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ORIGINAL RESEARCH

Deep Learning–Based Algorithm 
for Detecting Aortic Stenosis Using 
Electrocardiography
Joon-Myoung Kwon, MD, MS*; Soo Youn Lee, MD, MS*; Ki-Hyun Jeon, MD, MS; Yeha Lee, PhD;  
Kyung-Hee Kim, MD, PhD; Jinsik Park, MD, PhD; Byung-Hee Oh, MD, PhD; Myong-Mook Lee, MD, PhD

BACKGROUND: Severe, symptomatic aortic stenosis (AS) is associated with poor prognoses. However, early detection of AS is 
difficult because of the long asymptomatic period experienced by many patients, during which screening tools are ineffective. 
The aim of this study was to develop and validate a deep learning–based algorithm, combining a multilayer perceptron and 
convolutional neural network, for detecting significant AS using ECGs.

METHODS AND RESULTS: This retrospective cohort study included adult patients who had undergone both ECG and echo-
cardiography. A deep learning–based algorithm was developed using 39 371 ECGs. Internal validation of the algorithm was 
performed with 6453 ECGs from one hospital, and external validation was performed with 10 865 ECGs from another hospi-
tal. The end point was significant AS (beyond moderate). We used demographic information, features, and 500-Hz, 12-lead 
ECG raw data as predictive variables. In addition, we identified which region had the most significant effect on the decision-
making of the algorithm using a sensitivity map. During internal and external validation, the areas under the receiver operating 
characteristic curve of the deep learning–based algorithm using 12-lead ECG for detecting significant AS were 0.884 (95% 
CI, 0.880–0.887) and 0.861 (95% CI, 0.858–0.863), respectively; those using a single-lead ECG signal were 0.845 (95% CI, 
0.841–0.848) and 0.821 (95% CI, 0.816–0.825), respectively. The sensitivity map showed the algorithm focused on the T wave 
of the precordial lead to determine the presence of significant AS.

CONCLUSIONS: The deep learning–based algorithm demonstrated high accuracy for significant AS detection using both 12-lead 
and single-lead ECGs.
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The burden of valvular heart disease is increasing 
owing to prolonged life expectancy.1 Aortic steno-
sis (AS) is the most common of these diseases in 

developed countries.2 The typical course of AS involves 
a long asymptomatic period—many patients with se-
vere AS are asymptomatic.3,4 Once symptoms begin, 
mortality increases.5 Without surgery, 40% to 50% of 
patients with classic symptoms die within 1  year.5,6 
Good outcomes generally result from careful follow-up 

in asymptomatic individuals and urgent aortic valve re-
placement in symptomatic individuals.3,7,8 Screening is 
important to avoid irreversible disease progression and 
preventable death; however, there are no suitable 
screening tools for asymptomatic patients.

Diagnostic methods for AS include ECG, chest ra-
diography, and echocardiography.9,10 ECG and chest 
radiography lack sensitivity and specificity.10 In AS pa-
tients, an ECG usually demonstrates left ventricular 
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hypertrophy.11 In addition, a left or right bundle-branch 
block may be identified in up to 10% of patients. Chest 
radiography results typically appear normal in the 
early stages of the disease, but signs of left ventric-
ular hypertrophy and congestive heart failure eventu-
ally develop.10,11 Echocardiography is used to confirm 
an AS diagnosis and to determine severity.9 However, 
echocardiography is an expensive, time-consuming, 
and less accessible among screening tools. As such, 
echocardiography is conducted for patients suspected 
of having severe symptomatic AS rather than for as-
ymptomatic patients.9

To develop a reliable screening method based on 
ECG, we used a deep learning–based algorithm com-
bining a multilayer perceptron (MLP) and convolutional 
neural network (CNN). Deep learning has shown high 
accuracy and applicability in computer vision, speech 
recognition, and signal processing.12 Deep learning has 
also been applied in several medical domains, such as 
detecting retinopathy and cardiac arrest, diagnosing left 

systolic dysfunction, and predicting the occurrence of 
atrial fibrillation using ECG.13–16 In this study, we devel-
oped and validated an algorithm based on deep learning 
for detecting AS using 12-lead ECG. Furthermore, we 
evaluated the performance of the algorithm in detecting 
AS using single-lead ECG and visualized the algorithm’s 
decision-making using a sensitivity map.

METHODS
The data that support the findings of this study are 
available from the corresponding author on reason-
able request.

