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In recent years, researchers have increased attentions to the morphological brain

network, which is generally constructed by measuring the mathematical correlation

across regions using a certain morphometric feature, such as regional cortical thickness

and voxel intensity. However, cerebral structure can be characterized by various

factors, such as regional volume, surface area, and curvature. Moreover, most of

the morphological brain networks are population-based, which has limitations in

the investigations of individual difference and clinical applications. Hence, we have

extended previous studies by proposing a novel method for realizing the construction

of an individual-based morphological brain network through a combination of multiple

morphometric features. In particular, interregional connections are estimated using our

newly introduced feature vectors, namely, the Pearson correlation coefficient of the

concatenation of seven morphometric features. Experiments were performed on a

healthy cohort of 55 subjects (24 males aged from 20 to 29 and 31 females aged from

20 to 28) each scanned twice, and reproducibility was evaluated through test–retest

reliability. The robustness of morphometric features was measured firstly to select the

more reproducible features to form the connectomes. Then the topological properties

were analyzed and compared with previous reports of different modalities. Small-

worldness was observed in all the subjects at the range of the entire network sparsity

(20–40%), and configurations were comparable with previous findings at the sparsity of

23%. The spatial distributions of the hub were found to be significantly influenced by the

individual variances, and the hubs obtained by averaging across subjects and sparsities

showed correspondence with previous reports. The intraclass coefficient of graphic

properties (clustering coefficient = 0.83, characteristic path length = 0.81, betweenness

centrality = 0.78) indicates the robustness of the present method. Results demonstrate

that the multiple morphometric features can be applied to form a rational reproducible

individual-based morphological brain network.
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INTRODUCTION

As a sophisticated but well-organized system, the human brain is
capable of processing multiple tasks with high efficiency (Sporns
et al., 2004). The interconnected regions of the brain are apt to
delineate the operation pattern of integration and segregation,
which indicating the ability to rapidly organize specialized
information from distributed brain regions functionally, while
specialized processing to occur within densely interconnected
groups of brain regions (Rubinov and Sporns, 2010; Sporns,
2013). Recently, the brain network has been applied to
characterize the effects of age, gender (Damoiseaux et al., 2008;
Gong et al., 2009b; Chen et al., 2011; Yan et al., 2011) and
psychiatric disorders (Bassett et al., 2008; He et al., 2009; Van Den
Heuvel et al., 2010; Alexander et al., 2012; Shi et al., 2013).

Brain networks are generally categorized into three modalities
through different neuroimaging and electrophysiological
techniques. Functional networks are formed using functional
magnetic resonance imaging (fMRI) (Eguiluz et al.,
2005; Bassett and Bullmore, 2006), electroencephalogram
(EEG) (Micheloyannis et al., 2006; Stam et al., 2007), or
magnetoencephalogram (MEG) (Stam, 2004). An anatomical
network is built using diffusion tensor imaging (DTI) (Hagmann
et al., 2007; Gong et al., 2009a), and a morphological network is
constructed using structural MRI (He et al., 2007).

Despite the remarkable progress of studies on functional
and anatomical connectomes, the morphological brain network
issue was raised relatively late (Evans, 2013). He et al. (2007)
used cortical thickness as the regional descriptor to realize the
construction of a network by computing the correlations across
regions across a large scale; their study is the first to document
that the morphological brain network exhibits small-worldness
and a scale-free degree distribution. This methodology has also
been applied to different descriptors such as regional gray matter
volume (Bassett et al., 2008) and surface area (Sanabria-Diaz
et al., 2010). Moreover, the morphological brain network can be
employed to explore the hierarchical and modular organizations
of the cerebral cortex (Bassett et al., 2008; Chen et al., 2011).

Nevertheless, population-based studies on the morphological
brain network result in a severe loss of information of inter-
individual differences (Kanai and Rees, 2011). Fortunately,
several novel approaches have been recently developed to extract
structural information directly from T1-weighted MR images
and obtain the interregional connectivities for a single subject
(Raj et al., 2010; Zhou et al., 2011; Tijms et al., 2012; Kong
et al., 2015). For instance, Raj et al. (2010) proposed an
individual-based morphological network construction method
by using Gibbs probability models. Similarly, in another study,
the probability density function of local morphological features
was used as the regional descriptor to build the network
(Kong et al., 2015). In addition to these mathematical methods,
Tijms et al. (2012) employed a cube-based approach. In this
approach, after the intensity of voxels is concatenated into a
feature vector for each cube, the inter-cube connectivities can
be derived individually as the correlation coefficient. Notably,
in this method, the size of the node in the brain network
has shrunk from the atlas-based region to the voxel-based

cube. Furthermore, Batalle et al. (2013) presented a method to
normalize the atypical morphological networks, such as the cube
partition (Tijms et al., 2012), to standardized brain networks
with nodes identified using a parcellation scheme (i.e., AAL brain
atlas).

