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Background: Epidermal growth factor receptor-tyrosine kinase inhibitors

(EGFR-TKIs) showed potency as a non-invasive therapeutic approach in pure

ground-glass opacity nodule (pGGN) lung adenocarcinoma. However, optimal

methods of extracting information about EGFR mutation from pGGN lung

adenocarcinoma images remain uncertain. We aimed to develop, validate, and

evaluate the clinical utility of a deep learning model for predicting EGFR

mutation status in lung adenocarcinoma manifesting as pGGN on computed

tomography (CT).

Methods: We included 185 resected pGGN lung adenocarcinomas in the primary

cohort. The patients were divided into training (n = 125), validation (n = 23), and test

sets (n = 37). A preoperative CT-based deep learning model with clinical factors as

well as clinical and radiomics models was constructed and applied to the test set.

We evaluated the clinical utility of the deep learning model by applying it to 83

GGNs that received EGFR-TKI from an independent cohort (clinical validation set),

and treatment response was regarded as the reference standard.

Results: The prediction efficiencies of each model were compared in terms of

area under the curve (AUC). Among the 185 pGGN lung adenocarcinomas, 122

(65.9%) were EGFR-mutant and 63 (34.1%) were EGFR-wild type. The AUC of

the clinical, radiomics, and deep learning with clinical models to predict EGFR

mutations were 0.50, 0.64, and 0.85, respectively, for the test set. The AUC of

deep learning with the clinical model in the validation set was 0.72.
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Conclusions: Deep learning approach of CT images combined with clinical

factors can predict EGFR mutations in patients with lung adenocarcinomas

manifesting as pGGN, and its clinical utility was demonstrated in a real-

world sample.
KEYWORDS

lung adenocarcinoma, ground-glass opacity nodule, computed tomography, deep
learning, epidermal growth factor receptor
Introduction

Detection of epidermal growth factor receptor (EGFR)

mutations for lung adenocarcinoma is crucial since tyrosine

kinase inhibitors (TKI) are tailored for treatments in lung

adenocarcinoma with EGFR mutations (1–3). Approximately

80% of patients with EGFR‐mutant lung cancer respond to

EGFR- TKIs therapy at initial treatment (4).

Due to the growing clinical use of low-dose computed

tomography (CT) screening for lung cancer (5–7), pulmonary

pure ground-glass opacity nodules (pGGN) are becoming

clinically important in oncology especially for management

given its diagnosis in practice is increasing, and the incidence

of cancer in pGGN may be as high as 63% (8). In addition,

around 20–30% of resected GGN were accompanied by multiple

synchronous pGGNs (9), and there have been reports of

developing metachronous pGGNs with an incidence of 2%

after surgery in primary lung cancer (10). Therefore, there is a

dilemma regarding how to deal with synchronous and

metachronous pGGNs. Moreover, surgical therapy for pGGNs

may be unfeasible for patients with poor pulmonary function or

when lesions have central locations that make it difficult to

perform repeated limited resection (11).

In terms of such a challenging condition, a few reports have

shown the potency of molecular targeted therapy, EGFR-TKI as

a novel strategy for the treatment of cases with multiple GGNs,

and they helped provide a non-invasive therapeutic approach for

EGFR-mutated lung adenocarcinoma manifesting as pGGN (12,

13). The authors used surgical resection for the major lesion

which was the most invasive, and continued EGFR-TKI gefitinib

treatment for unresectable GGNs (more than 10mm), and they

achieved a complete response (12, 13). Additionally, there can be

difficulty accessing tissue samples of pGGN through core biopsy

due to the potential risk of complications and limitations in

pathologic evaluation such as stromal invasion (14, 15). With

such clinical conditions, EGFR mutation prediction using a

noninvasive method such as imaging of lung adenocarcinoma

manifesting as pGGN is desirable.