Study Design and Population
This multicenter retrospective cohort study involved 
data from 2 hospitals (labeled A and B) to develop and 
validate an MLP- and CNN-based algorithm for detect-
ing AS. Hospital A is a cardiovascular teaching hospital, 
and hospital B is a community general hospital. The 
study participants were adult patients (aged ≥18 years) 
who underwent both ECG and echocardiography within 
4  weeks. In other words, we included patients who 
underwent electro- and echocardiography during the 
study period and those in whom the difference between 
the ECG and echocardiogram dates was <4  weeks. 
We excluded patients for whom demographic, ECG, 
or echocardiogram information was missing. As shown 
in Figure  1, patients who were treated at hospital A 
(October 2016–March 2019) were randomly split into 
algorithm derivation (80%) and internal validation (20%) 
data sets. The derivation data set was used to develop 
the algorithm based on deep learning. In the deriva-
tion data set, we used several ECGs within 4  weeks 
of the echocardiography date. Using this method, we 
amplified and created an ECG data set sufficient for 
developing a deep learning–based algorithm. We then 
evaluated the accuracy of the algorithm using the inter-
nal validation data. Furthermore, we used the hospital 
B data as an external validation data set (March 2017–
March 2019) to verify that the algorithm was applicable 
across centers. Because the purpose of the validation 
data was to assess the accuracy of the algorithm, we 
used only 1 ECG from each patient—the most recent 
before their echocardiography—for the internal and ex-
ternal validation data sets. This study complied with the 
Declaration of Helsinki. The institutional review boards 
of Sejong General Hospital (2019-0356) and Mediplex 
Sejong Hospital (2019-064) approved this study proto-
col and waived the need for informed consent, given 
impracticality and minimal harm.

End Point and Predictive Variables
The primary end point of this study was significant 
(beyond moderate) AS, defined as an aortic valve area 

CLINICAL PERSPECTIVE

What Is New?
•	 We developed a deep learning–based algo-

rithm, combining a multilayer perceptron and 
convolutional neural network, for detecting sig-
nificant aortic stenosis using ECGs.

•	 The developed algorithm achieved perfor-
mance as a potentially reliable screening tool for 
detecting significant aortic stenosis.

•	 We used a sensitivity map to visualize the re-
gion of the ECG that was used for discrimina-
tion by the convolutional neural network–based 
algorithm.

What Are the Clinical Implications?
•	 Reliable ECG screening to detect aortic steno-

sis may prove important because the majority 
of patients with AS are asymptomatic, and early 
diagnosis is essential for preventing irreversible 
disease progression and mortality.

Nonstandard Abbreviations and Acronyms

2D 	 2-dimensional

AS	� aortic stenosis

AUC	� area under the receiver operating charac-
teristic curve

CNN	� convolutional neural network

MLP	� multilayer perceptron
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≤1.5 cm2 or a mean pressure gradient ≥20 mm Hg, 
confirmed by echocardiography.17 We used each 
patient’s demographic information and ECG as the 
predictive variables. We used 4 variables—age, sex, 
weight, and height—as the demographic information. 
As shown in Figure  2, we used the ECG data in 2 
ways. First, we used features of the ECG, such as 
heart rate, presence of atrial fibrillation or flutter, QT 
interval, corrected QT interval (QTc), QRS duration, 
R-wave axis, and T-wave axis, to develop an algo-
rithm with the demographic information. Second, we 
used the raw ECG data. In the raw data of each 12-
lead ECG, there were 5000 numbers for each lead, 
recorded over 10  seconds (500  Hz)—60  000 num-
bers in total. We used 8  seconds of ECG data by 
excluding the first and last 1-second periods because 
more artifacts were contained within these ranges. 
Consequently, we created 2-dimensional (2D) data of 
12×4000 from each ECG to develop and validate the 
algorithm.

Algorithm Development
As shown in Figure 2, the algorithm was developed 
using 3 deep learning methods. First, we developed 
an MLP with 6 hidden layers, 81 nodes, and batch-
normalization layers (Figure 2,yellowarea) to detect 
AS; the input comprised the 12 patient features 

(age, sex, weight, height, body mass index, heart 
rate, presence of atrial fibrillation of atrial flutter, 
QT interval, QTc, QRS duration, R-wave axis, and 
T-wave axis), and the output was a prediction be-
tween 0 and 1.18,19 Second, we developed a CNN 
with 2D convolutional, max-pooling, flattened, and 
batch-normalization layers (Figure  2,greenarea) to 
detect AS; the input was the raw ECG data (sampled 
at 500 Hz, or 500 samples per second for 12-lead 
data), and the output was a prediction between 0 
and 1.20–23 We confirmed the architecture of the al-
gorithm and the hyperparameters for training using 
a grid search. Each experiment was conducted 100 
times, and we chose the smallest layer unless a sta-
tistically significant difference was found (P <0.01). 
The best algorithm was selected using the binary 
cross entropy and mean absolute error as the loss 
function and metric, respectively. The dimensions of 
the original ECG data (2D, 5000×12) and the input 
data (2D, 4000×12) for the algorithm were the same. 
Because a flattening layer was included, a process 
to decrease the number of dimensions was ap-
plied using the deep learning algorithm. Numerous 
studies on deep learning applied to an ECG have 
used a flattening layer at the end of the architec-
ture to obtain generalization for the classification  
tasks.

