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ABSTRACT
Objective: Epidemiological associations suggest that
vitamin D status may play a role in inflammation and
progression of atherosclerosis. Using frozen serum,
carotid intima medial thickness (CIMT) measurements
and other existing data from the Atherosclerosis
Prevention in Pediatric Lupus Erythematosus (APPLE)
trial, we assessed interactions between serum
25-hydroxyvitamin D (25(OH)D), atorvastatin
randomisation and CIMT progression rate.
Methods: Participants in the 3-year APPLE trial were
randomised to placebo or atorvastatin and CIMT
progression rate was measured. Baseline frozen
serum was used to measure 25(OH)D concentrations.
Mixed effect longitudinal models for CIMT
progression at 3 years were used to evaluate
interaction between vitamin D deficiency (serum
25(OH)D <20 ng/mL) at baseline and atorvastatin or
placebo treatment, adjusting for key systemic lupus
erythematosus disease variables and cardiovascular
risk factors.
Results: 201/221 APPLE participants had available
samples and were included in this analysis; 61/201
(30%) had vitamin D deficiency at baseline. In
adjusted longitudinal modelling, there was significant
interaction between baseline vitamin D deficiency and
atorvastatin randomisation in 3-year progression of
mean-max CIMT. In four out of six carotid segments,
there was a greater decrease in mean-max CIMT
progression rate in subjects who were treated with
atorvastatin compared with placebo if they had
baseline serum 25(OH)D levels ≥20 ng/mL.
Conclusions: Subjects with serum 25(OH)D
≥20 ng/mL had less mean-max CIMT progression
following 3 years of atorvastatin treatment. Results
from secondary analyses must be interpreted
cautiously, but findings suggest that underlying
vitamin D deficiency may be involved in response to
atorvastatin in atherosclerosis prevention.
Trial registration number: NCT00065806.

INTRODUCTION
Over the last three decades, systemic lupus ery-
thematosus (SLE)-related mortality has
decreased in all areas except cardiovascular
disease (CVD).1 Women with SLE who are less
than 40 years of age are at a 50-fold increased
risk of myocardial infarction compared with
control populations.2 This increase in risk
cannot be attributed solely to traditional car-
diovascular risk factors, and immune and vas-
cular pathology in SLE are postulated to
contribute to the increased CVD risk.3 4

Vitamin D deficiency has emerged as a
potential risk factor for CVD.5 In epidemio-
logical studies of the general population,
lower vitamin D levels have been associated
with CVD, hypertension, diabetes, high-
density lipoprotein cholesterol and low-
density lipoprotein (LDL) cholesterol, and
surrogate measurements of cardiovascular risk
such as coronary artery calcification and
carotid intima medial thickness (CIMT).5 One
prospective study found that a serum 25(OH)
D <15 ng/mL had a multivariable-adjusted

KEY MESSAGES

▸ Vitamin D deficiency at baseline was associated
with increased baseline hsCRP levels in children
and adolescents with SLE.

▸ No change in longitudinal disease activity mea-
sures was seen based on baseline vitamin D
status.

▸ Findings suggest that underlying vitamin D defi-
ciency may be involved in response to atorvasta-
tin in atherosclerosis prevention in children and
adolescents with SLE.
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HR of 1.62 (95% CI 1.11 to 2.36, p=0.01) for incident
CVD events.6

Vitamin D status is mainly determined by the level of
circulating 25-hydroxyvitamin D (25(OH)D), which is
converted into an active secosteroid hormone,
1,25-dihydroxyvitamin D (1,25(OH)2D) by the kidney
and cells of the immune system. The activated hormone
then regulates transcription of several inflammatory cyto-
kines.7 Studies have shown that 25(OH)D deficiency
(defined as a serum level <20 ng/mL) is common in SLE
and has been associated with increased photosensitivity,
fatigue, renal disease, SLE disease activity and protein-
uria.8–12 In vitro, 1,25(OH)2D blocks dendritic cell
differentiation, lowers interleukin 12 secretion, and mod-
ulates T lymphocyte proliferation and function.13–16