Models for predicting EGFRmutations on imaging have been

developed using a radiomics approach (16–18), but these methods
02
only reflect generalized adenocarcinomas and lack specificity for

pGGN.Radiomics also rely onprecise tumor boundary annotation,

which requires manual labeling, and interobserver reproducibility

and robustness of results are relatively unsatisfactory (19–21). In

contrast, advancedartificial intelligencemodels canovercome these

problems through self-learning strategies such as deep learning (22,

23). Deep learning models have shown promising performance in

assisting lung cancer analysis (24–27). Nevertheless, deep learning

models for the prediction of EGFR mutation in lung

adenocarcinoma manifesting as pGGN have not been evaluated

thus far.Besides, developmentandvalidationofmodels todealwith

pGGN in particular are complicated and difficult due to need for

copious data collection and imageprocessing.Therefore, extraction

of EGFR mutation information from lung adenocarcinoma

manifesting as pGGN on images remains uncertain.

Furthermore, there have been no attempts to evaluate the clinical

utility of deep learning models by performance validation through

the testing of clinically meaningful endpoints (28, 29).

Thus, we developed and validated a CT-based deep learning

model with clinical factors for predicting EGFR mutation status

in lung adenocarcinoma manifesting as pGGN. We

demonstrated its clinical utility using an independent data set

of patients who received EGFR-TKI and evaluated treatment

response as the reference standard.
Methods

Patients

Our institutional reviewboard approved this retrospective study,

and the requirement for informed consent was waived. We

conducted a retrospective chart review and identified 2,851

patients who had undergone surgical resection for lung

adenocarcinoma as initial curative resection from January 2014 to

August 2019. Patients who met the following inclusion criteria were

included in this study: 1) histologically confirmed primary lung

adenocarcinoma; 2) pathological examination of tumor specimens

carried out with proven records of EGFR mutation status; 3) pre-

operative chest CT data obtained; and 4) CT findings of the tumor
frontiersin.org
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showed pGGN. Patients were excluded if 1) clinical data including

age, sex, and smoking history were missing; or 2) CT findings of the

tumor showed a large mass (>3 cm), part-solid lesion, or

heterogeneous GGN. Finally, 185 pGGN adenocarcinomas of 179

patients of were included in the primary cohort (model training [n =

125 nodules of 120 patients], technical validation [n = 23 of 23

patients], and tests [n = 37 of 36 patients]). We randomly divided

cohorts into training, validation, and test setsmaintaining the ratio of

EGFR-mutant and EGFR wild type (Figure 1).
Data collection and EGFR
mutational profiling

Clinical data were collected from electronic medical records

at the time of diagnostic workup. Sex, age, smoking status,

Union for International Cancer Control stage, and operation

type were recorded. Histologic reports were also retrieved from

electronic medical records with histological classifications based

on the International Association for the Study of Lung Cancer/

American Thoracic Society/European Respiratory Society

multidisciplinary classification of lung adenocarcinoma (30).
Frontiers in Oncology 03
EGFR mutations for lung adenocarcinoma were identified

using a PNA clamp kit or real-time polymerase chain reaction

(31). Wild-type EGFR in this study referred to no mutations

detected among those loci.
CT image acquisition

Heterogeneity in the imaging acquisition protocols was

inevitable, as data were obtained retrospectively at a tertiary

referral center. All patients underwent CT scans from the lung

apex to the base at suspended maximum inspiration. Scans were

performed at 120 kVp with mAs ranging at 150–200 mAs and

detector collimation was 1.25 or 0.625 mm. CT scans were

reconstructed with slice thickness less than or equal to 2.5 mm.

Slice increments were equal to or less than the slice thickness. All

CT scans included axial reconstruction and most CT scans also

had coronal reformatted images. Most patients underwent

contrast-enhanced CT scans at a scan delay of 60 s after

contrast material injection. All helical CT images were

obtained using a high-quality 16 or 64-channel multidetector

CT scanner.
FIGURE 1

Flow diagram describing the development of the EGFR mutation prediction model in this study.
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Data preprocessing

