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Abdominal aortic aneurysm (AAA) often remains undetected until rupture due to limited access to
diagnostic ultrasound. This trial evaluated a deep learning (DL) algorithm to guide AAA screening by
novice nurses with no prior ultrasonography experience. Ten nurses performed 15 scans each on
patients over 65, assisted by a DL object detection algorithm, and compared against physician-
performed scans. Ultrasound scan quality, assessed by three blinded expert physicians, was the
primary outcome. Among 184 patients, DL-guided novices achieved adequate scan quality in 87.5%
of cases, comparable to the 91.3% by physicians (p = 0.310). The DL model predicted AAA with an
AUC of 0.975, 100% sensitivity, and 97.8% specificity, with a mean absolute error of 2.8 mm in
predicting aortic width compared to physicians. This study demonstrates that DL-guided POCUS has
the potential to democratize AAA screening, offering performance comparable to experienced
physicians and improving early detection.

Abdominal aortic aneurysm (AAA) is a life-threatening condition that
contributes to a crude mortality rate of ~150,000–200,000 deaths per year
worldwide1. More than two-thirds of patients with a ruptured abdominal
aortic aneurysm present without a prior diagnosis of AAA2. An AAA is
typically defined as aortic enlargement with a diameter of 3.0 cm or larger3.
Early studies suggested that aortic diameters <3.0 cm did not necessitate
regular follow-up. However, recent data reveal that 13.8% of patients with
aortic diameters between 2.6 and 2.9 cm experienced growth to over 5.5 cm
within 10 years4,5. Early detection and treatment can considerably decrease
AAA-related mortality, especially in the elderly6. Recent guidelines
recommend ultrasonography for general AAA screening in at-risk popu-
lations, specifically men over 65, with a smoking history, with other per-
ipheral aneurysms, a first-degree relative with anAAA, as well as those who
have undergone organ transplantation7.

Ultrasonography, the most common imaging screening modality for
AAA, has proven to be effective and less costly compared to standard
computed tomography (CT) scans8. Nonetheless, ultrasound is generally
performed by highly trained sonographers, and the interpretation is carried
out by board-certified physicians. This challenge is further exacerbated by
the restricted accessibility of sophisticated ultrasound equipment. Both of
these factors contribute to ultrasound examinations having the longest

waiting times compared to other imaging modalities, thereby reducing the
cost-effectiveness of general screening for AAA3–5.

In the past decade, Point-of-Care Ultrasound (POCUS) has seen
extensive use across various hospital settings, including outpatient clinics,
emergency departments, wards, and operating rooms6,7. It has played a
crucial role inmedically underserved areas, from rural regions in developed
countries to low-income nations, and is even used inmanned space flights8.
Portable ultrasound machines have facilitated the acquisition of high-
quality images suitable for diagnostic purposes9. This has the potential to
enhance diagnostic capabilities, especially in remote areas where experi-
enced sonographers may not be readily available10.

AI revolutionizes healthcare by rapidly interpreting images, detecting
abnormalities, segmenting organs and lesions, and facilitating early disease
identification11. A prior study suggests that AI empowers individuals with
no previous experience in ultrasonography to perform diagnostic trans-
thoracic echocardiographic studies, encompassing the evaluation of left and
right ventricular function, as well as the identification of pericardial
effusion12–14. In addition, AI can guide novices to capture satisfactory
diagnostic images of the Morison pouch during trauma examination15,16.
The objective of this study is to develop and validate a deep learning (DL)
model that guides abdominal aorta scanning and to investigate its potential
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in assisting novices to obtain qualified scans. This approach could aid in the
screening of potential AAA patients by advancing the detection of symp-
tomatic aneurysms, screening asymptomatic AAAs in at-risk groups, and
monitoring aneurysm growth until treatment is necessary.