Figure 1.  Study flowchart.
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The input data for ECG were composed of a 2D 
array (12 x 4000) of numbers. To make the input of 
2D ECG data, we rearranged the data in the following 
order: V1, V2, V3, V4, V6, aVL, lead 1, −aVR, lead 2, 

aVF, and lead 3. In this manner, the data were rear-
ranged in the order of the axis angle. Consequently, 
the data in similar rows were arranged with similar 
angles. Because ECG was recorded over time, data 

Figure 2.  ECG data and artificial intelligence algorithm. 
AFIB indicates atrial fibrillation; AFL, atrial flutter; QTc, corrected QT interval; and 2D, 2-dimensional.
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in similar columns contained information from similar 
times. The CNN and pooling layer are famous archi-
tectures for learning the 2D image data because the 
architectures are suitable for filtering the spatial local-
ity of the 2D data and extracting the features from the 
relationship between data, which is closed location. 
Image data and ECG input data have similar charac-
teristics in that similar information is arranged in similar 
locations, and thus the CNN has shown high accuracy 
in many studies of deep learning algorithms for ECG 
raw data. We tested several different arrangements of 
the ECG input data with grid searches and confirmed 
the arrangement that showed the best performance.

The CNN network architecture consisted of 7 
residual blocks with 2 CNN layers per block. The 
proposed deep learning–based algorithm was de-
veloped using an ensemble method combining the 
MLP and CNN algorithms (Figure  2,bluearea), for 
which the input is the raw ECG data and 12 features, 
and the output is a prediction between 0 and 1.24 
TensorFlow (Google Brain Team) was the back end.25 
We used the Adam optimizer with the default pa-
rameters β1=0.9 and β2=0.999 and a mini batch size 
of 32. We initialized the learning rate at 1×10−3 and 
reduced it by a factor of 10 when the developmen-
tally set loss stopped improving for each consecutive 
epoch. We chose the model that achieved the lowest 
error on the derivation data set.

The hyperparameters of the algorithm architec-
ture and the optimization algorithm were selected 
using a grid search. We searched the number of con-
volutional layers, the size and number of the convo-
lutional filters, and the use of a dropout layer and a 
batch-normalization layer. When we added a residual 
block of CNN >7, there was no significant increase in 
accuracy. Consequently, we selected the final CNN 
algorithm with a residual block of 7. The number of 
filters in each convolutional layer was selected by a 
grid search. Experiments were performed to confirm 
the number of nodes in the MLP layer. We chose the 
smallest node unless there was a statistical signifi-
cantly difference (P<0.001). Because the dropout and 
batch-normalization layers added to the accuracy, we 
selected the layers in the final architecture.

To evaluate the performance of the algorithm when 
using 1 ECG lead, we developed the algorithm using 
1 ECG lead and validated the same ECG lead. For ex-
ample, we developed an algorithm using raw data from 
lead 1 and validated the algorithm using raw data from 
lead 1. We then developed an algorithm using raw data 
of lead 2 and validated the algorithm using raw data 
from lead 2. In the same manner, we developed and 
validated the algorithm using each ECG lead (lead 1, 
lead 2, lead 3, aVF, aVR, aVL, V1, V2, V3, V4, V5, and 
V6). We developed an additional deep learning–based 
algorithm for which we used 4000 numbers from each 

single lead in the derivation data set as input informa-
tion. The single-lead algorithm was developed as an en-
semble method, combining the MLP (age, sex, weight, 
height, heart rate, presence of atrial fibrillation or flutter, 
QT interval, QTc, and QRS duration) and CNN (raw data 
of each single lead). To enhance the performance of 
the single-lead algorithm, we used a short-time Fourier 
transformation that separated the signal into different 
frequency components, which helped the generaliz-
ability of the model.26 Because the short-time Fourier 
transformation did not enhance the performance of the 
12-lead algorithm, it was left out of that design.