The tumor region of interest (ROI) was automatically

segmented for all patients in each dataset using commercial

software (Aview, version 1.0.23, 2018; Coreline Soft, Seoul,

Korea) to generate a volume of interest that included the

entire target lesion (32). Additional manual correction was

performed to exclude bronchovascular structures and the

borders of ground-glass opacities by a thoracic radiologist

(HYL, 15 years of experience). Since CT imaging resolution

varied within and across the two cohorts, isotropic resampling to

1 mm x 1mm x 1mmwas conducted. Resampling was performed

with b-spline interpolation for CT images and with the nearest

neighbor method for ROI. For deep learning methods, the center

of the tumor was calculated as the centroid of the ROI and then

we extracted one center slice and two additional slices positioned

3 mm below and above the center slice in the axial direction. The

three slices were combined as a three-channel image mimicking

the color red/green/blue channels of the natural image. We then

cropped each image around the center of the tumor to a size of

64 mm. Finally, all tumor regions were represented in 64×64×3

image patches. The intensities were normalized with min-max

scaling. As the clinical variable, sex was binarized with values 0

for female and 1 for male. Age was normalized between 0 and 1

with min-max scaling. Smoking status was also binarized with 0

representing never smokers and 1 representing others.
Multimodal EfficientNet-b1 for lung

To predict EGFR mutation status in ground-glass opacity

lung adenocarcinoma, we designed a deep learning method

referred to as Multimodal EfficientNet-b1 for Lung (MENL).

This method adopted Efficient as the backbone and is composed
Frontiers in Oncology 04
of an image feature extractor, clinical feature extractor, and

classification network. Based on the mobile inverted bottleneck

convolution (MBConv), the EfficientNet varies from b0 to b7

depending on the scaling factor (33, 34). We employed pre-

trained EfficientNet-b1 as an image feature extractor. The

following clinical factors were fed to the clinical feature

extractor for predicting EGFR mutation status in pGGN: sex,

age, and smoking status. The clinical feature extractor is a

separate neural network that consists of four fully connected

layers. We concatenated latent variables from the clinical feature

extractor to the feature maps from the image feature extractor.

Concatenated latent variables were fed into the classification

network made of five fully connected layers for predicting EGFR

mutation status. Finally, EGFR mutant probability was obtained

by applying softmax to the two nodes in the last layer of the

classification network. Figure 2 shows the details of the MENL.
Clinical factor model

Clinical factors, sex, age, and smoking status were used as

inputs to train a random forest classifier with five decision trees

and a maximum depth of 16.
Radiomics model

Radiomics features were calculated from ROIs. We used

Python-based open-source software PyRadiomics (https://

pyradiomics.readthedocs.io/) to extract 72 radiomics features

in the following four categories: histogram (18 features), shape

(14 features), gray-level co-occurrence matrix (GLCM) (24

features), and gray-level size-zone matrix (GLSZM) (16

features) (Supplementary Table S1). Additionally, MATLAB-
FIGURE 2

Details of Multimodal EfficientNet-b1 for Lung. Multimodal EfficientNet-b1 for Lung (MENL) consists of an image feature extractor, clinical
feature extractor, and classification network. Pre-trained EfficientNet-b1 was used as an image feature extractor. For EfficientNet-b1, MBConv1
and MBConv6 were utilized as basic modules. MBConv1 was composed of depth-wise convolution, SENet (35), and 1×1 convolution. For
MBConv6, 1×1 convolution was added before depth-wise convolution of MBConv1.
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based in-house softwarewas used to calculatefivemarginal features

(Appendix in the Supporting Information) (36). In total, we

computed 77 radiomics features per ROI. Extracted features were

normalized with z-score normalization. The least absolute

shrinkage and selection operator (LASSO) was used to select the

most useful predictive features forEGFRmutation status.Using the

selected radiomics features, we applied random forest regression

with five decision trees to construct the radiomics model.
Interpretability of the deep
learning model

We utilized gradient-weighted class activation mapping

(Grad-CAM) (37) to compute an activation heat map of

MENL. Grad-CAM uses gradient information to assign

significant values to the feature map to determine where the

model focus is when making the prediction. The last CNN layer

of MENL was used to create the activation map. After overlaying

the activation map and inputting CT image, we analyzed the

outcomes of MENL using the four categories of true positive

(activation map consistent with positive EGFR), true negative,

false positive, and false negative cases for model interpretability.
Training details of the MENL

We used Pytorch (version 1.8.0) for image analysis. Since

EfficientNet-b1 has an input image size of 240, we resized the

images from 64 to 256. Data augmentation was performed using

horizontal and vertical flips with a probability of 0.5. Our MENL

was trained on the training set of the primary cohort for 30 epochs.

