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Abstract

Background: £ntada phaseoloides (L) Merr. is an important traditional medicinal plant. The stem of Entada
phaseoloides is popularly used as traditional medicine because of its significance in dispelling wind and dampness
and remarkable anti-inflammatory activities. Triterpenoid saponins are the major bioactive compounds of Entada
phaseoloides. However, genomic or transcriptomic technologies have not been used to study the triterpenoid
saponin biosynthetic pathway in this plant.

Results: We performed comparative transcriptome analysis of the root, stem, and leaf tissues of Entada phaseoloides
with three independent biological replicates and obtained a total of 53.26 Gb clean data and 116,910 unigenes,
with an average N50 length of 1218 bp. Putative functions could be annotated to 42,191 unigenes (36.1%) based
on BLASTx searches against the Non-redundant, Uniprot, KEGG, Pfam, GO, KEGG and COG databases. Most of the
unigenes related to triterpenoid saponin backbone biosynthesis were specifically upregulated in the stem. A total of
26 cytochrome P450 and 17 uridine diphosphate glycosyltransferase candidate genes related to triterpenoid
saponin biosynthesis were identified. The differential expressions of selected genes were further verified by gPT-
PCR.

Conclusions: The dataset reported here will facilitate the research about the functional genomics of triterpenoid
saponin biosynthesis and genetic engineering of Entada phaseoloides.
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Background

Entada phaseoloides (L.) Merr. is a liana belonging to
Fabaceae family. It grows in Southern China and other
tropical countries. The stem of Entada phaseoloides is
popularly used in traditional medicine because of its sig-
nificant pharmacological activities [1-3]. The stem of
Entada phaseoloides, also called “Guo Gang Long,” pro-
duces curative effects that dispel wind and dampness
and exhibits remarkable anti-inflammatory activity. Its
main bioactive ingredients are triterpenoid saponins
compounds [3]. Various types of triterpene saponins
have been isolated from E. phaseoloides. The representa-
tive saponins of Entada phaseoloides are oleanane-type
triterpene saponins which contain seven sugar chains.

The mevalonic acid (MVA) pathway is an important
metabolic pathway in plants [4, 5]. Triterpenoid saponins
comprise six isoprene units and are derived from a C-30
hydrocarbon precursor, squalene. Squalene is synthesized
from isopentenyl diphosphate (IPP) via the MVA pathway.
Subsequently, squalene epoxidase (SQE) catalyzes the
conversion of squalene to 2,3-oxidosqualene. The diversi-
fying step in triterpenoid backbone biosynthesis is the
cyclization of 2,3-oxidosqualene catalyzed by a class of
oxidosqualene cyclases (OSCs) [6, 7]. Cytochrome P450
monooxygenases (CYP450s) and UDP-glycosyltransferases
(UGTs) govern the hydroxylation, oxidation, and glycosyl-
ation steps, yielding triterpenoid saponins [8—10]. How-
ever, the key genes related to triterpenoid saponin
biosynthesis in Entada phaseoloides have not been
identified.

High-throughput sequencing analysis is a useful
method to clarify the molecular mechanism of plant sec-
ondary metabolism [11, 12]. Recently, transcriptome
assay with next-generation sequencing has been exten-
sively used to explore the novel genes underlying active-
ingredient biosynthesis pathways in medicinal plants.
Some include the excavation of genes encoding enzymes
that catalyze distinct steps related to the biosynthetic
pathway of ginsenosides in Panax ginseng [13], triterpen-
oid saponin biosynthesis in Bacopa monnieri [14], arte-
misinin in Artemisia annua [15, 16], flavonoid
biosynthesis in safflower [17], glycyrrhizin in Glycyrrhiza
uralensis [18], rubber in Parthenium argentatum [19],
cardiac glycoside in Calotropis procera [20], terpenoid in
Cinnamomum camphora [21], cannabinoids in Cannabis
sativa [22], withanolide in Withania somnifera [23],
picrosides in Picrorhiza kurrooa [24], paclitaxel in Taxus
chinensis [25] and steroidal saponins in Asparagus race-
mosus [26].

