2019). For each edge, connectivity strength from all task-
based connectomes is included in a two-tailed MANOVA—the
multivariate version of an ANOVA—resulting in a node-by-node
matrix of F-values that represent the magnitude of differences
across all diagnostic categories (i.e., healthy individuals and
individuals with SCZ, BPAD, and ADHD) at each edge. We cor-
rected for multiple comparisons using FDR at P < 0.05.

Quantification of Node and Task Contribution

For the rCPM results, to quantify the contribution of each
node to a given predictive model, we calculated the n-
th node’s weight summed across all tasks and edges as:
Wn = ∑268

k=1
∑6

m=1B
(
k, m

)
βm

kstd
(
Ek

(
:, m

))
, where B

(
k, m

)
indexes

whether the kth edge is selected from the mth task, std
(
Ek

(
:, m

))

represents the standard deviation of the kth edge in the mth task,
and βm

k represents the weight learned by rCPM for the kth edge
in the mth task. To quantify contribution at the network level, Wn

was averaged over each node in canonical functional networks,
based on the functional networks presented in (Noble et al.
2017). To quantify the contribution of each task to a given predic-
tive model, we calculated the m-th task’s average weight (labeled
Wm) to the model as: Wm = ∑35 778

k=1 B
(
k, m

)
βm

kstd
(
Ek

(
:, m

))
.

To make the results more interpretable, Wm’s were then
normalized to have sum 1,

∑6
m=1Wm = 1, so that it represents

each task’s contribution proportion in the whole model. For
the MMA results, node- and network-level contribution were
quantified at the sum of all significant edges for a node or
network.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa371#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa371#supplementary-data
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External Model Testing

We used a subset of the HCP (N = 514 subjects) to test the gen-
eralizability of our model. In this analysis, all subjects in one
dataset (either CNP or HCP) were used for training and the other
dataset is used for testing. The memory measures from the HCP
and CNP are quite different with the HCP having fewer and less
specialized memory tests than the CNP. As such, we were not
able to theoretically combine the HCP measures in the same way
as the CNP and chose to predict a general memory construct
made of all memory measures available for each dataset. To
do so, PCA was performed on all subjects’ memory scores in
each dataset (HCP or CNP) independently to combine all memory
measures into a “general memory” construct. Second, all task
connectomes for an individual were combined using the general
functional connectivity method (Elliott et al. 2019). The general
functional connectivity method is a principled approach for
creating a single connectome from disparate task fMRI data, via
concatenating time courses from the different tasks. Like the
memory measures, combining task-based connectomes prior
to model building was chosen over the approach described
above as the tasks from the HCP and CNP have no clear corre-
spondence. Thus, assigning model weights for one set of tasks
to another was not feasible. Third, using these general func-
tional connectivity matrices, we trained a rCPM model of general
memory using all subjects in the training dataset. Finally, we
applied the trained model to the testing dataset to predict a
general memory score. Pearson correlation between predicted
and observed general memory was calculated to assess predic-
tion performance. Both CNP and HCP were used as training and
testing data.

Network Overlap

To assess the overlap between edges that were predictive of
each behavioral construct (i.e., in the 10-fold predictive model,
where the salient statistic is a given node or network’s clas-
sifier weighting summed across all tasks and edges) or were
significantly different across disease groups (i.e., in the mass-
multivariate analyses, where the salient statistic is a given node
or network’s F-score summed across all tasks and edges), we
used three different approaches. First, correlation was used to
compare the node-level contributions between predictive mod-
els and MMA results. Second, correlation was used to compare
the network-level contributions between predictive models and
MMA results. Third, we computed the probability that n shared
edges exist between our networks and edges within or between
10 canonical functional networks. Significance was determined
with the hypergeometric cumulative density function, which
returns the probability of drawing up to x of K possible items
in n drawings without replacement from an M-item population.
This was implemented as follows: p = 1-hygecdf (x, M, K, n) where
x equals the number of overlapping edges, n equals the total
edges in the first network of interest, K equals the total number
of edges in the second network of interest, and M equals the total
number of edges in the brain (35 778).

Code and Model Availability

Matlab scripts to run the main rCPM analyses can be found
at https://github.com/YaleMRRC/CPM/tree/master/matlab/func.
BioImage Suite tools used for analysis and visualization can
be accessed at www.bisweb.yale.edu. Matlab scripts written to
perform additional post hoc analyses are available from the

authors upon request. The complete predictive model (based on
the median-performing iteration, see Fig. 2) and a freely accessi-
ble instantiation of Bioimage Suite online wherein readers may
access and navigate the entire model can be found at https://
www.nitrc.org/projects/bioimagesuite/.