We adopted early-stopping where the model showed the highest

accuracy in the technical validation set. Performancewas computed

on the test set. It took 30 secs to train MENL using the NVIDIA

TITAN Xp graphics card.
Clinical validation

For the independent clinical validation cohort, we included 64

consecutivepatientswhoreceivedanEGFR-TKI fromJanuary2010

toDecember 2015 for stage IVnon-small cell lung cancer (NSCLC)

and had concurrent GGN(s) that overlapped with a previous study

(38).We identified and indexed 83 concurrentGGNs of 64 patients

for followup and grouped these into a response group if concurrent

GGN decreased in size or did not change in size, but decreased in

density after EGFR-TKIs, or as a non-response group if concurrent

GGN had an increase in size or density on the last follow-up chest

CT (Figure 1). We applied MENL to the clinical validation dataset

to assess the generalizability and clinical utility of our model and

used EGFR-TKI treatment response as the reference standard for

MENL. That is, the response group was regarded as the EGFR-
Frontiers in Oncology 05
mutant group and the non-response group was regarded as the

EGFR-wild type group.
Statistical analysis

To compare clinical variables, ANOVA was conducted for

continuous variables and chi-square tests were conducted for

categorical variables. To assess the prediction performance of the

proposedmodel, area under the curve (AUC), accuracy, sensitivity,

and specificity were calculated to consider both majority and

minority classes. All statistical analyses were performed with the

statistics tools “scipy,” “statsmodels,” and “sklearn” in Python.
Results

Among the 185 GGO lung adenocarcinomas, 122 (65.9%)

were EGFR-mutant and 63 (34.1%) were EGFR-wild type.

Demographic information and tumor characteristics of the

primary cohort are listed in Table 1.
Selected radiomics features for the
radiomics prediction model

After feature selection processes, the 11 radiomics features

that were selected were as follows: interquartile range, minimum,

root mean squared, cluster shade, contrast, maximal correlation

coefficient, gray level non-uniformity normalized, elongation,

maximum 3D diameter, mean of the cumulative distribution

function (CDF) slope, and standard deviation of the (CDF)

slope (Table 2).
Model performance in the test set

For the test set of the primary cohort (n = 37 of 36 patients), the

AUC values of the clinical model (age, sex, and smoking history),

radiomicsmodel, andMENL topredictEGFRmutationswere 0.50,

0.64, and 0.85, respectively (Table 3 and Figure 3).

For the test set (n = 37), the median EGFR-mutant

probability was 0.58 (interquartile range [IQR], 0.57-0.59) in

the EGFR-mutant group and 0.52 (IQR, 0.48-0.54) in the EGFR-

wild type group. The discrimination performance of MENL was

statistically significant (P < 0.001).
Ablation study

We added the clinical feature extractor to the existing

EfficientNet-b1 to predict EGFR mutation status. The newly

added clinical feature extractor receives three clinical factors as
frontiersin.org
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input and assists in predicting EGFR mutation status with CT

images. To justify the effectiveness of this design, we deleted the

clinical feature extractor inMENL. Thus, the model only consisted

of the image feature extractor and classification network. As shown

in Table 3, the ablationmodel without the clinical feature extractor

showed poorer performance than the MENL.
Grad-CAM of the deep learning
prediction model

Grad-CAMs overlaid with CT images for the test set of the

primary cohort varied in different tumors. However, a common

pattern was that the MENL was highly focused its attention on

the proximal bronchovascular bundle of the tumor with tumor

inside for EGFR-mutant pGGN lung adenocarcinomas. For

EGFR-wild type pGGN lung adenocarcinomas, a small portion

of the tumor and its proximal bronchovascular bundle were

activated (Figure 4 and Supplementary Figure S1).
Frontiers in Oncology 06
Clinical validation