Despite the breakthroughs in research on individual-
based morphological brain networks, one particular aspect
draws our attention. Previous studies have built their
morphological networks by using a single cortical feature,
such as cortical thickness or voxel intensity. However, there
are multiple morphometric features can be extracted from the
brain structural organization. Therefore, we extend previous
studies by proposing a novel idea for realizing the formation
of individual-based morphological brain network using a
combination of multiple morphometric features. In the network
construction, the interregional connections were computed as
the correlation of feature vectors instead of one feature; each
of these vectors comprised nine complementary morphometric
features.

To test this idea, we applied it to a sample of 55 healthy
participants (24 males) aged 20–29 years old. The network nodes
were determined using a brain atlas with multiple anatomical
regions of interest. The global and local topological properties
of the network were computed in accordance with graph theory.
The results of small-world configurations were compared with
those of previous studies at a similar sparsity level. Furthermore,
the nodal betweenness centrality and the spatial distribution of
hubs were thoroughly investigated. Finally, the reproducibility of
the method was evaluated.

MATERIALS AND METHODS

Participants
Fifty-five right-handed healthy subjects (24 male ages ranging
from 20 to 29 with mean = 22.92 and standard deviation
= 2.89; 31 female ages ranging from 20 to 28 with mean
= 21.71 and standard deviation = 2.19) were selected
from the Open Access Series of Imaging Studies Database
(http://www.oasis-brains.org/). All the subjects were questioned
about theirmedical histories and use of psychoactive drugs before
a trained physician began image acquisition. For details on the
clinical and demographic information of the subjects, please refer
to Marcus et al. (2007).

Image Acquisition
For each subject, three or four individual T1-weighted
magnetization-prepared rapid gradient-echo images were
acquired using a single Siemens 1.5 T Vision scanner with
the following parameters: repetition time = 9.7ms, echo
time = 4.0ms, inversion time = 20ms, flip angle = 10◦,
sagittal orientation with 128 slices, and resolution = 1 × 1
× 1.25mm. Multiple T1 images obtained for each subject
were motion-corrected and then averaged to achieve an
improved signal-to-noise ratio. For additional details on the
post-processing information regarding the raw images, please
refer to Marcus et al. (2007).
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Measurements of Multiple Morphometric
Features
All the images were preprocessed through FreeSurfer
(version 5.3.0), which can be freely downloaded online
(http://surfer.nmr.mgh.harvard.edu/). Studies have assessed
FreeSurfer’s performance with images acquired from various
MRI scanners or sequences and received reliable results for
cortical and subcortical measurements (Khan et al., 2008;
Shi et al., 2013; Mulder et al., 2014). Details on FreeSurfer’s
processing pipeline can be found in Dale et al. (1999) and Fischl
et al. (1999). In short, the raw images were resampled into 256
× 256 × 256 isotropic resolutions with a voxel size of 1 × 1

× 1mm. The intensity bias was subsequently corrected in a

volume-based stream, and the skull was stripped, followed by

volumetric labeling and white matter segmentation (Figure 1A).

In the surface-based stream, the surface of white matter was

extracted as the inner surface, and then nudged to the gray–

pial interface to generate the outer surface (Figure 1B). The

FreeSurfer surface was created as a mesh with a non-uniform
grid, also known as a vertex. Hence, the cortical morphometric
features can be measured using every vertex between the inner
and outer surfaces (Figure 1C). Finally, the built-in Desikan-
Killiany cortical atlas (Desikan et al., 2006) was applied to obtain
the regional measurements (Figure 1D). This atlas presents the

FIGURE 1 | The general flowchart of the individual-based morphological brain network construction and analyses. The steps from (A–D) were

accomplished using FreeSurfer. Intensity bias was corrected, and the skull was stripped (A) before the inner and outer surfaces of gray matter were extracted (B). All

the involved morphometric features were first measured between inner and outer surfaces (C), and then the feature results were mapped to the Desikan–Killiany

cortical atlas to obtain the regional feature measurements (D). For each region, nine morphometric features were concatenated as a feature vector to obtain the

correlation coefficient between any two regions to frame the individual-based morphological connectivity (E). The connection matrix was then repeatedly binarized

based on the sparsities (from 20 to 40% with a step size of 1%) to generate the network graphs (F), and then the network topological properties were analyzed in

accordance with graph theory (G).
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parcellation of 34 regions for each hemisphere on the basis of
the structural patterns of the gyrus and sulcus (Supplementary
Table 1).