Differentiation of dendritic cells and type I interferon are
important in the pathogenesis of SLE.17

The Atherosclerosis Prevention in Pediatric Lupus
Erythematosus (APPLE) trial was originally designed to
prospectively assess the effect of atorvastatin on progres-
sion of CIMT in 221 children and young adults (aged
10–21 years) with SLE.18 Subjects were randomised to
36 months of atorvastatin (10–20 mg/day based on
weight) versus placebo treatment. Primary results showed
overall, no significant difference in mean-mean CIMT
progression between treatment and placebo groups.18

Atorvastatin is a hydroxymethyl glutaryl coenzyme A
(HMG-coA) reductase inhibitor, which decreases the syn-
thesis of cholesterol and is used in adults with hyperlipid-
aemia to reduce CVD progression. Cholesterol is one of
the precursors of vitamin D. 1,25(OH)2D activates an
enzyme of the cytochrome P450 system which metabo-
lises atorvastatin. One study showed differential hypoli-
paemic response to atorvastatin based on serum 25(OH)
D levels.19 Another study found that in dyslipidaemic sub-
jects, the addition of vitamin D to atorvastatin synergistic-
ally lowered total cholesterol and LDL cholesterol
levels.20 Two large studies in SLE (APPLE and Lupus
Atherosclerosis Prevention Study (LAPS)) showed no sig-
nificant change in CIMT between subjects taking atorvas-
tatin and those taking placebo,18 21 but given the high
proportion of patients with SLE with vitamin D defi-
ciency, it is possible that these results may be confounded
by vitamin D deficiency. There are no studies that have
evaluated the relationship between vitamin D status,
inflammation and subclinical vascular disease in paediat-
ric subjects with lupus.
The objective of this subanalysis was to use samples pro-

spectively obtained during participation in the APPLE
trial to evaluate the relationship between vitamin D status
and atorvastatin treatment on CIMT progression.

METHODS
Subjects
Participants in the 3-year APPLE trial were randomised to
placebo or atorvastatin in addition to routine care and
CIMT progression was measured. The design and

methods of the APPLE trial have been reported previ-
ously.18 SLE was classified by American College of
Rheumatology criteria from 21 North American centres.
Subjects were excluded from the study if they had baseline
fasting total cholesterol >350 mg/dL, familial hypercholes-
terolaemia, nephrotic syndrome, renal insufficiency, liver
disease, or were pregnant or nursing. Subjects were rando-
mised to daily atorvastatin (>50 kg: 10 mg/day, increasing
to 20 mg/day at day 30; ≤50 kg: 10 mg/day).
Hydroxychloroquine, low-dose aspirin, multivitamins
containing folate and American Heart Association
Therapeutic Lifestyle Changes diet were recommended.
Two baseline CIMT examinations were performed

using an ultrasound protocol described previously.18

CIMT measurements have been used in paediatric popu-
lations as a surrogate marker of cardiovascular risk in
multiple diseases including chronic renal failure, chronic
hypertension, obesity and familial hypercholesterol-
aemia.22 Ultrasound scans were read by a single experi-
enced reader at Ward A. Riley Ultrasound Center, Wake
Forest University School of Medicine, Winston-Salem,
North Carolina, USA using Image Pro software (Media
Cybernetics, Bethesda, Maryland, USA). Standardised
longitudinal B-mode images were collected for three
arterial segments defined relative to the tip of the flow
divider (TFD) as the common carotid artery (10–20 mm
proximal to the TFD), the carotid bifurcation (from the
TFD to 10 mm proximal to the TFD) and the proximal
10 mm of the internal carotid artery. Near and far walls
were imaged simultaneously in the common carotid
artery, but separately in the carotid bifurcation and
internal carotid artery to improve the ability to align each
wall horizontally in these segments. For each arterial
segment, Meijer’s Arc was used to collect images at 90°,
120°, 150° and 180° on the right side and at 270°, 240°,
210° and 180° on the left side. For a set of 68 studies
reread to evaluate intrareader reliability, the intraclass
correlation coefficient was 0.74 (95% CI 0.61 to 0.83) for
mean-mean common and 0.71 (95% CI 0.56 to 0.81) for
mean-max CIMT measurements. The combination of 3
arterial segments, 2 walls, and 2 sides of the neck pro-
vided a set of 12 CIMT measurement sites, each imaged
from 4 angles. For each measurement site, a maximum
CIMT value was defined as the largest of the four angle-
specific maximum CIMT values. The 12 maximum CIMT
values were then averaged to determine the mean-max
CIMT over near and far walls of the right and left
common carotid artery, carotid bifurcation and internal
carotid artery. For each of the four measurement sites in
the common carotid artery, a mean CIMT value defined
as the average of the four angle-specific mean CIMT
values was also calculated. The four mean CIMT values
were then averaged to determine the mean-mean
common CIMT. Overall mean-mean and other segment/
wall-specific mean-max or mean-mean CIMT measures
were computed accordingly.
Other assessments including fasting lipid levels, disease