Results
Sample Characteristics

Demographic information of the CNP participants is shown in
Supplementary Table 1. Additionally, the distributions of all
memory measures as well as the latent memory constructs
(i.e., principal components), broken down by clinical group, are
shown in Supplementary Figures 2–4. There were no statisti-
cally significant differences in raw or latent memory constructs
related to diagnostic category. Demographic information of the
HCP participants can be found elsewhere (Greene et al. 2018).

Transdiagnostic Prediction of Memory Constructs

We were able to predict working, short-, and long-term memory
constructs across diagnosis. The six task-based connectomes
predict working memory (median q2 = 0.16, P < 0.001, permu-
tation testing, 1000 iterations, one-tailed), short-term (median
q2 = 0.22, P < 0.001, permutation testing 1000 iterations, one-
tailed), and long-term (median q2 = 0.20, P = < 0.001, permutation
testing, 1000 iterations, one-tailed). Similar prediction accuracy
is observed if all memory measures—regardless of category—are
included (median q2 = 0.27, P < 0.001, permutation testing, 1000
iterations). We conduct multiple post hoc follow-up analyses to
assess the robustness of our results. We test the effect of sample
size, motion, number of edges, and edge selection threshold on
model performance in Supplementary Figures 5–9.

In line with the previous CPM results, our models are com-
plex with contributions from each task and distributed across
multiple brain areas. In general, each task-based connectome
contributes to prediction performance (Supplementary Fig. 10).
For short-term and long-term memory, the PAM-RET and BART
tasks contributed the most to overall prediction. For working
memory, task contributions are more uniform. For the short-
and long-term memory models, the top three contributing nodes
to prediction were located in the right prefrontal cortex, cere-
bellum (left crus I), and the right motor strip (Fig. 2C). For the
working memory model, the top three contributing nodes are
in the left medial prefrontal, right temporal–parietal junction,
and right temporal lobe (Fig. 2C). Finally, all models were able
to predict the other memory constructs (Supplementary Fig. 11).
In other words, models trained with either working, short-, or
long-term memory also predicted the other memory measures
not used for training.

Leave-One-Group-Out Predictive Models of Memory

We are able to predict memory performance across diagnostic
groups (see Supplementary Fig. 12). In 14 of 16 analyses,
models—trained in all but one group—predict working, short-
term, and long-term memory in the left-out group. This is true
even when models are trained only on patients and tested
on healthy controls. Only the short- and long-term memory
models are created with BPAD as the left-out group was not
significant. When permuting diagnostic category labels to test
whether diagnosis adds value to the model, we did not observe
a clear change in model performance across the true and 200

https://github.com/YaleMRRC/CPM/tree/master/matlab/func
www.bisweb.yale.edu
https://www.nitrc.org/projects/bioimagesuite/
https://www.nitrc.org/projects/bioimagesuite/
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa371#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa371#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa371#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa371#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa371#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa371#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa371#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa371#supplementary-data
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Figure 2. Connectome-based predictive model performance for transdiagnostic 10-fold cross-validation. The left column (A) shows a histogram of the model
performance across 1000 iterations of the actual (red) and randomly permuted (blue) data. The middle column (B) shows how actual and predicted values compare for
the median-performing model (green, SCZ; blue, BPAD; red, ADHD). The right columns (C) show surface plots of each node’s degree, which is defined as the number of

edges per node that were weighted in 95% of iterations (the short-term memory model includes 289 consistently weighted edges; long-term, 276 edges; working, 174;
all, 362). Leave-one-group-out analyses are presented in the Supplementary Materials.

randomly permuted diagnosis permutations, indicating that
diagnostic category does not contribute information to predic-
tion performance.

Mass Multivariate Analysis of Diagnostic Category
Differences

We find differences between each diagnostic category’s task-
based functional connectomes, indicating that, while psychi-
atric diagnoses do not contribute to memory deficit predic-
tion, there are group differences in connectivity. After strict
network-based multiple comparison correction, only 368 edges
show group differences, representing only 0.17% of all possi-
ble edges. The cerebellum appears to be overrepresented in
connection strength differences across the disease group as it
contained the top three nodes (right V, right crus I, left crus I)
in terms of the number of edges (Fig. 3). Pairwise comparisons
between groups suggest that group differences are largely found
in medial frontal, frontoparietal, cerebellar, and motor networks.
Unthresholded edge locations are illustrated in Supplementary
Figure 13.

Network Profile and Overlap

We find that models for short-term, long-term, and working
memory were significantly correlated with each other at the
node level and network level (Fig. 4A). The short- and long-
term memory models were more similar to each other than
they were to working memory models. In contrast, the mod-
els for short-term, long-term, and working memory were not
correlated with MMA networks. Finally, we find that similar
networks are overrepresented in the three memory models and

MMA of diagnostic categories (Fig. 4B). Edges in the cerebellum
and subcortical networks and edges between the cerebellum,
subcortical, default mode, and motor networks are more likely
to be in these results than edges in other networks. Together,
these results suggest that, while they involve similar large-scale
networks, the memory models and MMA results are distinct.