Nine morphometric features were initially employed in this
study (Figure 1E): (1) the number of vertices in each region, (2)
regional gray matter volume, (3) surface area, (4) mean cortical
thickness, (5) standard deviation of cortical thickness, (6) mean
curvature, (7) Gauss curvature, (8) curvature index, and (9) fold
index. In particular, the first two features are tallied as the sum of
the vertices and voxels in a region, respectively. Surface area was
computed as the total of the areas of all vertices falling within a
region (Panizzon et al., 2009). The cortical thickness is measured
as the distance between the inner and outer cortical surfaces at
each vertex (Fischl et al., 1999). The curvature is calculated as the
reciprocal of the radius of the inscribed circle for each vertex, and
the signs of the gyrus and sulcus are opposite (Li et al., 2014). The
Gaussian curvature of a surface at a given point is the product of
the principal curvatures, which are the eigenvalues of the shape
operator at the point (Pienaar et al., 2008). Theymeasure how the
surface bends by different amounts in different directions at that
point. The folding index is calculated as the number of cortices
buried within the sulcal folds, as compared with the number of
cortices on the visible outer cortex (Schaer et al., 2008). Notably,
all the surface computations were performed in the native space,
enabling the above-mentioned features to be measured without
deformation.

Individual-Based Morphological Network
Construction
To form the network, the regional descriptor was defined
as a feature vector, which is the concatenation of the nine
morphometric features in each region, as shown in Figure 1.
Therefore, the interconnected matrix is generated by computing
the Pearson correlation coefficient for each pair of feature vectors
(Figure 1E). Significant differences exist between the orders
of magnitude of each morphometric feature (10−2 to 103).
Thus, the z-score values were computed for each feature as the
standardized values before the correlation calculation. The z-
score values were calculated from each morphometric feature by
first subtracting the mean of all values from each individual value
and then dividing each remainder by the standard deviation of
all the values, as realized by the normalization function in the
statistical analysis software SPSS v22.0 (SPSS Inc., Chicago IL,
USA). The correlation matrix was then binarized to generate the
unweighted and undirected networks (Figure 1F), because this
matrix captures the underlying anatomical connection patterns,
while providing a simple method for investigating the network
(He et al., 2007). To maintain both positive and negative high
correlations, the absolute values of matrixes were applied for
binarization. Lastly, such network properties as small-world
configurations and definition of hubs (Figure 1G) were analyzed
in accordance with graph theory.

For binarization, sparsity was used to express the extent of
thresholding, which is the ratio of existing connections to the
total possible ones. However, the appropriate sparsity remains
an open question (Zhu et al., 2012). Therefore, the network

properties were evaluated as a function of sparsity ranging from
20 to 40% with a step size of 1%. The range was determined using
the requirements stating that the minimum sparsity guarantees
no isolated node in the network, and the maximum one ensures
small-worldness. The other advantage of using a certain range of
sparsity is that it allows us to investigate the network properties at
the same level for all the subjects, as the same number of existing
connections are found in each case. Additionally, the sparsity of
23% was highlighted to enable direct comparison with previous
studies.

Analyses of Network Properties
The network properties were computed using the Brain
Connectivity Toolbox (BCT) (Rubinov and Sporns, 2010) and
Graph-theoretical Network Analysis (GRETNA) toolkit (Wang
et al., 2015). SPSS was used for the single-feature normalization
(see individual-based morphological network construction) and
all the statistical analyses, while the spatial distribution of hubs
was visualized using the BrainNet Viewer toolkit (Xia et al., 2013).
The multiple comparison was corrected using the false discovery
rate (FDR) proposed by Genovese et al. (2002).

Small-World Configurations
In 1998, Watts and Strogatz first proposed the notion of a
small-world network, which exhibits a similar characteristic
path length (Lp) but a higher clustering coefficient (Cp) than a
random network (Watts and Strogatz, 1998). In particular, Cp

represents the average of the clustering coefficients of all the
nodes (Ci) in a network, where Ci expresses the likelihood that
the neighborhoods of the nodes are connected. Specifically, Ci

of a given node is computed as the proportion of connections
among its neighbors which are actually realized compared with
the number of all possible connections. Thus, Cp quantifies
the extent of local cliquishness or the efficiency of a particular
network’s information transfer (Latora and Marchiori, 2001).
In addition, Lp represents the characteristic path length of the
graph, which is the average shortest path length among all
pairs of nodes in the network. However, correct calculation of
Lp based on the definition is unachievable because not every
pair of nodes in a binary brain network is connected. To
avoid this situation, Lp is measured as the “harmonic mean”
distance between pairs of nodes proposed by Newman (2004).
Lp quantifies the parallel information propagation ability, or the
global efficiency of a network (Latora and Marchiori, 2001).
Therefore, small-worldness can be demonstrated mathematically
as