We also developed additional algorithms based on 
conventional machine learning models to compare 
with the ensemble method. For this, we used logis-
tic regression, random forest, simple neural network 
(1 hidden layer), and support vector machine meth-
ods developed with the glm, randomForest, nnet, and 
e1071 packages, respectively, in R (R Development 
Core Team).27 These machine learning methods 
showed better performance than traditional methods 
in several medical domains in previous studies.28,29

Visualizing Developed Algorithms Based 
on Deep Learning
To understand the model and make a comparison 
with existing medical knowledge, it was important 
to identify which region had a significant effect on 
the decision of the algorithm based on the CNN. In 
this work, we used a sensitivity map as a saliency 
method. The map was computed utilizing the first-
order gradients of the classifier probabilities with 
respect to the input signals. If the probability of a 
classifier was sensitive to a specific region of the sig-
nal, the region would be considered significant in the 
model. In this study, we used a gradient-class activa-
tion map as a sensitivity map and guided gradient 
back-propagation methods.30 The sensitivity map 
showed the region of importance of the first convo-
lutional layer in the CNN part. Because the number 
of filters of the first convolutional layer was 64, the 
sensitivity map described the region of importance 
for determining the presence of AS as grade 64. We 
visualized grade 0 as black and grade 64 as yellow.

Algorithm Evaluation
After developing the prediction algorithms, we input 
the feature data and ECG raw signal of each patient in 
the validation data into the developed algorithms. Each 
deep learning–based algorithm calculated the prob-
ability of significant AS in the range from 0 (non-AS) to 
1 (AS). To confirm the performance of the developed 
deep learning–based algorithms, we compared the 
probability calculated by the algorithm with the pres-
ence of AS in the validation data set.
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Statistical Analysis
We used the area under the receiver operating char-
acteristic curve (AUC) as a comparative metric.31 A 
2-sided P<0.05 was considered significant for all 
tests. We evaluated the 95% CI using bootstrapping 
(resampling 10 000 times with replacement).32 For the 
bootstrapping, we applied 50% random sampling with 
replacement using all validation data. We conducted 
the bootstrapping 10 000 times and confirmed each 
confidence interval. All statistical analyses were per-
formed using R. Because the purpose of this algorithm 
was screening for AS in the general population for 
transferring to confirmative diagnosis using echocar-
diography, we computed the specificity and accuracy 
when the sensitivity was 0.8 in each predictive algo-
rithm. We also evaluated the 95% CI for each result. 
Because the purpose of the proposed algorithm is the 
screening of AS using an ECG, we also confirmed the 
specificity, negative predictive value, and positive pre-
dictive value at an operating point with high sensitivity 
(90%).

Although sensitivity maps indicate specific regions, 
we could not confirm the relationship between the 
decision of the algorithm and qualitative features that 
physicians used. To overcome this limitation, we used 
2 methods. First, we used variable importance in the 
MLP part of the developed deep learning algorithm; 
the features included demographic and ECG param-
eters. Second, we studied the degree to which the 
convolutional part of the developed algorithm learned 
the features understood by physicians. To determine 
the correlation between the process of the CNN part 
of the developed algorithm and qualitative features of 
ECG, we tested 6 features: heart rate, presence of 
atrial fibrillation or flutter, QT interval, QRS duration, R-
wave axis, and T-wave axis. The performance of the 
linear regressors was evaluated using the coefficient 
of determination. If the encoded features contained 
enough information to regress on the qualitative fea-
tures, the regressor would predict the qualitative fea-
tures correctly and have a high value for the coefficient 
of determination.

RESULTS
In total, 43 212 patients were eligible to be included in 
this study (Figure  1). We excluded 161 patients who 
were missing values. The study included 43 051 pa-
tients, of whom 1413 had significant AS. The baseline 
characteristics of the study participants are shown in 
Table. Algorithms based on deep learning and conven-
tional machine learning were developed using a deri-
vation data set of 39 371 ECGs (12-lead) from 25 733 
patients. An additional deep learning–based algorithm 
was developed using the single-lead data from the 

same data set. The performance of the algorithm was 
then verified using 6453 ECGs from the 6453 patients 
in the internal validation data set from hospital A and 
10 865 ECGs from the 10 865 patients in the external 
validation data set from hospital B. We provided the 
developed deep learning algorithm to other research-
ers in Table S1. The H5 file can be used with Python 
to validate the algorithm and better understand its 
architecture.

As shown in Figure 3, during internal validation, 
the AUC of the ensemble algorithm combining CNN 
and MLP was 0.884 (95% CI, 0.880–0.887)—signifi-
cantly greater than that of the CNN (0.825; 95% CI, 
0.821–0.829), MLP (0.800; 95% CI, 0.792–0.808), 
and other machine learning algorithms. In external 
validation, the AUC of the ensemble algorithm com-
bining CNN and MLP was 0.861 (95% CI, 0.858–
0.863)—significantly greater than that of the CNN 
(0.816; 95% CI, 0.812–0.819), MLP (0.807; 95% CI, 
0.800–0.815), and other machine learning algo-
rithms. As shown in the Tables S2 and S3, at the 
highly sensitive operating point, the negative predic-
tive value was >99%.