The characteristics of the clinical validation cohort are

presented in Supplementary Table S2. When our MENL was

applied to an independent clinical validation set (n = 83 of 64

patients), the AUC was 0.72 (Table 4). For the clinical validation

set, the median EGFR-mutant probability was 0.53 (IQR, 0.50-

0.58) in the response group and 0.48 (IQR, 0.48-0.51) in the non-

response group. However, discrimination performance was not

statistically significant (P = 0.145) (Table 4). Grad-CAMs of the

MENL in the clinical validation set showed similar patterns to

those of the test set in the primary cohort (Figure 4).
Discussion

While tremendous strides have been made in the

development of deep learning algorithms in oncology, as

evidenced by the surge in publications and published datasets
TABLE 2 Selected radiomics features for the radiomics-based prediction model.

First-order GLCM features GLSZM feature Shape features Margin features

Interquartile Range Cluster Shade Gray Level Non-Uniformity Normalized Elongation Mean of CDF slope

Minimum Contrast Maximum 3D diameter SD of CDF slope

Maximal Correlation Coefficient
GLCM, gray level co-occurrence matrix; GLSZM, gray-level size-zone matrix; CDF, cumulative distribution function; SD, standard deviation.
TABLE 1 Demographic information and tumor characteristics of the primary cohort (n = 185).

Characteristics Total
(n = 185)

EGFR-mutant
(n = 122)

EGFR-wild type
(n = 63)

P-value (EGFR-mutant vs. EGFR-wild type)

Age (years)* 59 (54-64) 58 (54-63) 60 (54-66.5) 0.557

Sex 0.422

Male 75 (40.5) 52 (42.6) 23 (36.5)

Female 110 (59.5) 70 (57.4) 40 (63.5)

Smoking history (yes) 66 (35.7) 49 (40.2) 17 (27) 0.076

Operation type 0.317

Lobectomy 69 (37.3) 51 (41.8) 18 (28.6)

Segmental resection 50 (27) 29 (23.8) 21 (33.3)

Wedge resection 63 (34.1) 40 (32.8) 23 (36.5)

Lobectomy + wedge resection 3 (1.6) 2 (1.6) 1 (1.6)

Pathologic tumor size (mm)* 15 (12-19) 15.5 (12-19) 15 (11-19) 0.301

Histopathologic diagnosis 0.552

Minimally invasive adenocarcinoma, T1a(mi)† 20 (10.8) 12 (9.8) 8 (12.7)

Invasive adenocarcinoma, T1a† 165 (89.2) 110 (90.2) 55 (87.3)

Time between CT scan and surgery (days)* 4 (1-26) 4 (1-23) 1 (1-27.5) 0.988
Unless otherwise indicated, data are numbers of patients with percentages in parentheses.
*Data are median; data in parentheses are interquartile range.
†Pathological staging according to the American Joint Committee on Cancer Staging Manual (eighth edition).
EGFR, epidermal growth factor receptor.
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in recent years, there remains a large gap between the evidence

for artificial intelligence (AI) performance and evidence for

clinical impact (28, 29). There have been no studies

demonstrating the clinical utility of deep learning models by

applying the model to real-world cancer patients. In this study,

we proposed a deep learning model using CT images to predict

EGFR mutat ion s tatus among pat ients wi th lung

adenocarcinoma manifesting as pGGN and demonstrated its

clinical utility using an independent cohort made up of patients

who received EGFR-TKI (83 GGNs of 64 patients) and

treatment response as the reference standard. The proposed

model showed encouraging results in the primary cohort (AUC

= 0.85) and achieved strong performance in the independent

clinical validation cohort (AUC = 0.72). Thus, our results are

valuable and can be distinguished from previous studies as the

first attempt at bridging the AI translational gap between initial

model development and routine clinical cancer care, and we

demonstrated the clinical feasibility of our MENL model. Our

design provides an alternative method to non-invasively assess
Frontiers in Oncology 07
EGFR information and to assist in decision-making when

applying TKI as an initial treatment in inoperable or

inappropriate situations for surgical treatment of lung

adenocarcinoma manifesting as pGGN.