Model Validation on External Datasets

The general memory model (including working, short- and long-
term memory measures) trained on the CNP dataset (N = 172)
successfully generalized to the HCP dataset (r = 0.17, P < 0.01,
df = 513). At the same time, a summary memory model trained
on the HCP dataset (N = 514) generalized back to the CNP dataset
(r = 0.40, P < 0.01, df = 170). We observe differences in prediction
performance when training with the CNP and HCP datasets.
We suspect that this is because the sample size used to train
our models is three times large for the HCP compared to the
CNP (i.e., 517 vs. 175), allowing us to achieve higher prediction
performance when training with the HCP.

Discussion
Using large, publicly available datasets and advanced predictive
modeling, we show that the macroscale circuitry of different
memory constructs (working, short-, and long-term memory)
are transdiagnostic. In other words, individuals with SCZ, BPAD
and ADHD show a common connectivity pattern which is
predictive of memory performance. This pattern is distributed
throughout the brain and includes regions in the subcortex,
default mode network, limbic network, and cerebellum. These
markers of memory generalize across diagnostic categories

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa371#supplementary-data
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Figure 3. Mass multivariate analysis of disease group differences in brain network structure across all tasks. (A) Surface illustration of nodes where edges (network
connections) significantly differ across all clinical groups, as measured with Hotelling’s T2. (B) illustrates significant network-to-network edges. (Circle plots showing
nonsummarized edges can be referenced in the Supplementary Materials; Network Labels: MF, medial frontal; FP, frontoparietal; DMN, default mode; Mot, motor cortex;

VI, visual A; VII, visual B; VAs, visual association; SAL, salience; SC, subcortical; CBL, cerebellum).

despite statistically significant differences in whole-brain
functional connectivity patterns observed with our MMA.
Finally, we show that connectome-based models of memory
generalize across independently collected datasets. Overall, our
results suggest that differences in memory across individuals
with and without psychiatric disorders arise from the same
underlying connectivity networks.

Although patients with mental illness have historically been
viewed as neurobiologically discrete categories, our results are
consistent with a growing body of work which supports a diag-
nostic continuum of cognition that includes healthy controls
(Cuthbert and Insel 2013; Yamashita et al. 2018). For the three
memory constructs we evaluate (working, short-, and long-term
memory), we show that models built from patients diagnosed
with SCZ, BPAD, and ADHD predict memory function in healthy
control subjects. This indicates that a similar macroscale brain
network subserves memory in patients with various diagnostic
categories (Insel et al. 2010; Insel and Sahakian 2012).

Memory is but one of many facets of cognition affected by
mental illness (Millan et al. 2012). There is reason to suspect
that other aspects of cognition can be predicted by shared
macroscale brain networks across diagnostic group. For exam-
ple, models of attention generalize across healthy controls and

individuals with ADHD (Rosenberg et al. 2016), and models of
social impairment generalize across healthy controls, individu-
als with ADHD, and individuals with autism (Lake et al. 2019).
It further seems possible that high-level summary measures of
cognition such as “gF” (Greene et al. 2018), or of psychopathol-
ogy such as “P,” (Caspi and Moffitt 2018) could be represented
by shared macroscale brain networks across diagnostic group.
Overall, future work could test whether other cognitive mea-
sures can be predicted in a transdiagnostic fashion.

Nevertheless, it remains important to test for specificity of
a model for an aspect of cognition, in addition to generaliza-
tion. We showed that, while the short- and long-term memory
models appear to have distinct node-level features from the
working memory model, all models predicted the other memory
constructs well, suggesting that connectome-based predictive
models may not be sensitive enough to resolve the distinction
between these constructs. As other experimental evidence sug-
gests that memory shares overlapping circuitry with attention,
decision-making, self-regulation, problem solving, and language
(Etkin et al. 2013), future work would be to test the specificity
of our memory model against these aspects of cognition. Pre-
liminary evidence suggests that connectome-based predictive
models can be specific to a phenotype. For example, models of

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa371#supplementary-data
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Figure 4. Similarity between the short, long, and working memory 10-fold predictive models and the diagnostic group mass multivariate analyses. (A) Correlation

matrices for the node- or network-level contribution to the three predictive models and the node- or network-level F-score of the mass multivariate analyses. The
upper triangle shows node-level correlations; the lower triangle shows network-level correlations. Red font indicates significant correlations. Overall, all memory
models were correlated with each other but not the MMA results. (B) Layer thickness represents the likelihood that a particular internetwork (Left) or intranetwork
(Right) edge is selected by the model, as computed by the hypergeometric distribution. Ridge regression analyses are indicated by short, long, and working memory.