The AUCs of the single-lead ensemble algorithm 
during internal and external validation using lead 2 
were 0.845 (95% CI, 0.841–0.848) and 0.821 (95% CI, 
0.816–0.825), respectively; the results of the ensem-
ble algorithms using other single leads are shown in 
Table S4.

As shown in Figure  4, we used a sensitivity map 
to visualize the ECG region used by the algorithm to 
identify AS. The map shows that the proposed algo-
rithm focused on the T wave of the precordial lead to 
determine the presence of significant AS.

As shown in Table S1, T-wave axis, age, and QTc 
were the most importance variables in the MLP part of 
the developed algorithm. T-wave axis and QT interval 
had high correlations with the model-derived features 
of the CNN part (AUC: 0.695 and 0.566, respectively).

DISCUSSION
In this study, we developed a deep learning–based al-
gorithm, combining MLP and CNN, for detecting AS 
using 12-lead and single-lead ECGs. In addition, we 
developed an ensemble algorithm using single-lead 
ECG that showed reasonable performance. We then 
visualized the CNN part of developed ensemble algo-
rithm to determine the regions and characteristics of 
the ECG used for detecting AS.

Developing a reliable screening tool for detecting sig-
nificant AS is important because the majority of patients 
with severe AS are asymptomatic, and early diagnosis is 
essential for preventing irreversible disease progression 
and mortality.3 AS is one of the most common valvular 
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diseases in developed countries, and its prevalence is 
projected to increase over the next decade with an aging 
population.2 If significant AS could be detected using a 
conventional 12-lead ECG or a single-lead device, pa-
tients could be referred for echocardiography and early 

diagnosis. However, no reliable screening tools exist 
currently. Electrocardiography and chest radiography 
lack sensitivity and specificity, and echocardiography 
and exercise tests are expensive, time-consuming, and 
inaccessible.9,10

Table.  Baseline Characteristics

Characteristic

Hospital A (Derivation and Internal Validation 
Data) Hospital B (External Validation Data)

P Value‡Non-AS AS P Value† Non-AS AS P Value†

Study participants, n (%) 30 962 (96.2%) 1224 (3.8) 10 676 (98.3%) 189 (1.7) <0.001

Participant characteristics

Age, y 60.21 (15.27) 71.64 (12.12) <0.001 58.01 (15.26) 73.19 (12.33) <0.001 <0.001

Male, n (%) 15 695 (50.7) 480 (39.2) <0.001 5368 (50.3) 67 (35.4) <0.001 0.684

Weight, Kg 64.75 (12.30) 59.84 (10.97) <0.001 66.01 (13.34) 59.79 (11.22) <0.001 <0.001

Height, cm 162.29 (9.32) 157.58 (9.09) <0.001 163.12 (9.49) 157.26 (9.58) <0.001 <0.001

BMI, kg/m2 24.48 (3.55) 24.01 (3.37) <0.001 24.69 (3.80) 24.12 (3.72) 0.040 <0.001

Heart rate, bpm 75.23 (18.88) 76.59 (20.28) 0.014 72.54 (16.05) 76.56 (20.27) 0.001 <0.001

Echocardiographic findings

LVSD, mm 30.57 (7.49) 30.62 (8.05) 0.821 30.71 (6.24) 30.84 (7.21) 0.777 0.087

LVDD, mm 47.95 (6.28) 48.23 (7.07) 0.133 48.66 (5.24) 48.82 (6.24) 0.680 <0.001

Septum, mm 10.01 (1.82) 11.51 (1.91) <0.001 9.45 (1.81) 10.94 (1.97) <0.001 <0.001

PWT, mm 9.60 (1.60) 10.94 (1.60) <0.001 9.15 (1.53) 10.46 (1.52) <0.001 <0.001

Aorta, mm 31.97 (4.22) 31.82 (4.35) 0.234 30.49 (3.91) 29.95 (3.80) 0.061 <0.001

LAD, mm 39.99 (8.36) 47.51 (10.65) <0.001 37.40 (6.79) 44.12 (8.39) <0.001 <0.001

E, cm/s 64.44 (21.05) 78.21 (32.53) <0.001 66.71 (18.83) 81.62 (27.83) <0.001 <0.001

A, cm/s 67.37 (16.50) 75.70 (17.96) <0.001 68.20 (16.24) 78.24 (17.14) <0.001 <0.001

DT, ms 198.61 (57.64) 247.75 (96.42) <0.001 214.48 (50.61) 247.69 (86.10) <0.001 <0.001