activity scores (Safety of Estrogens in Lupus Erythematosus,
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National Assessment (SELENA), SLE Disease Activity
Index (SLEDAI)), and a disease-related damage score
(Systemic Lupus International Collaborating Clinics/
American College of Rheumatology Damage Index (SDI))
were obtained as previously described.18 High sensitivity C
reactive protein (hsCRP) was obtained along with lipid pro-
files after 12-h or 4-h fasts at randomisation and analysed at
a central commercial laboratory (purified protein deriva-
tive Global Central Laboratories, Highland Heights,
Kentucky, USA). Institutional Review Board (IRB) approval
was obtained for the original APPLE trial and additionally
for this secondary analysis.

Serum 25(OH)D determinations
Frozen serum collected at baseline and at 1-year
follow-up was used to measure 25(OH)D levels after IRB
approval was secured. Frozen serum samples stored in
−80° freezers were shipped to the laboratory of Dr Vin
Tangpricha at Emory University, Atlanta, Georgia, USA.
Serum 25(OH)D was measured by chemiluminescent
assay using the Immuno Diagnostic Systems immuno-
assay System (IDS-iSYS) automated system (Fountain
Hills, Arizona, USA). Laboratory technicians were
blinded to the study assignment of the samples.
Intra-assay and interassay coefficients of variation for
serum 25(OH)D were 1.8–4.0% and 10.1–13.0%,
respectively. The laboratory participates in a vitamin D
external quality control assessment schema (http://www.
deqas.org) and the NIH standard quality control pro-
gramme for vitamin D and tested proficient in the meas-
urement of 25(OH)D during the study period.

Statistical analysis
All statistical analysis was performed using SAS V.9.2 stat-
istical software (SAS, Cary, North Carolina, USA). All
statistical tests were two-sided with p values less than 0.05
considered statistically significant for this analysis.
Baseline characteristics were summarised using descrip-
tive statistics with categorical data presented as percen-
tages and continuous data presented as means, SDs and
medians. The primary efficacy analysis for APPLE com-
pared rates of mean-mean common CIMT progression
between treatment groups based on a test of two-way
interaction between treatment group and time in a lon-
gitudinal linear mixed effects model under data missing
at random assumptions. From that model, it was
assumed that the effect of treatment could be estimated
as the difference in mean progression rates between par-
ticipants assigned to atorvastatin versus placebo, with
negative differences indicating progression for those on
atorvastatin was slower than for those on placebo.
Similar mixed-effects models were used for analysing
continuous secondary longitudinal end points or
changes from baseline over time for lipid data. Log
transformation was used for hsCRP to achieve normality.
Generalised estimating equations were used for binary
longitudinal outcomes.