Result
Patients at least 65 years old visiting the outpatient clinic of the Cardiology
department at the studied hospital were recruited between June andAugust
2023. Ten registered nurses without prior experience performing or inter-
pretingultrasonographywere recruited for the trial fromhospital personnel.
During the study period, 188 patients were included. Two patients were
unable to lie flat, one patient was unable to provide informed consent, and
one patient was unwilling to provide informed consent. A total of 184
patients completed both the nurse and physician examinations (Fig. 1).
Their median (IQR) age was 72 (67–79), 57.1% were male, and the median
(IQR) body mass index (BMI) was 25.1 (23.3–28.1). 131 (71.2%) of them
had Hypertension, 64 (34.8%) had diabetes mellitus, 83 (45.1%) had heart
disease, and 41 (22.3%) had a smoking history. AAA was diagnosed by
physicians in 3 patients, representing 1.6% of the study cohort. Table 1
shows the demographics of the included patients.

Regarding the primary outcome, no significant differencewas found in
the rate of qualified videos between DL-guided scans 87.5% (95% CI:
82.7–92.3%), and physician-performed scans 91.3% (95% CI: 87.2–95.4%),
with a p-value of 0.310. Furthermore, the qualified rate for DL guidance
remained consistent across patientswith varyingBMI levels: 87.6% (95%CI:

80.9–94.1%) in patients with BMI > 25 and 87.4% (95% CI: 80.4–94.3%) in
patients with BMI < 25. After five rounds of examination, the proficiency of
scans slightly increased, reaching an 88.1% (95% CI: 82.3–93.9%) qualifi-
cation rate, as detailed in Table 2.

Regarding primary outcome, no significant differencewas found in the
rate of qualified videos between DL-guided scans 87.5% (95% CI:
82.7–92.3%), and physician-performed scans 91.3% (95% CI: 87.2–95.4%),
with p-value of 0.310. Furthermore, the qualified rate for DL guidance
remained consistent across patientswith varyingBMI levels: 87.6% (95%CI:
80.9–94.1%) in patients with BMI > 25 and 87.4% (95% CI: 80.4–94.3%) in
patients with BMI < 25. After 5 rounds of examination, the proficiency of
scans slightly increased, reaching an 88.1% (95% CI: 82.3–93.9%) qualifi-
cation rate, as detailed in Table 2.

The time to complete the studywas longerwithDLguidance, averaging
37 s (IQR 21–60), compared to 20 s (IQR 16–33) for physician-led scans
(p < 0.001). For nurses using DL guidance, the completion time was longer
in patientswith aBMIover25, taking 42 s (IQR27–67), as opposed to 30 sec
(IQR 18-54) for those with a BMI under 25. Physicians’ scans showed
similar patterns between different levels of BMI. With the increased use of
the DL system, nurses’ scan times decreased; after five scans, the average
time was reduced from 53 sec (IQR 38–82) to 30.5 s (IQR 18–55), as
reported in Table 2.

Of the 161 scans underDL guidance classified as diagnostic quality, the
predicted maximal aortic widths showed a mean absolute error of 2.8 mm
compared with physician measurements, as depicted in Fig. 2.

Fig. 1 | Study design. The study design involved
nurse participation and patient enrollment. Ten
nurses with no prior experience received ultrasound
and deep learning guidance training and performed
practice scans. A total of 184 patients were enrolled,
scanned by both nurses and experts, with the deep
learning model predicting maximal aortic width.
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Of these scans, 159 (98.8%) had a discrepancy of <1 cm when com-
pared to physician labeling. 3 patients (1.6%) were diagnosed with AAA in
this study based on the physician’s ultrasound findings. The DL model can
predict AAA with an AUC of 0.975 (95% CI: 0.943–1). While using 2.5 cm
as the cut-off threshold, the DL model identified 7 videos with suspected
AAA, achieving 100% sensitivity in detecting AAA in these patients, along
with 97.8% specificity, 42.8% positive predictive value, and 100% negative
predictive value (Table 3). Manual inspection of the 4 false positive videos
revealed that 2 videoswere due to falsely enlargedbounding boxes, while the
other 2 were due to the misprediction of non-aorta structures as the aorta,
specifically a liver cyst and a fluid-containing bowel loop.