Because the synthesis and accumulation of specific
metabolites in different tissues depends on the age of
the plant, and are greatly affected by the different devel-
opmental stages. It was found that the content of triter-
penes accumulated in the leaves of P. ginseng are higher
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in the early growth stage, while the content of triter-
penes in the roots of old plants are higher [27]. Com-
parative transcriptome analysis including root and leaf
tissues to excavate transcripts related to saponin biosyn-
thesis is already reported for many plants, such as
Hedera helix 28], Panax notoginseng [29] and Asparagus
racemosus [26]. The maximum triterpenoid saponin
content was identified in stem. So, in this study, com-
parative transcriptome analysis of root, stem, and leaf
tissues of Entada phaseoloides was performed to identify
genes related to triterpenoid saponin. We obtained thou-
sands of putative genes, including a series of genes re-
lated to triterpene saponin biosynthesis. Moreover,
different expression patterns of CYP450s and UGTs in
the three tissues were analyzed. This work was estab-
lished to functionally research the genes related to triter-
pene saponin  biosynthesis and provide more
information about this species.

Results

lllumina sequencing and de novo assembly

To characterize the transcriptomes of Entada phaseo-
loides, we sequenced nine cDNA libraries prepared from
the root, stem, and leaf tissues with three biological re-
peats by using the Illumina Hiseq 2500 platform. A total
of 53.26 Gb clean data were obtained after removing
adaptors, poly-A tails, and primer sequences, short (< 50
bp), and low-quality sequences. A total of 57—-60 million
for each tissue were generated (Additional file 1). The
high-quality reads were assembled using the Trinity pro-
gram [30] and the TGI clustering tool (TGICL) [31] to
remove redundant sequences. Finally, 116,910 unigenes
were identified, with an average N50 length of 1218 bp
(Additional file 1). The correlation indices between re-
peated samples were > 0.9 (Additional file 2), indicating
that the Illumina sequencing results are credible.

Functional annotation

All assembled unigenes were searched against the Non-
redundant (Nr), Uniprot, Kyoto Encyclopedia of Genes
and Genomes (KEGQG), Pfam, Gene Ontology (GO), and
Clusters of Orthologous Groups (COG) databases using
the BLASTx program with E-value <le-5. Among the
116,910 sequences, 42,191 (36.1%), 41,228 (35.3%), 28,
126 (24.1%), 26,874 (23.0%), 15,119 (13.0%) and 11,812
(10.1%) unigenes showed significant similarity to known
proteins in NR, Uniprot, GO, Pfam, KEGG and COG
database, respectively. The result of BLASTX with differ-
ent databases and their annotation were listed in Add-
itional file 3. Based on the Nr database, the E-value
distribution indicated that 70.67% of the matched uni-
genes ranged from le-5 to 1e-100 (Fig. 1a). For the simi-
larity distribution, 46.43% unigenes exhibited a similarity
of above 80%, whereas 50.79% of the unigenes showed a
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Fig. 1 Similarity of unigenes annotated using the Nr database. a E-value distribution of best BLAST hits for each unigene (E-value <1e-5). b
Similarity distribution of top BLAST hits for each unigene. ¢ Distribution of the most homologous sequence results for each unigene by species
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similarity of 40-80% (Fig. 1b). Furthermore, 14.63% of
the Entada phaseoloides unigenes shared high similarity
with the genes of Cicer arietinum, 13.46% similarity with
Cajanus cajan, 12.84% similarity with Glycine max, and
9.07% similarity with Medicago truncatula (Fig. 1c).

GO analysis included three main domains that de-
scribe biological processes, cellular components, and
molecular functions. When GO was used to classify gene
functions, 28,126 unigenes were assigned to 60 func-
tional categories (Additional files 4 and 5). Within the
biological process domain, the three most enriched cat-
egories were “biosynthetic process,” “cellular nitrogen
compound metabolic process,” and “response to stress.”
In the cellular component domain, the three most
matched categories were “cellular component.” “nucleus,
” and “protein complex.” In the molecular function do-
main, the three most common categories were “ion
binding,” “molecular function,” and “kinase activity.”