E′, cm/s 6.66 (2.60) 4.72 (1.57) <0.001 6.79 (2.52) 4.71 (1.61) <0.001 <0.001

A′, cm/s 8.65 (2.14) 7.38 (2.12) <0.001 8.51 (2.01) 7.64 (2.37) <0.001 <0.001

E/E′ 10.75 (5.05) 17.58 (7.98) <0.001 10.85 (4.65) 18.53 (8.17) <0.001 0.990

TRPG 21.62 (7.74) 28.21 (10.53) <0.001 20.95 (6.95) 28.07 (10.60) <0.001 <0.001

PA pressure, mmHg 25.46 (9.04) 32.99 (12.25) <0.001 24.19 (7.65) 31.93 (11.96) <0.001 <0.001

LVMI, g/m2 100.15 (30.28) 129.54 (36.60) <0.001 94.25 (26.48) 123.48 (34.98) <0.001 <0.001

AVA, cm2 1.90 (0.39) 1.06 (0.34) <0.001 1.74 (0.20) 1.13 (0.34) <0.001 0.017

Mean PG, mmHg 7.44 (3.87) 32.05 (19.17) <0.001 11.04 (3.88) 32.06 (19.36) <0.001 <0.001

EF, % 57.44 (9.91) 55.88 (10.09) <0.001 63.51 (9.68) 60.90 (12.27) <0.001 <0.001

Electrocardiographic findings

AF, n (%) 3920 (12.7) 324 (26.5) <0.001 742 (7.0) 38 (20.1) <0.001 <0.001

QT interval, ms 400.44 (45.18) 414.16 (54.30) <0.001 400.92 (40.27) 407.83 (52.17) 0.020 0.880

QTc 440.72 (36.33) 458.17 (40.40) <0.001 434.89 (34.43) 452.24 (44.91) <0.001 <0.001

QRS duration, ms 97.25 (18.57) 100.67 (22.62) <0.001 96.35 (16.50) 99.78 (21.12) 0.005 <0.001

R axis, angle 38.03 (45.97) 36.80 (46.38) 0.358 37.94 (40.44) 34.16 (43.94) 0.203 0.831

T-wave peak, mV 0.23 (0.30) 0.25 (0.37) 0.021 0.24 (0.25) 0.27 (0.26) 0.102 0.007

T-wave inversion, n 4223 (13.6%) 188 (15.4%) 0.094 1177 (11.0%) 23 (12.2%) 0.704 <0.001

T axis, angle 47.87 (54.77) 78.09 (77.64) <0.001 43.22 (44.03) 76.23 (74.61) <0.001 <0.001

A indicates late diastolic mitral inflow velocity, A′ late diastolic mitral annular tissue velocity; AF, atrial fibrillation or atrial flutter; AS, aortic stenosis; AVA, aortic 
valve area; BMI, body mass index; DT, deceleration time; E, early diastolic mitral inflow velocity; E′, early diastolic mitral annular tissue velocity; EF, ejection 
fraction; LAD, left atrial dimension; LVDD, left ventricular diastolic dimension; LVMI, left ventricular mass index; LVSD, left ventricular systolic dimension; PA, 
pulmonary artery; PG, pressure gradient; PWT, posterior wall thickness; QTc, corrected QT interval; and TRPG, tricuspid regurgitation peak gradient.

†The alternative hypothesis for this P value was that there was a difference between the AS and non-AS data groups for each variable.
‡The alternative hypothesis for this P value was that there is a difference between hospital A (derivation and internal validation data group) and hospital B 

(external validation group) for each variable.
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To address this need, we developed a deep learn-
ing–based algorithm as a reliable AS-screening tool. 
Deep learning includes feature learning, which is a 
set of methods that allow the creation of a model 
that uses raw data for automatic identification of 
the features and relationships needed to perform 
a task.12 As the learning process evolves automat-
ically, the model becomes increasingly effective at 
identifying intricate structures in high-dimensional 
data without information loss and requires little 
engineering by humans.12 Consequently, it can be 
applied quickly and easily to many tasks and can 
extract meaningful information from the data with-
out human bias. In the MLP algorithm, we used the 
value selected by the physician; therefore, the per-
formance of the algorithm was limited by manual 
feature extraction. In the CNN algorithm, we used 
the raw ECG data; thus, the complete information 
of the ECG raw signal was used. Although more 
computing power and data storage were required 

to process and use the raw signal for the CNN, we 
were able to uncover new information from the ECG 
and use the features of ECG itself over human bias. 
Therefore, we were able to make more accurate al-
gorithms using CNN.