MMAis indicated by disease group. Each layered plot shows the cumulative (sum) likelihood (1.0—P value) estimated from the probability of edges being shared
between a priori networks and the short-, long-, and working memory models (Fig. 2) and groups differences associated with diagnostic categories (Fig. 3). Networks
and internetwork pairs are ordered from greatest to least cumulative likelihood. Only the most overlapping networks are shown for simplicity.
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different components of attention appear to be specific to that
component and do not predict other components (Rosenberg,
Hsu, et al. 2018b).

We further show differences in the brain’s overall functional
organization as a function of diagnostic category. While the
memory prediction models and the MMA results were distinct
(see Fig. 4A), there were similarities in which networks were
overrepresented (e.g., the cerebellum; see Fig. 4B). Therefore,
although diagnosis-related pathophysiologies are associated
with significant changes in the brain’s overall functional
organization, possibly involving similar large-scale networks,
these changes do not fundamentally alter the functional
anatomy of memory. That we do not observe compensatory
circuits engaged to maintain cognitive performance in mental
health may be important. This suggests that the plasticity of the
brain constrains recovery or, perhaps, is part of the problem (i.e.,
reduced neuroplasticity). However, future work is needed to test
this idea.

Given the phenotypic variability and cognitive complexity of
memory, it is unsurprising that our functional connectome-
based models reflect diffuse cortical networks. Functional
connectome-based models of cognitive traits tend to be very
complex, and as many as 214 668 edges may be used as an
initial input to a given model. While we use a comparatively
small subset of the possible edges to ultimately define the
model, the contributing edges typically number in the hundreds.
Although each individual edge or task-based connectome is
either weakly predictive or not predictive at all, combining edges
en masse across multiple task-based connectomes improves
the prediction of behavioral traits (Gao et al. 2019). We extend
the observation that different tasks contribute differentially to
the final predictive model, further suggesting that the battery
of tasks used in prediction is an important consideration in
clinically relevant models (see Supplementary Fig. 5).

This could be an important insight into biomarker devel-
opment: successful models of brain–behavior relationships are
not necessarily simple and, given that the human brain and
behavior are highly complicated, models could very well be
necessarily complex (Burnham and Anderson 2004; Rosenberg,
Casey, et al. 2018). Although communicating a complex model
(i.e., in a paper or figure or conversation) requires a reduction
of complexity (Yip, et al. 2019), this can appear to come at the
cost of learning something neurobiologically meaningful (Bzdok
et al. 2019).

With this in mind, our results implicate the importance of
the cerebellum. Consistently, the bilateral crus I was a key node
across analyses. This cerebellar region is part of a nonmotor
gradient in the cerebellum that is engaged in working memory
tasks, (Guell et al. 2018) consistent with recent parcellations that
split the cerebellum into sensorimotor, cognitive, and limbic
functions (Schmahmann and Caplan 2006; Riedel et al. 2015).
Furthermore, recent evidence implicates the cerebellum as part
of a whole-brain network affected in psychiatric disease (Ji et al.
2019), consistent with our results. Together, these results add to
the improving understanding of the cognitive components of the
cerebellum (Buckner 2013).

This study has several strengths, including use of an
advanced, whole-brain predictive modeling approach that
takes advantage of complementary information from several
sources, leave-one-group-out transdiagnostic modeling, and
out-of-sample replication. However, several limitations should
be noted. While the CNP sample is large (N = 172), the number
of individuals in each diagnostic category is relatively modest

(smallest group, N = 30); thus, further work in larger samples
is warranted. In addition, the functional significance of the
identified networks in relation to other aspects of cognition
and mental health remains to be determined. While we have
attempted to control for potential confounds, we cannot
entirely exclude the effects of other clinical variables, such as
medication, disease severity, and general cognitive impairment,
on connectivity strength. To facilitate replication, we have
shared all analysis software and models (see Code and Model
Availability).

In conclusion, we have used CPM to define the macroscale
brain networks that predicts memory function across diagnostic
categories. We have further showed that, notwithstanding dif-
ferences in functional connectivity between diagnostic groups,
models trained on patients with mental illness generalize
to healthy controls. We further show that predictive models
of memory function generalize across independent datasets.
Together, these observations suggest that the same macroscale
brain networks subserve memory across diagnostic groups and
that individual differences in memory performance are related
to individual differences within this brain circuit.

We recommend that brain models of memory should be
extended in a larger, more diverse transdiagnostic sample.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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