To examine heterogeneity of treatment effects by
vitamin D status (25(OH)D levels <20 ng/mL), the effi-
cacy model used in the primary APPLE analysis was
extended to include an indicator variable for subgroup
as well as two-way and three-way interactions between
subgroup, treatment group and time. From these
models, we provide estimated mean progression rates
with 95% CIs for each combination of subgroup and
treatment group. Finally, the three-way interaction
between subgroup, treatment group and time provides a
test of whether treatment effects in terms of progression
rate differ significantly between subgroups. Initially,
models were fit examining one subgroup variable at a
time, then adjusted for lupus duration, sex, systolic
blood pressure, pubertal status, LDL and natural log of
hsCRP. These results should be interpreted cautiously as
hypothesis generating and not hypothesis testing.

RESULTS
Baseline characteristics
A total of 201/221 (91%) of APPLE subjects had available
baseline samples and were included in the analysis; 98
were randomised to atorvastatin and 103 to placebo. At
1-year follow-up, 79 subjects in each group had available
serum for analysis. In the original APPLE trial, 81.6% of
each arm completed the 3-year study, 70% of them still
on study drug. Among the 201 subjects included in the
current subanalysis, 180 remained on study drugs at the
1-year follow-up. As shown in table 1, subjects were 83%
female, 51% Caucasian, 27% African American and had
a mean age of 16 years at entry into the study.

Vitamin D status
Overall, 61/201 (30%) had vitamin D deficiency at base-
line and 139 (69%) had vitamin D insufficiency (25(OH)
D <30 ng/mL); 12 subjects (6%) had levels less than
10 ng/mL indicating severe deficiency. Mean baseline 25
(OH)D levels were 25.9 ng/mL (SD 11.0). At 1 year
follow-up, mean 25(OH)D levels were 27.7 ng/mL (SD
14.0), with no statistically significant difference between
atorvastatin and placebo groups in mean vitamin D levels
after 1 year (p=0.97). There was no statistically significant
difference between baseline and 1 year follow-up levels
within or between arms. Sixty-six per cent of subjects
stayed in their original vitamin D status category at
follow-up (sufficient, insufficient or deficient).
Percentage taking corticosteroids, and mean prednisone
dose adjusted for weight did not differ between deficient
and insufficient/sufficient groups (0.19 mg/kg for both
groups, p=0.80).

Vitamin D status and CIMT progression
In unadjusted longitudinal modelling, baseline vitamin
D deficiency was associated with increased baseline
mean-max CIMT (p=0.01). Other baseline associations
between vitamin D deficiency and cardiovascular risk
factors were detailed in a previous paper.23 In adjusted
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longitudinal modelling, there was a significant inter-
action effect between baseline vitamin D deficiency and
atorvastatin treatment in 3-year progression of
mean-max CIMT (see table 2 and figure 1). In four out
of six carotid segments, there was a greater decrease in
mean-max CIMT progression rate in subjects treated
with atorvastatin compared with placebo if they had
baseline 25(OH)D levels ≥20 ng/mL. In only one of six
carotid segments, there was a greater decrease in mean-
mean CIMT progression rate in those treated with ator-
vastatin with sufficient vitamin D levels. Of the subjects
who changed in vitamin D status from deficient to
either insufficient or sufficient at 1 year into the trial,
there was a trend towards response to atorvastatin treat-
ment in 3-year CIMT progression, but this did not reach
statistical significance.
When we repeated this analysis with 30 ng/mL as our

new 25(OH)D cut point, we found similar results with
interaction in overall mean-max CIMT progression rate
with 2/6 carotid mean-mean segments and 2/6 carotid
mean-max segments showing evidence of interaction
between vitamin D insufficiency and sufficiency with
atorvastatin usage (p<0.05). All interaction effects were
in the same direction with greater decrease in CIMT
progression rate in those treated with atorvastatin with
higher serum 25(OH)D levels. Using race and ethnicity
as an additional adjustment variable, we noted no
changes in our conclusions, and the numbers of subjects
in each subgroup were too small to evaluate changes in
CIMT progression with any accuracy.