The most important aspect of deep learning is its abil-
ity to use various types of data, such as images, 2D data, 
and waveforms. In this study, we used not only variables 
from domain knowledge (age, sex, weight, height, heart 
rate, presence of atrial fibrillation or flutter, QT interval, 
QTc, QRS duration, R-wave axis, and T-wave axis) but 
also ECG raw data (2D numerical data, 12×4000). Similar 
to our use of ECG patterns for the diagnosis of AS, Attia 
et  al14,16 developed an algorithm based on CNN for 
screening cardiac contractile dysfunction and predicting 
the occurrence of atrial fibrillation during sinus rhythm 
using 12-lead ECGs and demonstrated its feasibility. 
However, deep learning is often criticized for the unre-
liability of its outcomes because of the unpredictability 
of the process. Consequently, we used a sensitivity 

Figure 3.  Performance of artificial intelligence algorithms for detecting aortic stenosis. 
AUC indicates area under the receiver operating characteristic curve; CNN, convolutional neural network; MLP, multilayer perceptron; 
and ROC, receiver operating characteristic.
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map to visualize the region of the ECG that was used 
for decision-making by the CNN-based algorithm. To the 
best of our knowledge, this study is the first to develop 
a deep learning–based algorithm for detecting AS and 
to visualize the ECG region that the algorithm used for 
decision-making.

In this study, a sensitivity map showed that the CNN 
part of the developed ensemble algorithm focused on 
the T wave of the right precordial lead (V1–4) to deter-
mine the presence of significant AS. Furthermore, the 
variable importance of the MLP part and correlation re-
sults of the convolutional part also showed that the T-
wave axis and QT interval were both important factors 
for determining the presence of AS. As shown in Table, 
there were significant differences between QT interval 
and T-wave axis in the AS and non-AS data groups. 
The T-wave peak in ECGs from the AS data group 
showed higher values than those in the non-AS data 
group. In addition, a T-wave inversion occurred less 
frequently in the ECGs of the AS data group. Russo 
et al33 also described that hypertrophy in response to 
systolic ventricular overload prolongs ventricular activa-
tion time, which in turn may cause reversal of repolar-
ization from endocardium to epicardium and thus the 
inversion of the T wave (also see Xin et al34). And Greve 
et  al35 confirmed that T-wave inversion in leads V4 

through V6 reflects peak aortic jet velocity better than 
ST-segment depression. T-wave inversion was inde-
pendently predictive of poor prognosis in patients with 
asymptomatic AS in previous studies.36,37 In addition, 
AS was correlated with S-wave amplitude and T-wave 
strain patterns of the right precordial lead in previous 
studies. Vranic38 showed that S wave changes in right 
precordial leads can predict increases in the pres-
sure gradient and critical narrowing of the aortic valve 
area, and Xiao et al39 confirmed that right precordial 
Q waves help to distinguish anterior myocardial infarc-
tion from AS. Taniguchi et al40 showed associations of 
ST-segment elevations in the right precordial lead with 
different clinical outcomes in AS patients. Although the 
T wave represents the repolarization of ventricles, it 
is also related to the QRS complex and ST segment, 
which correspond to the depolarization and interval, 
respectively. Owing to statistical and technical limita-
tions, we do not yet know the exact meaning of the 
T wave in AS. Nevertheless, this study confirmed that 
the T wave of the right precordial lead is important for 
discriminating AS and that there were the differences 
between the ECGs in the AS and non-AS data groups. 
We need to conduct additional experiments regarding 
the shape and slope of the T wave, which remains a 
subject of our next study.

Figure 4.  Sensitivity map for confirming the region associated with prediction of aortic stenosis (AS). 
The sensitivity map showed the convolutional neural network’s (CNN’s) region of algorithm attention for determining the presence 
of AS. The most important region is in yellow, and the least important region is in black. Because the number of filters for the first 
convolutional layer was 64, the sensitivity map described the region of importance for determining the presence of AS as grade 64. We 
visualized grade 0 as black and grade 64 as yellow. The sensitivity map showed the initial area of T wave in V2–V5 as the most important 
region used by the developed CNN algorithm for the decision.
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The purpose of the developed algorithm was 
screening for AS. The developed algorithm achieved an 
AUC of ≈0.861 to 0.884. The performance of the model 
is greater than that of other common screening tests, 
such as mammography used for breast cancer screen-
ing (AUC=0.78; positive predictive value: 3–12%) and 
fecal occult blood testing for the detection of colorectal 
neoplasia (AUC=0.71; overall sensitivity: 29%).41,42 As 
shown in Tables S2 and S3, at the highly sensitive op-
erating point, the developed algorithm performs well as 
a potential screening tool for ruling out AS, with a neg-
ative predictive value >99%. Although the performance 
of the developed algorithm remains unsatisfactory, the 
possibility of applying deep learning to the field of elec-
trocardiography is shown in this study.