To better understand the functions of specific meta-
bolic pathways in Entada phaseoloides, we mapped the

annotated unigenes to the reference biological pathways
in the KEGG database. A total of 15,119 unigenes
(13.0%) could be assigned to five main categories and 31
sub-categories (Fig. 2, Additional file 6). These enzymes
feature assigned functions in 28 secondary metabolic
pathways in KEGG (Table 1). Among these unigenes,
147 encode key enzymes are related to the pathways for
terpenoid biosynthesis, including the synthesis of the
terpenoid backbone (63 unigenes), monoterpenoids (7
unigenes), diterpenoids (18 unigenes), sesquiterpenoids
and triterpenoids (16 unigenes), and other terpenoid-
quinone complexes (43 unigenes). Fifty unigenes are in-
volved in alkaloid biosynthesis, including isoquinoline al-
kaloid (24 unigenes) and tropane, piperidine, and
pyridine alkaloid biosynthesis (26 unigenes). Exactly 210
unigenes were associated with the flavonoid biosynthesis
pathway, including the phenylpropanoid (162 unigenes),
flavonoid (36 unigenes), flavone and flavonol (7 uni-
genes), and isoflavonoid (5 unigenes) biosynthesis path-
ways. Unigenes involved in these pathways should be
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further identified to understand their functions in the
biosynthesis of active ingredients in leguminous plants.

Differentially expressed gene (DEG) analysis

The clean reads were mapped back onto the assembled
unigenes by using the alignment via Burrows—Wheeler
aligner (BWA) program to analyze the DEGs among dif-
ferent tissues [32]. The Fragments per Kilobase Million
(FPKM) value was calculated for each unigene in each
tissue of Entada phaseoloides. The DEGs were identified
(Additional file 7) using FDR <0.001 and |log2Ratio| > 1
[33]. The lowest number of DEGs was observed between
the stem and leaf tissues, and the highest was noted be-
tween the root and leaf. Furthermore, the DEGs in one
tissue were studied and compared with those in the
other two tissues. The stem contained the largest num-
ber of highly expressed unigenes, having 8962 unigenes

more abundant in the stem. Figure 3 shows the other ex-
pression differences among various tissues.

KEGG enrichment analyses were performed with the
DEGs among the root, stem, and leaf tissues to investi-
gate the genes regulating the distribution of triterpenoid
saponin. These DEGs were evidently enriched in specific
pathways. Meanwhile, the top 20 significant pathways
were analyzed based on the FDR < 0.01. Between the leaf
and stem, plant hormone signal transduction, phenylpro-
panoid biosynthesis, photosynthesis, terpenoid backbone
biosynthesis, and phosphatidyllnositol signaling system
showed significant enrichment (Fig. 4a). Between the leaf
and root, plant hormone signal transduction, phenylpro-
panoid biosynthesis, photosynthesis, ubiquinone and
other terpenoid-quinone biosynthesis, and cyanoamino
acid metabolism pathways showed visible differential ex-
pression (Fig. 4b). Between the stem and root, plant hor-
mone signal transduction, phenylpropanoid biosynthesis,
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Pathway ID Pathways Unigene number
ko00100 Steroid biosynthesis 33
ko00130 Ubiquinone and other terpenoid-quinone biosynthesis 43
k000232 Caffeine metabolism 6
ko00254 Aflatoxin biosynthesis 1
ko00261 Monobactam biosynthesis 19
ko00332 Carbapenem biosynthesis 1
ko00400 Phenylalanine, tyrosine and tryptophan biosynthesis 58
ko00401 Novobiocin biosynthesis 2
ko00521 Streptomycin biosynthesis 23
ko00524 Butirosin and neomycin biosynthesis 12
ko00860 Porphyrin and chlorophyll metabolism 49
ko00900 Terpenoid backbone biosynthesis 63
ko00902 Monoterpenoid biosynthesis 7
ko00903 Limonene and pinene degradation 21
ko00904 Diterpenoid biosynthesis 18
ko00905 Brassinosteroid biosynthesis 13
ko00906 Carotenoid biosynthesis 26
ko00908 Zeatin biosynthesis 18
ko00909 Sesquiterpenoid and triterpenoid biosynthesis 16
ko00940 Phenylpropanoid biosynthesis 162
ko00941 Flavonoid biosynthesis 36
ko00943 Isoflavonoid biosynthesis 5
ko00944 Flavone and flavonol biosynthesis 7
ko00945 Stilbenoid, diarylheptanoid and gingerol biosynthesis 11
ko00950 Isoquinoline alkaloid biosynthesis 24
ko00960 Tropane, piperidine and pyridine alkaloid biosynthesis 26
ko00965 Betalain biosynthesis 1
ko00966 Glucosinolate biosynthesis 1

photosynthesis, cyanoamino acid metabolism, and ter-
penoid backbone biosynthesis showed significant enrich-
ment (Fig. 4c). In addition to the common pathways of
primary metabolism, enriched secondary metabolic path-
ways, including terpenoid and phenylpropanoid biosyn-
thesis, were also found between different tissues,
indicating the possible distinct distribution of secondary
metabolites in different tissues.