Although there have been studies of deep learning models

demonstrating promising performance in assisting lung cancer

analysis (24–27), our study is distinguished from prior studies by

design and by the relative difficulty of the application. Because

we extracted and collected examples of lung adenocarcinoma

manifesting as pGGN only according to rigorous criteria not

only to construct the primary cohort but also for clinical

validation, we engaged in a long-term commitment to gather

such patients and their pretreatment CT scans before surgery or

TKI. By designing the deep learning model using image feature

and clinical feature extractors, we were able to incorporate CT

image and clinical factors simultaneously.

The Grad-CAM activation maps convey important regions

of cues that dominate the prediction of EGFR mutation status.

Since deep learning is an end-to-end prediction model that

learns abstract mappings between tumor images and EGFR

mutation status, it is important to explain the prediction

process so that users can gain confidence in the prediction

process. The activation map focused attention on the proximal

bronchovascular bundle of the tumor with the tumor inside.

These attention areas were inferred to be strongly related to

EGFR mutation status by the deep learning model for a lung

adenocarcinoma manifesting as a pGGN. Based on our

observations, we hypothesized that our deep learning model

used information from the proximal bronchovascular bundle of

the tumor to make predictions.

In this study, the radiomics model achieved an AUC of 0.64,

which was inferior to those of existing radiomics studies predicting

EGFR mutation for lung adenocarcinoma (16–18). This

shortcoming could be due to unique characteristics of pGGN

such as extremely homogenous and negative CT density causing

skewness of data, which makes it difficult to discriminate by

morphology or radiomics. Thus, we believe deep learning

methods can overcome such limitations in imaging prediction for

specific subjects such as pGGN adenocarcinomas. In addition,

previous studies used clinical factors to predict EGFR mutation

status. For example, clinical factors such as age, sex, smoking status,

tumor stage, and predominant subtype were used to build
FIGURE 3

Receiver operating characteristic curves of the Multimodal
EfficientNet-b1 for Lung (MENL), MENL without clinical feature
extractor, radiomics-based model, and clinical feature-based
model in the test set (n = 37) of the primary cohort.
TABLE 3 Comparison of prediction model performances for the test set of the primary cohort.

Prediction models AUC Accuracy Sensitivity Specificity

Clinical feature-based model 0.5 0.56 0.25 0.71

Radiomics-based model 0.64 0.56 0.33 0.67

Multimodal EfficientNet-b1 for lung
w/o clinical feature extractor

0.81 0.78 0.42 0.96

Multimodal EfficientNet-b1 for lung 0.85 0.81 0.42 1
fro
AUC, area under the curve.
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prediction models for EGFR mutation status. These studies

achieved AUC ranging from 0.68-0.84 in different populations

(39–41). In contrast, our clinical model (age, sex, and smoking

history) was subpar with an AUC value of 0.5 (Table 3). One

reason for this poor discrimination performance could be that

our study subjects consisted of all pGGN adenocarcinomas.

However, when the clinical model was added to the deep

learning model, prediction performance improved from AUC

0.81 to AUC 0.85. Thus, clinical features (young age, female,
Frontiers in Oncology 08
and non-smoker) traditionally considered to be significant

factors for predicting EGFR in lung adenocarcinoma retain

important roles in pGGN adenocarcinoma.

In this study, our deep learning model demonstrated

advantages since it can mine abstract features that are

difficult to extract with conventional methods but are

important for identifying EGFR mutation status. Compared

with previously reported hand-crafted semantic or radiomics

features, the deep learning model has additional advantages.
TABLE 4 Performance of multimodal efficientNet-b1 for lung (MENL) in the clinical validation set.