This study has several limitations. First, because the 
study was conducted in only 2 hospitals in Korea, it is 
necessary to validate the model with patients in other 
countries. Because an algorithm based on deep learn-
ing can overfit the training data, it is important to con-
firm its accuracy in other situations. Second, “advanced 
ECG” has powerful features such as spatial QRS-T 
angle, spatial ventricular gradient, azimuths, and eleva-
tions of the QRS, especially of the T wave.43 However, 
those values could not be calculated automatically 
with precision, so we could not adopt those features. 
Because the data set is too large to take those values 
manually, we could use only 7 features in the MLP al-
gorithm. Third, we need to further explore the decision 
process of the algorithm based on deep learning (MLP 
and CNN).44,45 For example, additional experiments are 
required to advance our understanding of the deep 
learning process and thus determine which character-
istics of the precordial T wave influence the algorithm’s 
decisions. This will be our next area of study.

CONCLUSIONS
An algorithm based on MLP and CNN had accurate 
performance to detect significant AS using both 12-
lead and single-lead ECGs.
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Table S1. Variable importance in the deep neural network part of the developed algorithm 

Importance 

ranking 
Predictor variable 

Difference in  

Area under the receiver 

operating characteristics 

curve 

(95% confidence interval) 

1 T wave axis 1.84 (1.81–1.87) 

2 Age 1.66 (1.62–1.69) 

3 QTc 1.52 (1.48–1.55) 

4 Body mass index 1.19 (1.15–1.24) 

5 QRS duration 0.97 (0.94–0.99) 

6 QT interval 0.88 (0.83–0.94) 

7 R wave axis 0.73 (0.71–0.76) 

8 Heart rate 0.71 (0.66–0.76) 

9 Weight 0.70 (0.65–0.74) 

10 Height 0.66 (0.59–0.72) 

11 
Presence of  

atrial fibrillation or flutter 
0.50 (0.45–0.56) 

12 Sex 0.48 (0.39–0.56) 

 

 



Table S2. Performances of internal validation at an operating point with high sensitivity 

 AUC Sensitivity Specificity NPV PPV Accuracy 

  Ensemble algorithm 

(CNN+DNN) 
0.884 0.900 0.712 0.994 0.121 0.720 

  Convolutional neural network 

(CNN) 
0.825 0.900 0.583 0.993 0.086 0.596 

  Multi-layer perceptron (MLP) 0.800 0.900 0.538 0.992 0.079 0.553 

  Random Forest 0.796 0.900 0.490 0.991 0.072 0.507 

  Logistic regression 0.768 0.900 0.441 0.990 0.066 0.461 

  Simple neural network 0.768 0.900 0.495 0.991 0.072 0.511 

  Support vector machine 0.680 0.900 0.177 0.976 0.046 0.207 

 



Table S3. Performances of external validation at an operating point with high sensitivity 

 AUC Sensitivity Specificity NPV PPV Accuracy 

  Ensemble algorithm 

(CNN+DNN) 
0.861 0.905 0.615 0.997 0.040 0.620 

  Convolutional neural network 

(CNN) 
0.816 0.905 0.561 0.997 0.035 0.567 

  Multi-layer perceptron (MLP) 0.807 0.905 0.485 0.997 0.030 0.492 

  Random Forest 0.808 0.905 0.511 0.997 0.032 0.518 

  Logistic regression 0.808 0.905 0.452 0.996 0.028 0.460 

  Simple neural network 0.776 0.905 0.513 0.997 0.032 0.521 

  Support vector machine 0.553 0.905 0.060 0.973 0.017 0.075 

 

 

  



Table S4. Performance of artificial intelligence based on single lead electrocardiography† 

  Internal validation   External validation 

Lead AUC 95% CI  AUC 95% CI 

Septal lead 

V1 0.804  0.799–0.807   0.807  0.802–0.811 

V2 0.808  0.802–0.812   0.797  0.791–0.813 

Anterior lead 

V3 0.804  0.800–0.807   0.783  0.776–0.789 

V4 0.797  0.794–0.801   0.807  0.802–0.810 

Lateral lead 

V5 0.823  0.819–0.826   0.811  0.806–0.815 

V6 0.812  0.808–0.815   0.792  0.785–0.799 

aVL 0.802  0.795–0.807   0.798  0.791–0.814 

I 0.817  0.811–0.822   0.790  0.783–0.796 

aVR 0.830  0.825–0.833   0.819  0.813–0.814 

Inferior lead 

II 0.845  0.841–0.848   0.821  0.816–0.825 

aVF 0.832  0.828–0.835   0.802  0.795–0.809 

III 0.819  0.812–0.826   0.781  0.773–0.789 

† AUC denotes area under the receiver operating characteristic curve and CI confidence interval. 

 