Putative genes involved in triterpenoid saponin backbone
biosynthesis

Triterpenes are synthetized from a five-carbon isoprene
unit through the cytosolic MVA pathway. Triterpenoid
saponins are composed of six isoprene units and are de-
rived from the C-30 hydrocarbon precursor, squalene.
Squalene is synthesized from isopentenyl diphosphate
(IPP) via the MVA pathway. All genes encoding the en-
zymes associated with the upstream regions of

triterpenoid biosynthesis were successfully detected in
the Entada phaseoloides transcriptome. Their expression
value was monitored in three biological replicates along
with their mean values (Table 2, Fig. 5). Most unigenes
related to MVA pathway were specifically upregulated in
the stem tissue. Hydroxymethylglutaryl-CoA reductase
showed the highest expression, which is the rate limiting
step MVA pathway for saponin biosynthesis.

The diversifying step in triterpenoid backbone biosyn-
thesis is the cyclization of 2,3-oxidosqualene catalyzed
by a class of OSCs. The major saponins in Entada pha-
seoloides are oleanane-type triterpenoid saponins derived
from B-amyrin. The Illumina sequencing of Entada pha-
seoloides revealed 21 OSC sequences, among which eight
unigenes were putative B-amyrin synthases. A full-length
OSC sequence (EpBAS) with high identity to B-amyrin
synthase was obtained (Additional file 8). The EpBAS
¢DNA included a 2289bp full open reading frame
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fragment. The deduced amino acid sequence of EpBAS
(762 amino acids) shared 89.37 and 89.34% similarity
with B-amyrin synthase in Abrus precatorius (ApBAS)
and GiBAS in Glycyrrhiza inflata (Fig. 6), respectively.
The relatively high similarities of the EpBAS protein
with other f-amyrin synthases suggest that this gene en-
codes B-amyrin synthase in Entada phaseoloides.

CYP450s and UGTs

Earlier studies suggested that CYP450s and UGTs may
account for the biosynthesis and accumulation of triter-
pene saponins in specific organs [34]. Tissue-specific
transcriptome analysis of Entada phaseoloides suggests
that the enzymes involved in triterpenoid saponin back-
bone are present in all the three tissues. Based on DEG
analysis using transcriptome data, there is the possibility
of further modifications such as oxidation and glycosyla-
tion using CYP450s and UGTs occur in the stem. Al-
though the enzymes related to precursor biosynthesis
are also present in root and leaf tissues which suggest
the involvement of all the three tissues in the metabolic
pathway. However, the metabolic analysis has indicated
that it is the stem which mostly contains higher tri-
terpenoid saponin content and utilized widely for its
excellent pharmacological activity. In this study, in
total of 326 CYP450s and 148 UGTs were found.
Among the DEGs, 26 CYP450s and 17 UGTs were
upregulated in the stem compared with the root and
leaf tissues (Fig. 7a and b).

gRT-PCR validation of candidate genes involved in
triterpenoid saponin biosynthesis

To verify the expression profiles obtained from Illumina
sequencing, we performed qRT-PCR on nine selected
genes related to triterpene saponin biosynthesis (Fig. 8).
Consistent with the Illumina data, most of these genes
showed strong expression levels in the stem compared
with the root and leaf, and acetyl-CoA acetyltransferase,
hydroxymethylglutaryl-CoA synthase,
hydroxymethylglutaryl-CoA reductase and SQE genes
were expressed abundantly. The expression fold changes
were also close to the RNA-seq results. qRT-PCR results
indicate that the RNA-seq data in this studty were
reliable.

Discussion
Entada phaseoloides is an important traditional medi-
cinal plant with various pharmaceutical activities. Al-
though this plant is pharmacologically important, its
genomic or transcriptomic information is highly limited.
In NCBI, only 38 protein sequences are accessible for
Entada phaseoloides. We revealed the comparative tran-
scriptome analysis of the root, stem, and leaf tissues of
Entada phaseoloides. The dataset reported here is useful
in understanding the biosynthetic pathway of pharmaco-
dynamic triterpenoid saponin and genetic engineering of
this species.