Vitamin D status and secondary outcomes
In the original APPLE trial, the atorvastatin group dis-
played reductions from baseline in total cholesterol,
LDL and hsCRP, which were maintained over time.
Changes from baseline in SLEDAI and SDI did not
differ between groups. We found no evidence of inter-
action between vitamin D deficiency and response to
atorvastatin in change in LDL, SLEDAI or SDI over
2 years. When looking at SLEDAI and SDI by vitamin D
status alone, there was a trend towards higher SLEDAI
area under the curve over 3 years (65.8, 95% CI −14.9
to 146.5) and higher proportion of subjects with
damage index greater than 0 (3.4%, 95% CI −1.3% to
8.0%) in those with baseline vitamin D deficiency, but
this was not statistically significant. Baseline vitamin D
deficiency was not a predictor of change in hsCRP over
3 years and change in vitamin D over 1 year was not asso-
ciated with change in hsCRP at 1 year.

DISCUSSION
For the first time in SLE, we find that vitamin D status may
affect response to atorvastatin in CVD risk and CIMT pro-
gression over time. The associations we found between
vitamin D deficiency and increased age, body mass index,
winter season and minority status in the APPLE paediatric

Table 1 Baseline characteristics of APPLE substudy

subjects

Variable All patients, n=201

Female 167 (83.1%)

Age, years (SD) 15.7 (2.7)

Latitude (SD) 39.3 (3.3)

Season

1st quarter 36 (17.9%)

2nd quarter 54 (26.9%)

3rd quarter 52 (25.9%)

4th quarter 59 (29.4%)

Race

White 102 (50.7%)

Black 54 (26.9%)

Asian 19 (9.5%)

Native American 3 (1.5%)

Native Hawaiian 5 (2.5%)

Hispanic or Latino 47 (23.4%)

History of smoking 6 (3.0%)

Postmenarchal 137/167 (82.0%)

Annual household income

<$25 000 57/187 (30.5%)

$25 000–49 999 51/187 (27.3%)

$50 000–74 999 31/187 (16.6%)

$75 000–99 999 24/187 (12.8%)

$100 000–149 999 16/187 (8.6%)

>$150 000 8/187 (4.3%)

Body mass index percentile (SD) 72.1 (25.2)

Duration of lupus, months (SD) 30.4 (28.9)

SLEDAI (SD) 4.5 (4.0)

SDI=0 151 (75.1%)

Hypertension 65/195 (33.3%)

Glomerulonephritis 81/200 (40.5%)

Creatinine clearance (SD) 138.7 (31.8)

Timed urine protein, mg/24 h (SD) 214.6 (491.5)

Serologies

Lupus anticoagulant 68/190 (35.8%)

Anticardiolipin antibody 86/196 (43.9%)

AntidsDNA antibody 163/201 (81.1%)

Corticosteroid usage 163/200 (81.5%)

Multivitamin usage 147 (73.1%)

Hydroxychloroquine usage 196 (97.5%)

Baseline hsCRP, mg/L (SD) 2.9 (8.4)

Homocysteine, μmol/L (SD) 7.4 (3.0)

Lipids, mg/dL (SD)

Total cholesterol 154.7 (38.5)

HDL cholesterol 46.0 (13.0)

LDL cholesterol 86.0 (31.4)

Triglycerides 115.2 (68.6)

Lipoprotein A, mg/dL (SD) 22.6 (25.3)

Baseline mean-mean mm (SD)

common CIMT mm (SD)

0.468 (0.042)

Baseline mean-max CIMT mm (SD) 0.583 (0.055)

APPLE, Atherosclerosis Prevention in Pediatric Lupus
Erythematosus; CIMT, carotid intima media thickening; dsDNA,
double-stranded DNA; HDL, high-density lipoprotein; hsCRP,
high-sensitivity C reactive protein; LDL, low-density lipoprotein;
SDI, Systemic Lupus International Collaborating Clinics/American
College of Rheumatology Damage Index; SLEDAI, Systemic
Lupus Erythematosus Disease Activity Index; SLICC, Systemic
Lupus International Collaborating Clinics.
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cohort are consistent with those seen in larger epidemio-
logical studies of the general population.24 A higher,
although not statistically significant, proportion of subjects
with vitamin D deficiency were also on multivitamins, but
multivitamin use in this population was high overall, and it
is possible that subjects with a history of vitamin D defi-
ciency may have been encouraged by their providers to
take multivitamins. In addition, in this cohort we found
notable differences at baseline between vitamin D defi-
cient subjects and those not deficient, notably in some
CVD risk measures (mean-max CIMT, LDL cholesterol
hsCRP), and in SLE disease related variables (duration of
SLE, SDI and proteinuria).25