γ =

Cobserved
p

Crandom
p

> 1 and λ =

Lbrainp

Lrandomp

≈ 1

or merged into one formula

σ =
γ

λ
> 1,

where the corresponding random networks consist of the same
number of nodes and edges (Achard et al., 2006).
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Spatial Distribution of Hubs
The betweenness centrality (BC) is defined as the number of
shortest paths between any two nodes running through the
given node, and measures the nodal ability of information flow
throughout the network (Freeman, 1977). In particular, two
considerations are adopted to determine the hubs. The first
specifies the hubs for each subject; thus, the average of BC for
the entire sparsity range (mspBC) is used to represent nodal BC
for each subject. The next consideration involves realizing the
identification of hubs at each sparsity; hence, the mean BC of all
the subjects (msjBC) was employed to represent nodal BC at each
sparsity. Overall, the hubs were selected with the same criterion,
indicating that the nodes should achieve a higher BC (mspBC or
msjBC) than the sum of the mean and standard deviation for the
entire network, as demonstrated below.

BC > meanBC + standard deviationBC

The nodal degree was not used to determine the hubs because
in contrast with BC, this degree only measures the connections
linked with the node, rather than the shortest path.

Reproducibility
To evaluate the reproducibility of morphometric features and the
present method, the intraclass correlation coefficient (ICC) was
applied. ICC was first defined by Mcgraw and Wong (1996) as
the fraction of the variance of chosen graphic property between
subjects to the total variance, which is the summation variance of
between and within subjects of that property.

ICC =
σ 2
between

σ 2
between

+ σ 2
within

If the measurements of repeated scans are consistent for each
subject, the ICC would be close to one. An ICC value above
0.75 is considered excellent, and one ranging from 0.6 to 0.75 is
considered good (Bennett and Miller, 2010). ICC was computed
using the “Reliability Analysis” function of SPSS.

RESULTS

Before the formation of networks, nine of the morphometric
features were firstly measured of its robustness by SPSS. The
mean value of the entire brain was used to realize the ICC
measurement. The number of vertices (ICC= 0.95 with p= 3.1×
10−4), mean curvature (ICC= 0.80 with p= 2.4× 10−2), surface
area (ICC= 0.99 with p= 7.3× 10−6), volume (ICC= 0.96 with
p= 1.6× 10−4) and standard deviation of thickness (ICC= 0.94
with p = 6.3 × 10−4) are significantly reliable. Robustness was
also found in Gauss curvature (ICC = 0.68) and mean thickness
(ICC = 0.73), but the results are less significant with p-value of
7.6 × 10−2 and 5.3 × 10−2, separately. However, the index of
fold and curvature are failed to present acceptable reproducibility
(ICC = 0.73 with p = 0.76 and ICC = 0.36 with p = 0.29,
respectively). Therefore, only seven of morphometric features
were employed in the network construction (Figure 1E, number
of vertices, mean and Gauss curvature, surface area, volume,

mean and standard deviation of thickness). The subsequent
network analyses included the following: (1) assessment of small-
world configurations (Cp, Lp, γ, λ, and σ) of the networks, (2)
investigation of BC and spatial distribution of the networks’
hubs, and (3) estimation of the method’s reproducibility. For a
rational demonstration, the sparsity applied ranged from 20 to
40% with a step size of 1% to extract all of the above-mentioned
measurements for each individual-based brain network.

Small-World Configurations
Initially, apart from the subjects’ respective brain networks,
Cp and Lp were also derived from the corresponding random
networks at each sparsity for each subject. Hence, the
comparisons were conducted between the different subjects’
brain networks and random networks (Figures 2A,B) or
sparsities (Figures 2C–E). The comparison shows that Cp and
Lp are profoundly higher than the random ones all over the
sparsity range with the maximum p = 1.14 × 10−11 (t-values
ranged from 11.75 to 27.77 with FDR correction) and p= 6.15×
10−3 (t-values ranged from 2.98 to 5.00 with FDR correction), as
revealed using the independent two-sample t-test (Figures 2A,B,
respectively). Likewise, γ was larger than one (max = 1.99, min
= 1.37) throughout the whole sparsity range, while λ was close
to one (max = 1.28, min = 1.02). Hence, as expected σ are
found larger than one throughout the entire sparsity range (max
= 1.56, min = 1.35) which confirms the existence of small-
worldness. Overall, the individual networks exhibit significantly
higher Cp than the random network, while remaining similar
Lp. Thus, small-worldness is confirmed for each subject at every
sparsity. Moreover, the increase and decrease of small-world
configurations, as sparsity increased, is illustrated in Figure 2C.
Such small-world configuration fluctuations are in accordance
with the variation tendency documented in previous reports (He
et al., 2007; Kong et al., 2015).