In this study, a total of 53.26 Gb clean data were gen-
erated from nine RNA-seq libraries of the root, stem,
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and leaf. De novo assembly acquired 116,910 unigenes,
with an average N50 length of 1218 bp, which is similar
to that of previously reported non-model plants, such as
Raphanus sativus [35] and Isodon Amethystoides [36].
The best match for each unigene search against the Nr
and KEGG databases was of help to assign GO func-
tional annotation under biological process, cellular com-
ponent, and molecular function categories. The varied

GO assignments to unigenes represented the possible as-
sortment of genes in the Entada phaseoloides transcrip-
tome. Several unigenes mapped onto KEGG are related
to distinct secondary metabolic pathways. Most un-
matched unigenes are short sequence proteins with no
domain, untranslated regions, non-coding RNA or as-
sembly mistakes. In support of the annotation, all the
unigenes encoding enzymes related to the upstream
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Annotation Enzyme Number of Expression value Expression value Expression value
code Unigenes (Root) (Stem) (Leef)
Acetyl-CoA acetyltransferase EC: 2319 3 75.867 198.683 101.921
Hydroxymethylglutaryl-CoA synthase EC: 233.10 4 91.369 386.235 56.173
Hydroxymethylglutaryl-CoA reductase EC1.1.1.34 10 450.327 760.578 72.126
Mevalonate kinase EC27.1.36 6 5.834 15.325 0428
Phosphomevalonate kinase EC. 2742 1 11.324 40.568 20.753
Mevalonate-5-pyrophosphate decarboxylase EC: 41133 3 96.023 51.040 93.265
Isopentenyl pyrophosphate isomerase EC: 5332 1 20335 32018 35.736
Farnesyl pyrophosphate synthase EC: 25.1.10 1 95416 70.236 99.372
Squalene synthase EC: 25.1.21 5 68.731 84.359 73.837
Squalene epoxidase EC:1.1499.7 16 163.378 206.325 90.231
B-Amyrin synthase EC: 54.99.39 8 60.329 91.661 32.965
Lupeol Synthase EC: 54.99.41 1 5368 2197 3562
Cycloartenol synthase EC: 54.99.8 5 10312 15.385 2214
X
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Fig. 5 Schematic representation of the potential triterpenoid saponin biosynthesis pathway. Transcriptomic data (Ig FPKM) for each gene
represent the expression in the root (R), stem (S), and leaf (L) on heat map
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J

regions of the MVA pathway for saponin biosynthesis
from acetyl-CoA to squalene were found.

SQE enzymes catalyze the oxidation of squalene to 2,
3-oxidosqualene. In our transcriptomic analysis, se-
quences encoding SQE represented the highest number
(16) of unigenes associated with the MVA pathway. Sin-
gle copies of SQE were identified in mouse and yeast,
and the destruction of SQE in these species is lethal
[37]. However, two or more copies of SQE are usually
found in plants. Hwang et al. [38] examined 17 SQE se-
quences in Eleutherococcus senticosus. In Arabidopsis
thaliana, six SQE enzymes have been identified, and

three of them encode functional SQEs [39]. The expres-
sion of PgSQEL regulates the biosynthesis of ginsenoside
in Panax ginseng [40]. Thus, SQE is possibly an import-
ant enzyme in the saponin biosynthetic pathway. The
SQE enzyme responsible for the saponin biosynthesis in
the 16 SQE sequences in Entada phaseoloides remains
to be identified.

The cyclization of 2,3-oxidosqualene is a branch point
of saponin synthesis. The major saponins in the stem of
Entada phaseoloides are oleanane-type triterpenoids.
Oleanolic acid sapogenin was derived from [-amyrin
after hydroxylation by CYP450s and glycosylation by
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UGTs [41, 42]. A total of 8 B-amyrin synthase, 326
CYP450, and 148 UGT sequences were observed in our
transcriptome. The high expression of B-amyrin syn-
thase, an important enzyme related to triterpenoid sapo-
genin biosynthesis at later stages, further reveals the
high concentration of sapogenins in the stem of Entada
phaseoloides. Similar tissue-specific concentrations of
triterpenoid sapogenins have already been reported in
other plants [43-45]. Moreover, 26 CYP450s and 17
UGTs were found to be upregulated in the stem. Further
characterization of these candidate enzymes is needed to
confirm the pathway of triterpenoid saponin biosynthesis
in Entada phaseoloides.