The relationship between vitamin D status and the
inflammation marker hsCRP has been previously

described in adults with SLE, specifically in the LAPS
study, a randomised study of atorvastatin in adults with
lupus.26 In LAPS, baseline 25(OH)D levels ≥21 ng/mL
were associated with lower baseline hsCRP levels. HsCRP
is associated with higher SLE disease activity measured by
physician’s global assessment or SLEDAI, and has been
associated with increased serositis and arthritis.27–29

In newly diagnosed patients with SLE, hsCRP levels have
correlated with disease activity.30 Inflammation is import-
ant in the pathogenesis of atherosclerosis,31 and is an
independent predictor of future stroke and myocardial
infarction in the general population.32 However, the rela-
tionship between hsCRP and CVD events in SLE is less
clear. For instance, cross-sectional studies of patients with
SLE evaluating hsCRP and CIMT have shown

Table 2 CIMT progression in participants treated with atorvastatin or placebo for 3 years by baseline serum 25(OH)D levels

(mg/dL)*

Segment

CIMT progression with

atorvastatin (mm)

CIMT progression

with placebo (mm) Interaction effect p Value

Mean-mean CIMT

25(OH)D ≤20 0.0014 (−0.0005, 0.0032) 0.0031 (0.0013, 0.0049) −0.0027 (−0.0077, 0.0022) 0.275

25(OH)D >20 0.0039 (0.0013, 0.0066) 0.0084 (0.0051, 0.0117)

Mean-max CIMT

25(OH)D ≤20 0.0024 (−0.0004, 0.0052) 0.0031 (0.0004, 0.0057) −0.0101 (−0.0175, −0.0027) 0.008

25(OH)D >20 0.0021 (−0.0019, 0.0061) 0.0129 (0.0080, 0.0178)

Mean-mean common CIMT

25(OH)D ≤20 0.0006 (−0.0015, 0.0027) 0.0007 (−0.0013, 0.0027) −0.0038 (−0.0095, 0.0018) 0.182

25(OH)D >20 0.0002 (−0.0029, 0.0032) 0.0041 (0.0004, 0.0078)

Mean-max common CIMT

25(OH)D ≤20 0.0000 (−0.0032, 0.0032) −0.0028 (−0.0058, 0.0003) −0.0115 (−0.0199, −0.0031) 0.008

25(OH)D >20 −0.0015 (−0.0061, 0.0031) 0.0073 (0.0017, 0.0129)

Mean-mean internal CIMT

25(OH)D ≤20 0.0047 (0.0013, 0.0082) 0.0066 (0.0033, 0.0099) −0.0092 (−0.0183, −0.0000) 0.049

25(OH)D >20 0.0057 (0.0007, 0.0106) 0.0167 (0.0107, 0.0227)

Mean-max internal CIMT

25(OH)D ≤20 0.0073 (0.0024, 0.0122) 0.0118 (0.0071, 0.0165) −0.0108 (−0.0239, 0.0023) 0.104

25(OH)D >20 0.0074 (0.0003, 0.0145) 0.0227 (0.0141, 0.0314)

Mean-mean bifurcation CIMT

25(OH)D ≤20 0.0007 (−0.0020, 0.0033) 0.0036 (0.0011, 0.0061) −0.0005 (−0.0075, 0.0065) 0.886

25(OH)D >20 0.0045 (0.0008, 0.0083) 0.0080 (0.0034, 0.0126)