Furthermore, the sparsity of 23% is highlighted for convenient
comparison with previous studies, including those based on
individual-based morphological brain networks (Tijms et al.,
2012; Kong et al., 2015), those involving population-based
morphological brain networks with various regional descriptors
(He et al., 2007; Sanabria-Diaz et al., 2010; Zhu et al.,
2012), and functional brain network studies (Zhang et al.,
2011). As listed in Table 1, the population-based morphological
networks and functional network exhibit smaller results than
the current findings, whereas the individual-basedmorphological
network studies present relatively similar results, particularly
that of Kong et al. (2015). This finding suggests that the
individual morphological brain networks may demonstrate a
stronger integration and segregation because the inter-individual
variability is highly reserved (Kanai and Rees, 2011).

Spatial Distribution of Hubs
In addition to the assessment of small-world configurations, the
spatial distribution of hubs was investigated for different subjects
and sparsities. First, the effect of sparsities on hub identification
was computed. The BC was averaged through all the subjects
at each sparsity to investigate the extent of the sparsity range
for each hub region (msjBC). A total of ten regions identified
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FIGURE 2 | Small-world configurations of the individual-based morphological networks. (A,B) Represent the average Cp and Lp of sparsities for each

subject. The error bar indicates the deviation caused by different sparsities. (C–F) Show the average Cp, Lp, γ, λ, and σ of the subjects for each sparsity (from 20 to

40% with a step size of 1%). The error bar indicates the deviation caused by different subjects.

as hubs achieved a sparsity range of over 20% (Figure 3),
including the bilateral entorhinal cortex (left 100.00%, right
85.71%), superior temporal gyrus (left 100.00%, right 100.00%),
lateral occipital gyrus (left 95.24%, right 100.00%), frontal pole
(left 71.43%, right 28.57%) and left caudal middle frontal gyrus
(100.00%), left rostral anterior cingulate cortex (71.43%), left
isthmus cingulate cortex (33.33%), left parahippocampal gyrus

(33.33%). In addition, a total of 4 regions were regarded as hubs
in a sparsity range of 4.76 to 14.29%, and the rest of the 52 regions
were never observed presenting a hub at any sparsity. The specific
extent of sparsity range for each node identified as a hub may be
found in Supplementary Table 2.

Thereafter, the influence of individual differences on hub
determination was investigated. Likewise, the BC was averaged
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TABLE 1 | Comparison of small world configurations between the present study and previous studies.

Study Descriptor N Cp Lp γ λ σ s (%)

INDIVIDUAL-BASED MORPHOLOGICAL BRAIN NETWORK

Present study Multiple morphometric features 68 0.62 2.23 1.81 1.22 1.52 23

Kong et al., 2015 Probability density functions 90 0.66 1.92 1.74 1.15 1.50 23

Tijms et al., 2012 Voxel intensity 6,982 0.53 1.86 1.35 1.05 1.28 23

POPULATION-BASED MORPHOLOGICAL BRAIN NETWORK

He et al., 2007 Cortical thickness 54 NR NR ≈1.5 ≈1.15 ≈1.3 23

Zhu et al., 2012 Gray matter volume 90 ≈0.26 NR ≈1.20 ≈1.03 ≈1.17 23

Sanabria-Diaz et al., 2010 Surface area 82 ≈0.3 ≈1.81 NR NR ≈1.28 22

Cortical thickness 82 ≈0.29 ≈1.81 NR NR ≈1.23 22

FUNCTIONAL BRAIN NETWORK

Zhang et al., 2011 Resting state (0.01 ∼ 0.1Hz) 90 ≈0.33 ≈1.65 ≈1.3 ≈1 ≈1.4 23

N, Cp, and Lp denote the number of nodes in the networks, the average clustering coefficient and the mean of characteristic path length, respectively. γ represents the ratio of the

networks’ clustering coefficient and the clustering coefficient of the random network. λ stands for the ratio of the average characteristic path length of the network and the average

characteristic path length of the random network. σ shows the small-worldness. NR is “not reported.” The small world attributes of previous studies are referred (without ≈) or inferred

(with ≈) at the sparsity of 23%. There are also relevant references, but these are unlisted because the values of these properties are unknowable at the sparsity of 23%. Such references

include the studies of Lo et al. (2010) and Gong et al. (2009a) for the anatomical brain network, Liu et al. (2008) for the functional brain network, and ? for the morphological one.