Discussion
In this study, we developed and validated a DL algorithm for guiding
novice users performing AAA screening with POCUS, which notably

demonstrated parity with experienced physicians in producing
diagnostic-quality videos. This finding suggests DL guidance can
compensate for a lack of extensive sonography experience, potentially
broadening AAA screening accessibility. Moreover, the DL model
exhibited robust performance across a range of patient body mass
indexes and showed a notable learning curve, with improved scan
times after repeated use. The precision of our DL model in predicting
the presence of AAAwas quantitatively reflected by an AUC of 0.973 in
our sample population. This high level of accuracy not only demon-
strates the DL model’s capability to distinguish between normal and
pathological findings but also suggests its potential as a reliable tool for
early detection. These results underscore the practicality and efficiency
of implementing AI in clinical ultrasound practice, which may help to
reduce waiting time for ultrasound examination, especially in
resource-limited settings where access to skilled sonographers is
challenging.

The utility of POCUS is well recognized for its convenience and the
immediacy with which it delivers diagnostic imaging at the patient’s
bedside. However, its effective use is traditionally limited by the operator’s
expertise, with the quality of the interpretation being heavily reliant on the
sonographer’s experience. Current protocols require at least a 3-month
training program for technicians to become familiar with examining the
abdominal aorta using ultrasound17. This presents a significant challenge
in resource-limited settings where access to highly trained professionals is
scarce18,19, which led to ongoing debate about the cost-effectiveness and
relevance of AAA screening. Given its low prevalence, with historical data
shows the prevalence rate of AAA 1.3–4.9% in selected risk populations,
the balance between the costs and benefits of widespread screening is
called into question20,21. This is precisely where the integration of DL
guidance in AAA screening could play a transformative role. By poten-
tially reducing the time and expertise required for accurate screening, DL
guidance can lower operational costs and improve the efficiency of

Table 2 | Comparison of nurse-acquired and physician-
acquired studies for primary and secondary clinical
parameters

Physician DL guidance p-value

Qualified video No. (%) [95% CI] No. (%) [95% CI]

Total 168 (91.3)
[87.2–95.4]

161 (87.5)
[82.7–92.3]

0.310

BMI > 25 (N = 97) 91 (93.8) [87.6–99.8] 85 (87.6) [80.9–94.1] 0.137

BMI < 25 (N = 87) 77 (88.5) [81.5–95.4] 76 (87.4) [80.4–94.3] 0.816

Before 5
scans (N = 50)

45 (90.0) [81.7–98.3] 43 (86.0) [76.4–95.6] 0.613

After 5 scans (N = 134) 123 (91.8)
[86.5–97.1]

118 (88.1)
[82.3–93.9]

0.659

Time to
complete study

Median (IQR) (s) Median (IQR) (s)

Total 20 (16–33) 37 (21–60) <0.001

BMI > 25 (N = 97) 21 (16–35) 42 (27–67) <0.001

BMI < 25 (N = 87) 18 (15–28) 30 (18–54) <0.001

Before 5
scans (N = 50)

20 (16–35) 53 (38–82) <0.001

After 5 scans (N = 134) 20 (15–30) 30.5 (18–55) <0.001

Fig. 2 | Scatter plot of maximal aortic width measurements by deep learning
predictions and physician labels. Compared with physician measurements, the
deep learning model demonstrated a mean absolute error of 2.8 mm.

Table 3 | Diagnostic performance for predicting AAA by DL
algorithm

DL-guidance

AUC 0.975 (0.943–1)

Sensitivity 100%

Specificity 97.8%

Positive predictive value 42.8%

Negative predictive value 100%

Table 1 | Demographic of included patients

Median (IQR)/N (%)

Total patients 184

Age 72 (67–79)

Male 105 (57.1%)

BMI 25.1 (23.3–28.1)

Underlying disease

Hypertension 131 (71.2%)

DM 64 (34.8%)

Heart disease 83 (45.1%)

PAOD 1 (0.5%)

CKD 24 (13.0%)

Abdominal operation 48(26.1%)

Smoking 41(22.3%)

Family history

Heart disease 31 (16.8%)

Aortic disease 1 (0.5%)

AAA 3 (1.6%)

DM diabetes mellitus, PAOD peripheral artery occlusive disease, CKD chronic kidney disease.
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screening programs. Moreover, the enhanced accuracy of DL-guided
screeningmight lead tomore effective identification of AAA cases even in
a landscape of lower prevalence, ensuring that resources are optimally
utilized.