Mean-max bifurcation CIMT

25(OH)D ≤20 0.0034 (−0.0008, 0.0075) 0.0034 (−0.0006, 0.0073) −0.0143 (−0.0254, −0.0032) 0.012

25(OH)D >20 −0.0007 (−0.0067, 0.0052) 0.0135 (0.0062, 0.0209)

Mean-mean far wall CIMT

25(OH)D ≤20 0.0026 (0.0004, 0.0048) 0.0049 (0.0028, 0.0071) −0.0021 (−0.0080, 0.0038) 0.491

25(OH)D > 20 0.0051 (0.0019, 0.0083) 0.0095 (0.0056, 0.0134)

Mean-max far wall CIMT

25(OH)D ≤20 0.0033 (−0.0002, 0.0068) 0.0054 (0.0020, 0.0088) −0.0077 (−0.0171, 0.0017) 0.107

25(OH)D > 20 0.0036 (−0.0014, 0.0087) 0.0135 (0.0073, 0.0197)

Mean-mean near wall CIMT

25(OH)D ≤20 −0.0001 (−0.0026, 0.0024) 0.0007 (−0.0017, 0.0031) −0.0034 (−0.0101, 0.0032) 0.312

25(OH)D > 20 0.0026 (−0.0010, 0.0062) 0.0069 (0.0025, 0.0113)

Mean-max near wall CIMT

25(OH)D ≤20 0.0012 (−0.0024, 0.0047) −0.0001 (−0.0035, 0.0033) −0.0130 (−0.0224, −0.0036) 0.007

25(OH)D > 20 0.0003 (−0.0048, 0.0054) 0.0121 (0.0059, 0.0183)

Bold represents p<0.05.
*Multivariable mixed effects longitudinal modelling adjusted for lupus duration, female gender, systolic blood pressure, pubertal level, LDL
cholesterol and hsCRP.
CIMT, carotid intima medial thickness; hsCRP, high-sensitivity C reactive protein; LDL, low-density lipoprotein; 25(OH)D, 25-hydroxyvitamin D.

Robinson AB, Tangpricha V, Yow E, et al. Lupus Science & Medicine 2014;1:e000037. doi:10.1136/lupus-2014-000037 5

Epidemiology and outcomes



inconsistent results. Secondary analysis of the APPLE
cohort suggested that atorvastatin may reduce athero-
sclerosis prevention in pubertal patients with lupus with
higher hsCRP.33

Studies suggest that vitamin D has potent effects on
innate and acquired immunity, including modulation of
T lymphocyte proliferation and function, and inhibition
of Th1 cytokine expression while augmenting the anti-
atherogenic Th2 cytokines.34 35 In addition, vitamin D
inhibits tumor necrosis factor (TNF)-α-induced adhesion
molecule expression in endothelial cells.36 Thus,
through modulation of inflammatory cells and inflam-
matory cytokine secretion, low vitamin D may adversely
affect the cardiovascular system in several chronic
inflammatory conditions. Indeed, vitamin D receptors
have broad tissue distribution that includes vascular
smooth muscle, endothelium and cardiomyocytes. In
vitro, activated 1,25(OH)2D directly suppresses renin
gene expression37 and regulates the growth and prolifer-
ation of vascular smooth muscle cells and cardiomyo-
cytes.38 Vitamin D suppresses foam cell formation by
reducing oxidised LDL-cholesterol uptake, suppresses
CD36 expression, and improves insulin signalling.39

Clinical studies have reported associations between lower
vitamin D levels and hypertension,23 40 low high-density
lipoprotein cholesterol, coronary artery calcification,41

increased CIMT42 43 and prevalent CVD.44 45 Thus, puta-
tive vascular effects of vitamin D include modulation of
smooth muscle cell proliferation, inflammation, throm-
bosis, insulin sensitivity and blood pressure.
The findings in this study suggest that there may be