FIGURE 3 | Hubs with a sparsity range exceeding 20%, based on the average of subjects. L, left; R, right; A, anterior; P, posterior; CMF, caudal middle frontal

gyrus; ENT, entorhinal cortex; FP, frontal pole; ISTC, isthmus cingulate; LOCC, lateral occipital gyrus; RAC, rostral anterior cingulate; PHG, parahippocampal; ST,

superior temporal gyrus. The size of the node represents the proportion of sparsity; the largest node denotes 100% of the proportion. The different color of nodes

denotes the different lobes: red-frontal lobe; green-temporal lobe; blue-occipital lobe; yellow-cingulate.
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throughout the sparsity range for each subject to determine the
number of subjects presenting each region as a hub (mspBC). A
total of 14 nodes are hubs for over 20% of the subjects (Figure 4),
including the superior temporal gyrus (left 54.55%, right 43.64%),
caudal middle frontal (left 38.18%, right 27.27%), entorhinal
cortex (left 38.18%, right 25.45%), lateral occipital gyrus (left
32.73%, right 38.18%), parahippocampal gyrus (left 23.64%, right
29.09%), and left isthmus cingulate cortex (27.27%), left rostral
anterior cingulate cortex (23.64%), left frontal pole (23.64%),
left inferior temporal gyrus (21.82%). A total of 53 regions are
considered hubs in 1.82 to 18.18% of the subjects, and just one
region comprised no subjects. The specific number of subjects
presenting each node as a hub is found in Supplementary Table 3.

The similarity of BC across subjects and sparsities was
evaluated through the proximity matrix generated by SPSS
(Figure 5). As illustrated in the figure (yellow: similar, blue:
dissimilar), the inter-subject and inter-sparsity similarities of
BC were observed, and the highly comparable BC was found
in adjacent sparsities (close to diagonal) (Figure 5A). The
individual differences in subjects significantly influence the BC
value (Figure 5B). Clearly, the similarities were significantly high
across sparsities. These findings are also in agreement with the
above-mentioned results, which state that the hubs can be mostly
retained for different sparsities, while hub identification varied
profoundly for different subjects.

Furthermore, Figure 6 shows the visualization of hub
distribution based on the average BC of all the subjects
and the entire sparsity range. The results indicate that ten
hubs were identified, comprising six heteromodal or unimodal
associative regions and four paralimbic regions (Table 2). All
these hub regions have been reported in at least one previous
study.

Reproducibility
The method’s reproducibility was evaluated by measuring the
ICC index of network properties for scans with acquisitions of
two different time points in the same subjects. The ICC was
investigated throughout the entire sparsity range. Only Cp, Lp,
and BC were examined in this study because of the instability of
random network generation processing.

The results indicated that Cp was highly reproducible
(minimum ICC = 0.71, average ICC = 0.83), as plotted in
Figure 7A. Moreover, the robustness of Lp (minimum ICC =

0.63, average ICC = 0.81) was fairly stable (Figure 7B), as the
similarities to the BC (minimum ICC = 0.629, average ICC =

0.78) are shown in Figure 7C. Most of the results are significant,
except for Lp and BC at sparsity of 40% (p = 5.6 × 10−2 and p
= 5.7 × 10−2, separately). Hence, the reliability of the present
method is well-documented in accordance with the standard
proposed by Bennett and Miller (2010). The specific value of ICC

FIGURE 4 | Hubs in over 20% of subjects based on the average of sparsities. L, left; R, right; A, anterior; P, posterior; CMF, caudal middle frontal gyrus; ENT,

entorhinal cortex; FP, frontal pole; ISTC, isthmus cingulate; IT, inferior temporal gyrus; LOCC, lateral occipital gyrus; RAC, rostral anterior cingulate; PHG,

parahippocampal; ST, superior temporal gyrus. The size of the node represents the proportion of subjects; the largest node denotes 54.55% of the proportion. The

different color of nodes denotes the different lobes: red-frontal lobe; green-temporal lobe; blue-occipital lobe; yellow-cingulate.
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FIGURE 5 | Similarity across sparsities and subjects. (A) Represents the similarity between different sparsities from 20 to 40% with the step size of 1%. (B)

Exhibits the similarity between different subjects. The color bar shows the extent of similarity with blue as dissimilar and yellow as similar.

FIGURE 6 | Spatial distribution of hubs identified based on the average of sparsities and subjects. L, left; R, right; A, anterior; P, posterior; CMF, caudal

middle frontal gyrus; ENT, entorhinal cortex; FP, frontal pole; ISTC, isthmus cingulate; LOCC, lateral occipital gyrus; RAC, rostral anterior cingulate; ST, superior

temporal gyrus. The size of the node represents the value of BC; the largest node denotes 107.22 of BC. The different color of nodes denotes the different lobes:

red-frontal lobe; green-temporal lobe; blue-occipital lobe; yellow-cingulate.
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TABLE 2 | The hubs distribution based on the average BC of all the

subjects and the entire sparsity range.