Conclusions

In the present study, the comparative transcriptome ana-
lysis of root, stem and leaf tissues of Entada phaseo-
loides was performed to investigate the putative genes
involved in triterpenoid saponin biosynthetic pathway of
an important medicinal plant. The differential expression
pattern of pathway genes suggest tissue-specific synthe-
sis. The identified data will help the further discovery
and functional genomics and transcriptomics analysis of
Entada phaseoloides.

Methods

Plant materials

Three-year-old healthy wild-type Entada phaseoloides
plants were collected from the experimental farm of

South China Botanical Garden, Guangzhou City, Guang-
dong Province, P.R. China, in May 2019. After cleaning
with ultrapure water, the roots, stems, and leaves were
collected separately, immediately frozen in liquid nitro-
gen, and stored at — 80 °C.

RNA extraction, cDNA synthesis, and sequencing

Total RNA from approximately 1.0 g of each tissue was
extracted using TRIzol (Invitrogen, Canada) following
the manufacturer’s instructions. Three replicates were
employed for each experiment. mRNA was isolated from
total RNA by using Oligo (dT) magnetic beads. By mix-
ing with fragmentation buffer, the mRNA was broken
into short fragments.

The short fragments were purified and resolved with
EB buffer. After end repair and single base “A”addition,
adapters were ligated to the cDNA molecules. To select
suitable ¢cDNA fragments for PCR amplification, we
purified the sample library with the AMPure XP system
(Beckman Coulter, USA). Finally, PCR products were
purified, and library quality was were determined using
an Agilent Bioanalyzer 2100 system (Agilent Technolo-
gies, USA) and a Qubit 3.0 fluorometer (Invitrogen,
USA). Each cDNA library was sequenced in a single lane
of the Illumina Hiseq 2500 platform.

Data filtering and de novo assembly
The raw reads were first filtered to exclude the reads
containing adaptors or with ambiguous nucleotides ('N’).



Liao et al. BMC Genomics (2020) 21:639

Next, the low-quality reads having more than 20% Q <
20 bases were also trimmed. The yielded high-quality
clean reads were used to the develop sequence assembly
by using the Trinity software. After the removal of re-
dundant Trinity-generated sequences by using the TGIC
L, clusters and unigenes were finally obtained.

Functional annotation and classification

All assembled unigenes were annotated by BLASTx ana-
lysis against the Nr (http://www.ncbi.nlm.nih.gov/), Uni-
Prot (http://www.uniprot.org/downloads), Pfam (http://
pfam.xfam.org/), COG (http://www.ncbi.nlm.nih.gov/
COG/) databases with an E-value <le-5. Only the top
hit results were extracted for each unigene. GO (http://
www.geneontology.org) terms were functionally classi-
fied based on Nr annotations by using the Blast2go pro-
gram (http://www.Blast2 go.de/). KEGG (http://www.
genome.jp/kegg/) was used to draw metabolic maps. The
KEGG analysis results included KEGG orthology (KO)
numbers and enzyme commission (EC) numbers.

DEG analysis

Clean reads were mapped back onto the assembled uni-
genes by using the BWA program. The FPKM value was
calculated for each unigene in each tissue of Entada
phaseoloides. The expression difference was analyzed by
Fisher’s exact test, and the FDR for each gene were ob-
tained. DEGs were required to have thresholds of FDR <
0.001 and |log2Ratio| = 1. KEGG pathways were then re-
constructed on DEGs.

Verification of gene expression by using qRT-PCR

Nine genes related to triterpene saponin biosynthesis
were selected for validation by qRT-PCR. The primers
for qRT-PCR analysis are listed in Additional file 9. All
reactions were performed on the CFX96 real-time PCR
system (Bio-Rad, USA) with a SYBR® Premix Ex Taq™ kit
(Takara, China). The Actin gene was used as an internal
control (Additional file 10). Each qRT-PCR experiment
was performed with three biological repeats. The relative
gene expression was calculated using the 27°ACT
method.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512864-020-07056-1.
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results.
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