interaction between vitamin D levels and response to

atorvastatin in CIMT progression, especially in
mean-max CIMT measurements. In general, we note
that the lowest CIMT progression rates were seen in the
atorvastatin-treated subgroup with serum 25(OH)D
>20 ng/mL, although these numbers should be inter-
preted cautiously in segments where the p value of the
interaction effect was greater than 0.05. In the original
APPLE trial, mean-max CIMT progression was not
found to be significantly different between atorvastatin
and placebo groups (0.0037 mm/year in the atorvastatin
group vs 0.0064 mm/year in the placebo group,
p=0.083). Further analysis of the LAPS trial concluded
that 25(OH)D levels were not associated with progres-
sion of coronary artery calcium or CIMT over 2 years,
although the mean hsCRP decreased over the study
period.25 Difference in results between the LAPS trial
secondary analyses and the present study could be due
to the fact that in LAPS, no adjustments were made for
atorvastatin or placebo usage, there was a shorter dur-
ation of follow-up, and only single measurements of the
common carotid arteries were performed. Baseline
CIMT was not controlled for in this analysis, which
looked strictly at progression alone, nor was it con-
trolled for in the original APPLE study. However,
vitamin D levels and CIMT levels were not statistically
different between atorvastatin and placebo groups at
baseline.
Mean-mean and mean-max CIMT commonly have

been used in trials of statins to moderate cardiovascular
risk. In the original APPLE trial, due to slow recruit-
ment, the primary outcome was changed during the
trial to mean-mean common CIMT from mean-max

Figure 1 Forest plot of CIMT progression rate for atorvastatin treatment versus placebo for 3 years by baseline serum

25-hydroxyvitamin D status. Multivariable mixed effects longitudinal modelling adjusted for lupus duration, female gender, systolic

blood pressure, pubertal level, LDL cholesterol and hsCRP. VitD, serum 25-hydroxyvitamin D status, ng/mL; CIMT, carotid intima

medial thickness, in mm; hsCRP, high-sensitivity C reactive protein; LDL, low-density lipoprotein. p Values for the interaction

effect are listed in parentheses on the y-axis.
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CIMT. The initial analysis showed a difference in
mean-max CIMT progression over 3 years after control-
ling for covariates related to baseline CIMT.18 Mean-max
CIMT is thought to be more predictive of clinical cardio-
vascular events than mean-mean CIMT, and more
strongly associated with the presence of symptomatic
CVD in adults.46 The mean-max IMT is a measure of
plaque taken at the carotid bifurcation and proximal
internal carotid artery (ICA), where complex oscillatory
low shear stress promotes the primary deposition of LDL
cholesterol in the wall. However, carotid plaque is a later
effect of atherosclerosis and is not present in children
and adolescents. Further research is needed to better
define the biological relevance of different CIMT mea-
sures in patients with SLE compared with the general
population.
In our study of APPLE trial data, the relationship

between vitamin D status and mean-max CIMT progression
persisted despite adjustment for multiple confounders.
Evaluation of the interaction effect between atorvastatin
and vitamin D levels is a strength of this analysis, especially
after adjustment for factors such as duration of lupus,
gender, baseline blood pressure, baseline pubertal status,
baseline LDL cholesterol and baseline hsCRP.
The trend towards higher SLEDAI over 3 years, and

higher proportion of participants with SDI>0 in subjects
with baseline vitamin D deficiency found in this analysis
was interesting, and matches with prior studies finding
associations between vitamin D deficiency and increased
disease activity,8–12 although the difference did not
reach statistical significance. This may be related to the
fact that subjects with severe disease such as proteinuria
were excluded from entry into the trial, and the cohort
reported overall low SLEDAI and SDI scores.

CONCLUSIONS
APPLE participants with higher serum 25(OH)D
(≥20 ng/mL) had less mean-max CIMT progression in
multiple carotid segments following 3 years of atorvasta-
tin treatment than participants receiving placebo.
Results from secondary analyses must be interpreted
cautiously, but these findings suggest that underlying
vitamin D deficiency may negatively impact the efficacy
of atorvastatin in atherosclerosis prevention. More
studies are needed to determine if vitamin D replace-
ment therapy can boost response to atorvastatin in pre-
vention of CVD in SLE and the general population.
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