Regions BC Class References

Left superior temporal gyrus 107.22 Association [f1] [f2] [m3]

Right superior temporal gyrus 97.84 Association [f1] [f2] [m3]

Right lateral occipital gyrus 93.92 Association [f1] [f3] [m4] [a1]

Left entorhinal cortex 90.48 Paralimbic [f1] [m1] [a2]

Left caudal middle frontal gyrus 89.61 Association [f1] [f2] [m3] [m4] [m5]

Left lateral occipital gyrus 88.73 Association [f1] [f3] [m4] [a1]

Left rostral anterior cingulate 81.03 Paralimbic [m2]

Right entorhinal cortex 79.00 Paralimbic [f1] [m1] [a2]

Left frontal pole 79.00 Association [a3] [f4]

Left isthmus cingulate 77.34 Paralimbic [f2] [m4]

All the regions were listed in descending order according to their BC, which is averaged

across subjects and sparsities. The classes were defined by Mesulam (1998). The

abovementioned references include morphological brain network studies: [m1] Kong et al.

(2015), [m2] Bassett et al. (2008), [m3] Wu et al. (2012), [m4] He et al. (2007), [m5] Tijms

et al. (2012); anatomical brain network studies: [a1] Gong et al. (2009a), [a2] Harriger

et al. (2012), [a3] Hagmann et al. (2008); functional brain network studies: [f1] Achard

et al. (2006), [f2] Buckner et al. (2009), [f3] Wang et al. (2010), [f4] Honey et al. (2007).

for the three measurements across the entire sparsity range is
shown in Supplementary Table 4.

DISCUSSIONS

To our knowledge, this study is the first to collectively employ
multiple morphometric features to evaluate the individual
morphological brain network. First, small-worldness is
confirmed at each sparsity (20%–40% with a step size of
1%) for all the subjects by investigating Cp, Lp, γ, λ, and σ

(Figure 2). In addition, the small-world configurations are found
to be compatible with previous reports at the sparsity of 23%
(Table 1). Thereafter, subject diversity was assessed and was
found to significantly influence hub identification, whereas
the influence of variety between sparsities was shown to be
minimal (Figures 3–5). In addition, the hubs determined by the
average of the entire sparsity range and population were found
to be highly consistent with previous findings (Figure 6 and
Table 2). Finally, the method’s reproducibility was ascertained
by verifying the ICC of Cp, Lp, and BC throughout the sparsity
range (Figure 7). Overall, the results suggest that the proposed
method may offer a new way to build the morphological
brain network individually with multiple morphometric
features.

Interregional Morphological Similarity
The interregional morphological similarity has been observed
and verified repeatedly in recent studies based on such
morphometric features as cortical thickness and regional volume
(Lerch et al., 2006; He et al., 2007; Bassett et al., 2008; Sanabria-
Diaz et al., 2010). The interpretation of this observation implies
that the brain regions exhibit covaring morphometric features
that can form the connected structure, which may capture long-
term neurobiological effects (Mechelli et al., 2005). However,
the underlying mechanism of this covariance pattern remains

elusive. Some conjectures have been debated in the scientific
literature, including mutually trophic effects (Ferrer et al., 1995;
Aid et al., 2007), environment-related plasticity (Maguire et al.,
2000; Draganski et al., 2004; Mechelli et al., 2004), genetic
influence (Schmitt et al., 2008), and normal development (Raz
et al., 2005; Chen et al., 2011). The axonal tension theory has
also been raised recently (Tijms et al., 2012; Kong et al., 2015),
stating that the interconnected areas are becoming either thicker
or thinner as a result of being pulled by a mechanical force (Van
Essen, 1997).

Moreover, the relationships among morphological (M),
functional (F), and anatomical (A) connectivities were
investigated in previous studies. For instance, Reid et al.
(2017) have demonstrated that the extent of accordance between
F-M modalities varied remarkably across seed regions. Wang
et al. (2015) have illustrated a tight coupling of F-M modalities
in connectivity strength and network topologic organizations
(i.e., modules, rich club, and motifs), further indicating that the
neuropsychiatric disorders may considerably break this coupling.
In addition, Gong et al. (2012) have found an A-M convergence
in 35–40% of morphological connectivities, with the majority
of the convergences observed in the positive morphological
connectivities.

Further research in neurobiology would significantly assist the
construction and exploration of morphological brain networks.
In addition, the data on different modalities were typically
used or analyzed separately because they were supposed to
capture the distinct underlying phenomena. However, the
correspondences in topological structures have been recently
observed across modalities, suggesting that the combination
of multimodal research will become increasingly important in
neuroscience.