Advances in cardiovascular ultrasound interpretation using AI have
been significant in recent years, with numerous studies demonstrating
automated quantification of cardiac structures and function, and AI-driven
disease identification showing less variability than semi-automated or
manual analyses13,22–24. The convergence of AI-guided acquisition with
automated interpretation could expand ultrasound’s reach, improving the
recognition of pathology. Our study’s DL algorithm addresses this by pro-
viding real-time guidance to novice users, effectively bridging the gap
between the ease of use of POCUS and the expertise required for accurate
diagnosis. By supplementing the user’s limited experience with sophisti-
cated AI, we facilitate a higher standard of care that could potentially
revolutionize the screening process for conditions like AAA, where early
detection is crucial.

Several potential explanations for our findings emerge upon exam-
ination of the DL algorithm’s performance. The ability of the algorithm to
offer real-time, continuous guidance likely played a professional guiding
role in enabling novice operators to achieve a high rate of qualified videos.
This real-time feedback is particularly useful during scanning, as it assists
users in adjusting the ultrasound probe to optimize the visualization of the
aorta. Such immediate guidance can improve image quality, a benefit
observed in previous studies where AI support enhanced the outcomes of
sonography procedures, such as in the Echocardiography14 or Focused
Assessment With Sonography in Trauma exams16. The similarity between
these findings and our own suggests a shared advantage of AI assistance
across different ultrasound applications. The learning curve evidenced by
the reduction in scan times with repeated use indicates that users are not
only becomingmore adept at operating the AI system but are also gaining a
better understanding of the aortic structure. This suggests a synergistic
enhancement in the operator’s ability to acquire diagnostic images, pointing
to a productive interaction between human users and the AI tool over time.

The architecture of our DL model, which delineates the abdominal
aorta with a bounding box in each frame of the ultrasound video, serves
two critical functions. First, it offers real-time feedback during the scan-
ning process, guiding users in adjusting their probe to achieve optimal
imaging. Second, it enables precise diagnostic measurements post-scan.
By accurately capturing the anatomy of the aorta, our algorithmprocesses
each frame to determine the aortic width, subsequently calculating the
maximal width from the entire video. The minimal average error of
2.8 mm between the expert measurements and those obtained via DL
guidance, alongwith thehighAUC for detecting anAAA, attests to theDL
model’s effective training. For further evaluation, a threshold of 2.5 cm led
to expert review for 9 (4.9%) of the 184 scans guided by DL. Within this
group, threeAAAcaseswere accurately identified, resulting in a sensitivity
of 1.0 and a specificity of 0.94 in our cohort (Table 3). Notably, there were
two scans where the discrepancy in maximal width measurements
between expert interpretation and DL guidance exceeded 1 cm (Fig. 2).
Manual review of these outliers showed that the DL algorithm had
incorrectly identified a 6.0 cm liver cyst and a 4.8 cm fluid-filled small
bowel loop. These cases ofmisclassification demonstrate thatwhen videos
with predictive diameters suspicious of AAA are scrutinized, physicians
can readily discern true positives from false positives.

There are a few limitations of the study. First, the study was conducted
in a controlled clinical setting in the outpatient clinic, which allowed access
to a large patient population but may not fully replicate POCUS use con-
ditions in remote or underserved areas. Second, while the sample size was
sufficient for the primary endpoints, the relatively small number of patients
and nurses limits the assessment of generalizability. Larger studies, parti-
cularly with more AAA cases, would yield more robust data. However, this
study demonstrates proof-of-concept, showing the feasibility ofAI guidance
in performing abdominal aorta ultrasound scanning. Third, there was no
control group for the nurse scanners. The comparison in the study was

against physician acquisitions, but an additional control group of novices
untrainedwith the algorithmwas not used. Furthermore, the study location
was one tertiary academic hospital. Further prospective validation across a
variety of settings and multiple centers would significantly increase the
credibility and generalizability of the results. The DL model’s performance
in a real-world screening scenario may differ from our controlled envir-
onment. Notwithstanding these limitations, the strengths of the study
included a rigorous methodology and integration of the DL to the use of a
commercially available POCUS system.