Data set AUC Accuracy Sensitivity Specificity EGFR-mutantprobability* P-value†

Test set (n = 37) 0.85 0.81 0.42 1

EGFR-mutant (n = 25) 0.58 (0.57-0.59) <0.001

EGFR-wild type (n = 12) 0.52 (0.48-0.54)

Clinical validation set (n = 83) 0.72 0.76 0.6 0.77

Response (EGFR-mutant) (n = 78) 0.53 (0.50-0.58) 0.2168

Non-response (EGFR-wild type) (n = 5) 0.49 (0.48-0.52)
fron
*Data are medians; data in parentheses are interquartile ranges.
†P-values indicate the discrimination performance between the EGFR-mutant and the EGFR-wild type.
MENL, multimodal EfficientNet-b1 for lung; AUC, area under the curve; EGFR, epidermal growth factor receptor.
FIGURE 4

Representative CT images (first from the left) overlaid with regions of interest (ROIs) (second) and Grad-CAMs (third) for Multimodal
EfficientNet-b1 for Lung (MENL) interpretation. (A) A EGFR-mutant correct case (probability 0.62) in the test set. (B) A EGFR-mutant (response)
correct case (probability 0.69) in the clinical validation set. Compared to the baseline CT image (first), the last follow-up CT image after TKI
(fourth) demonstrates a decrease in density. (C) A EGFR-wild type (non-response) correct case (probability 0.51) in the clinical validation set.
Compared to the baseline CT image (first), the last follow-up CT image after TKI (fourth) demonstrates an increase in size and density. In all
cases, the tumor and its proximal bronchovascular bundle are activated by the MENL.
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First, the deep learning model extracts multi-level features

from low-level visual characteristics to abstract features that

are directly related to EGFR information through a hierarchical

neural network structure. Second, the deep learning model

does not require time-consuming tumor boundary annotation,

which is a major advantage over the radiomics approach.

Moreover, the microenvironment of tumors and the

relationships between tumors and surrounding tissues such

as lung parenchyma and bronchovascular structure are

inherently considered in the deep learning model because the

peripheral regions are typically included in the rectangular

image patch. Third, the deep learning model is fast and easy to

use, requires only the CT image as input, and predicts EGFR

mutation status directly without further human input.

Despite the encouraging performance of our deep learning

model, this study has several limitations. First, we only examined

patients in an East Asian population. However, EGFR mutation

rate can be affected by regional variation in humans. In future

work, samples from multiple areas of the world will be necessary

to test whether the deep learning model can be generalized to

other populations. Second, although the deep learning model

shows better performance than models using clinical features

and radiomics, how to optimally combine these two models

remains an open question. The predictive performance of our

model may be improved if we adopt other advanced approaches

to combine these two models. Third, our predictive model could

not be applied for the predictive model with solid and solid

dominant nodules for investigation of its scalability. In this study

we focused on only pure GGNs because we were concerned with

increasing cases of multiple pGGNs on screening chest CT and

their early management strategy. However, application of our

predictive model for solid and solid dominant nodules could be

valuable and helpful especially on unresectable cases. Thus, we

plan to expand cases with solid and solid dominant nodules and

devise another cohort to validate our results for the next study.

Finally, the number of patients in the clinical validation set was

small and there were only five EGFR-wild type cases which made

insufficient balance between ‘Response (EGFR-mutant) group (n

= 78)’ and ‘Non-response (EGFR-wild type) group (n = 5)’. This

might have limited the statistical power for validating the

performances of the prediction models. Nevertheless, a total of

83 subjects could be meaningful because it is difficult to find such

number of cases that have relatively long-term, serial follow-up

CT scans. This data imbalance could be resolved in future work

by using a larger number of non-response (EGFR-wild

type) cases.

In conclusion, our preoperative CT-based deep learning

model was able to predict EGFR mutations in patients with

lung adenocarcinomas manifesting as pGGN. Our deep

learning model outperformed the radiomics model in the

detection of EGFR mutations. The combination of deep

learning and clinical models showed further performance

improvements in EGFR prediction and demonstrated its
Frontiers in Oncology 09
clinical utility in the real-world population. This deep

learning model provides a non-invasive method to predict

EGFR mutation status, can be used easily in routine CT

diagnosis, and may facilitate clinical decision-making in the

era of precision medicine.
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