Spatial Distribution of Hubs
The spatial distribution of hubs (nodes with higher BC of average
subjects and the entire sparsity range) in the present study
was found to be strikingly similar to the results of functional
studies. The consistent regions are the bilateral superior temporal
gyrus, entorhinal cortex, and lateral occipital gyrus, and left
isthmus cingulate, frontal pole (Table 2). Such accordance is
quite thought-provoking, although the different criteria were
employed to identify the hubs (BC, degree, and Lp). Hence, the
findings may suggest that the individual-based morphological
brain networks may exhibit an improved consistency with
functional studies.

In addition, the hub spatial distribution of different subjects
(averaged by sparsities) shows striking diversity in the present
study (Supplementary Table 3). As illustrated in Figures 4, 5
(right), inter-individual variability is implied as a major influence
on hub determination. Indeed, a number of studies have
demonstrated unmistakable discrepancies in brain structures
across individuals (Kanai and Rees, 2011). For example, genetic
differences can lead to brain morphological changes (Thompson
et al., 2001; Pol et al., 2006), as well as the variance in
occupations (Maguire et al., 2000; Gaser and Schlaug, 2003) and
skills (Mechelli et al., 2004). Moreover, cognition is found to
be correlated with cerebral structures. For instance, individual
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FIGURE 7 | Reproducibility of the method. (A–C) Represents the ICC of Cp, Lp, and BC as a function of sparsity, respectively. The hollow dot indicates the

insignificant result.

differences in degrees of empathy were observed to be associated
with gray matter density (Eres et al., 2015) and volume
(Banissy et al., 2012). Psychiatric diseases such as epilepsy also
involve unpredictable foci locations and numbers (Engel, 2006).
Therefore, individual-based investigations are indispensable in
clinical and scientific research.

Hence, investigation of the organization of morphological
brain networks, along with functional and anatomical network
organization on a case-by-case basis is both intriguing and
indispensable. The individual-based accordance across
modalities may also be an indicator in future cognitive and
psychiatric research.

Methodology Issues and Future Research
Several methodological issues are found in the present study,
which should be addressed and solved in future research.

First, the interregional connections were measured as the
Pearson correlation coefficient in the present study, as in many
earlier studies (He et al., 2007; Chen et al., 2011; Shi et al.,
2013). However, this measurement shows that the observed
connections between any two regions are actually the summation
of the direct and indirect correlations. A widely used approach
for eliminating the influence of other regions is to alternatively
use partial correlation (Bassett et al., 2008). The number of
variables should be less than a number of samples of each
variable in partial correlation computation. However, in the
present study, a total of 68 regions (i.e., variables) with nine
morphometric features (i.e., samples) are used, which goes
against the regular partial correlation. Consequently, in future
research, the partial correlation computation must be adjusted
to increase the accuracy of results addressing interregional
connections.

Second, the networks were binarized with a sparsity range
from 20 to 40% for topological analyses, as in previous studies
(He et al., 2007; Kong et al., 2015). This binarization leads to
the exclusion of 60–80% of connection information simply
because such connections were deemed “not important”
based on the correlation algorithms. The underlying
mechanism of morphological connections remains unclear
(see interregional morphological similarity). Therefore, whether
or not the “not important” connections are really useless has
not been confirmed (Barrat et al., 2004). As such, further
exploration of brain networks as the full-connected weighted

graph is essential to obtaining additional insights into the
human brain.

Third, the nine morphometric features applied in the
present study were far from painstakingly selected. However,
the anatomical information including cortical thickness, gray
matter volume, surface area, and curvature is varied (He
et al., 2007; Sanabria-Diaz et al., 2010). In addition, redundant
information may have existed in the three curvature-related
measurements (mean curvature, Gauss curvature, and curvature
index). Therefore, an optimal selection of morphometric features
will be further explored.

Fourth, the present study only investigated the individual-
based morphological connectivities, whereas the functional and
anatomical connections were found to demonstrate a mutual
relationship with the morphological connections in the present
and previous studies (Sui et al., 2012; Mueller et al., 2013). Hence,
in future research, the multimodal images should be employed in
individual-based brain network analyses.

CONCLUSION

In this study, a new idea is proposed to construct an individual-
based morphological brain network. To our knowledge, this
study is the first to collectively use multiple morphometric
features to form interregional connections. The results of
network topological analyses have demonstrated this method’s
feasibility, and the verification of reproducibility has supported
its excellent robustness. Our findings on hubs’ spatial distribution
have provided profound indications of individual differences
that cannot and should not be overlooked. Moreover, the
hubs obtained by averaging across subjects and sparsities have
been shown to be largely compatible with an individual-based
functional study, leading us to investigate whether individual-
based multimodal brain networks share further similarities. The
proposed method may offer a novel approach in investigating the
cerebral organization individually. The interrelationship between
modalities, combined with functional connectivities, is worthy of
further exploration.
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