In conclusion, our study indicates that a DL-guided POCUS can serve
as an effective tool for AAA screening, achieving diagnostic accuracy that is
on par with experienced physicians. This innovative approach has the
potential to democratize AAA screening, enhancing accessibility and cost-
effectiveness. By harnessing the capabilities of AI, we can streamline the
screening process, reduce the need for extensive sonographic training, and
potentially improve patient outcomes through early detection.

Methods
Study design and ethical approval
This prospective evaluation study was conducted at the Kaohsiung Chang
Gung Memorial Hospital in Taiwan between June and August 2023. Study
approval was granted by the institutional review board at the hospital (IRB
number: 202102311B0), and written consent was obtained from each
participant.

Data collection and preprocessing
For developing the DL model, we collected ultrasound images from the
ultrasoundmachines, include Sonosite Edge II andHitachiNoblus, in the ED
of Kaohsiung Chang Gung Hospital from January 2019 to December 2021.
Ultrasound images focusing on the abdominal area were collected. Images
that were not related to abdominal aorta examination were excluded,
resulting inadataset comprising2101 labeledultrasound images.This dataset
was split into an 8:2 ratio for training and validation sets. We also collected
492 ultrasound images from a regional hospital for external validation.

As the original ultrasound images vary in size, we opted for the ‘let-
terbox’ preprocessing method to standardize them to the model’s required
dimensions. Letterboxing scales the image while maintaining the original
aspect ratio; any remaining space after scaling is filled with the background,
mimicking the effect of placing a picture into an envelope, hence the term
‘letterbox’. Eachultrasound imagewas resized to 600 × 400 and get rid of the
information thatmay reveal personal identification.Twomedical experts on
the point of care ultrasound then manually labeled the selected anatomical
structures—the aorta, inferior vena cava (IVC), and spine (Supplemental
Fig. 1) with a polygon mask. We adopted the commonly used labeling
software, Labelme25, for this study and saved the labeling file under COCO
dataset format. This large, annotated dataset served as the foundation for
training the AI models, enabling them to recognize and correctly identify
these structures in ultrasound images.

Development of the DL model
Wedeveloped theDLmodel to offer real-time, continuous guidance during
scanning to assist users in obtaining videos for AAA screening. The model,
which emulates physician expertise, utilizes aYouOnly LookOnce (YOLO)
architecture, known for its real-time object detection capabilities. It is spe-
cifically tailored to analyze ultrasonographic images, focusing on identifying
anatomical structures, including the abdominal aorta, spine, and inferior
vena cava. The architecture employed in our study is YOLOv5 instance
segmentation. The input is an ultrasound image, and the inference output
includes bounding boxes and pixel area identification for each category
(abdominal aorta, spine, and inferior vena cava). As the AI application
scenario in this project is divided into two parts—real-time Aorta recog-
nition for guidance and post-scan calculation of the maximum Aorta dia-
meter—the former requires a faster model, while the latter requires a more
accurate model. Therefore, among all YOLOv5 architectures, we trained
YOLOv5s (225 layers, 7.4 million parameters, and approximately 26
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GFLOPs of computation) for real-time guidance and YOLOv5m (367 lay-
ers, 21.2 million parameters, and approximately 73 GFLOPs of computa-
tion) for calculating the maximum Aorta diameter.

The training was conducted on anNVIDIA 3090 24GBGPU, utilizing
the PyTorch framework. The training process we employed involved
transfer learning fromYOLOv5pretrained on theCOCOdataset, given that
the ultrasound training data is relatively limited. We used the SGD opti-
mizer with a batch size of 16 and a learning rate of 0.01 and trained the
model for up to 100 epochs with early stopping if no improvement in
validationperformancewas observed for 5 epochs. The result of validation is
shown in Supplemental Table 1.

Integrated DLmodel with POCUS
The POCUS equipment used in this study is the ArtUs-EXT-1H from
Telemed, an FDA-certifiedplatform for capturing rawultrasound signals. It
can be used in conjunction with a portable tablet computer. The tablet runs
on a Windows 11 environment and uses an Intel CPU (detailed specifica-
tions are listed below). To accelerate the inference speed of the deployed
model, the trained YOLOv5 model was converted from the PyTorch (.pt)
format to the OpenVINO IR (FP16) format and utilized via OpenVINO
Runtime.We used Python’s built-in ctypes library to load the dll (dynamic
link library) provided by Telemed, allowing real-time ultrasound images to
be capturedwithin the Python program. The program also allows formodel
inference and uses OpenCV to visually represent the identified Aorta. After
integration, the software monitors and processes the ultrasound display
continuously through its application programming interface (Supplemental
Fig. 2, Supplemental video 1). Additionally, to accommodate for the need to
adjust parameters such as TGC (time gain compensation) during scanning,
a control panel interface is displayed using Tkinter for the operator to adjust
as necessary.

Prospective study design
Patients at least 65 years old visiting the outpatient clinic of the Cardiology
department at the studied hospital were recruited between June andAugust
2023. Individuals were excluded if theywere unable to lie flat orwere unable
or unwilling to provide informed consent.

Ten registered nurses without prior experience performing or
interpreting ultrasonography were recruited for the trial from hospital
personnel. Each nurse underwent a 15-min tutorial to familiarize him-
or herself with the POCUS machine and DL guidance. Before under-
taking the study, each nurse performed 1 practice scan on volunteer
models to familiar with the software’s user interface. They were
instructed to acquire a 10-s standard abdominal aorta tracing video
under DL guidance. For control, a duplicate scan was obtained by a
physician using the same POCUS machine on the same day but without
AI guidance. The physician also labeled the maximal width of the aorta
for the control scan. The nurse scans were conducted independently,
solely with DL guidance, and always preceded the control scans. Fol-
lowing each scan, the Telemed POCUS machine stored two ultra-
sonography videos at 20 frames per second, which the DL system then
processed to predict the maximal width of the abdominal aorta. Fig. 1
illustrates the study design.

Upon completion of all study and control scans, a panel of three
expert physicians (Y.-C.Z, X.-H.L., and F.-J.C.) independently and blin-
ded to whether a nurse or a physician performed the study, assessed
whether each scan was of diagnostic quality, served as the primary end-
point. For cases with discrepancies, themajority rule was applied directly,
where the judgment agreed upon by at least two experts was taken as the
gold standard. All expert readers were certified board physicians in
Cardiology or Emergency Medicine. The time to complete the study,
defined as the interval fromplacing the probe on the patient’s abdomen to
completing the scan, was recorded. The maximal aortic width predicted
by the DL model was compared with expert measurements for the sec-
ondary endpoint.

Statistical analysis
The study sought to evaluate the performance of nurses conducting AAA
screening under DL guidance, with continuous variables reported as med-
ians and interquartile ranges (IQR), and categorical variables as numbers
andpercentages. The proportion of qualified studies, as judged by the expert
panel, was compared between DL guidance and physician scans for the
primary endpoints using the non-inferiority test. This test provided a p-
value to assess whether the DL-guided scans were not inferior to physician
scans within a pre-specified margin. The maximal abdominal aortic width
measurement and the time required to complete the studywere evaluated as
secondary endpoints and were compared using the Mann–WhitneyU test.
For both primary and secondary parameters, the proportion judged clini-
cally evaluable is reported with 95% confidence intervals (CIs).

To measure the maximal width of the aorta from ultrasound video
frames, we utilize the YOLOv5m architecture for bounding box pre-
diction. Each video is 10 s in length with a frame rate of 20 frames
per second (fps), resulting in a total of 200 frames per video. The model
outputs bounding boxes, confidence scores, and class labels for detected
objects in each frame. We adopted postprocessing steps, including non-
maximum suppression26, to filter out overlapping bounding boxes,
ensuring that only the most confident predictions for the abdominal
aorta are retained. We then extracted the four coordinates of the
bounding box, which represent the top-left and bottom-right corners of
the box enclosing the aorta. To calculate the width of the aorta, we
averaged the differences between the coordinates on the vertical and
horizontal axes. This process loops through each frame of the video, and
the highest width, along with the corresponding image frame, is stored
for human expert inspection.

Data availability
The raw data used in this study are not publicly available to preserve par-
ticipant privacy.

Code availability
Code for data preprocessing, model training, and model inference is
available. Refer to https://github.com/IMinChiu/AAA_guidance.
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