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Abstract

A novel bacterium, strain EPR55-1T, was isolated from a deep-sea hydrothermal vent on

the East Pacific Rise. The cells were motile rods. Growth was observed at temperatures

between 50 and 60˚C (optimum, 60˚C), at pH values between 5.4 and 8.6 (optimum, pH 6.6)

and in the presence of 2.4–3.2% (w/v) NaCl (optimum, 2.4%). The isolate used molecular

hydrogen as its sole electron donor, carbon dioxide as its sole carbon source, ammonium as

its sole nitrogen source, and thiosulfate, sulfite (0.01 to 0.001%, w/v) or elemental sulfur as

its sole sulfur source. Nitrate, nitrous oxide (33%, v/v), thiosulfate, molecular oxygen (0.1%,

v/v) or elemental sulfur could serve as the sole electron acceptor to support growth. Phylo-

genetic analyses based on both 16S rRNA gene sequences and whole genome sequences

indicated that strain EPR55-1T belonged to the family Nitratiruptoraceae of the class “Cam-

pylobacteria”, but it had the distinct phylogenetic relationship with the genus Nitratiruptor.

On the basis of the physiological and molecular characteristics of the isolate, the name

Nitrosophilus alvini gen. nov. sp. nov. is proposed, with EPR55-1T as the type strain (= JCM

32893T = KCTC 15925T). In addition, it is shown that “Nitratiruptor labii” should be trans-

ferred to the genus Nitrtosophilus; the name Nitrosophilus labii comb. nov. (JCM 34002T =

DSM 111345T) is proposed for this organism. Furthermore, 16S rRNA gene-based and

genome-based analyses showed that Cetia pacifica is phylogenetically associated with

Caminibacter species. We therefore propose the reclassification of Cetia pacifica as Camini-

bacter pacificus comb. nov. (DSM 27783T = JCM 19563T). Additionally, AAI thresholds for

genus classification and the reclassification of subordinate taxa within “Campylobacteria”

are also evaluated, based on the analyses using publicly available genomes of all the cam-

pylobacterial species.
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Introduction

The phylum “Campylobacterota” is a phylogenetically and ecophysiologically diverse bacterial

group that consists of two classes, i.e., Desulfurellia (the former order Desulfurellales) and

“Campylobacteria” (the former class Epsilonproteobacteria) [1]. While this phylum is widely

recognized as a group including pathogenic microorganisms, e.g.Helicobacter pylori and Cam-
pylobacter jejuni, and many studies have focused on these pathogens [2, 3], an ever expanding

number of non-pathogenic species have been identified which thrive as mesophiles or thermo-

philes in a wide range of natural environments (e.g., deep-sea hydrothermal fields, stratified

ocean, terrestrial sulfidic caves, and oil fields) [4] where they are recognized as important play-

ers in biogeochemical cycles [1, 5]. Cultivation and characterization of these bacteria has also

expanded our knowledge on the evolution and diversification of pathogenic relatives [6], bio-

geography [7], and the potential of biotechnological applications to mitigate global warming

[8, 9].

At deep-sea hydrothermal vents, bacteria belonging to the phylum “Campylobacterota” are

known as the dominant community members, including sulfide chimney structures where

they can comprise up to 85% of the microbial biomass [10]. Taxonomically and metabolically

diverse members of chemosynthetic “Campylobacterota” are responsible for the primary pro-

duction [5, 11]. Ever since thermophilic “Campylobacterota” were first cultivated from hydro-

thermal vents [12], the number of culturable thermophilic members has increased with the

refinement of cultivation conditions [13, 14]. Nevertheless, the described thermophilic species

still account for only 14% of the total number of validly published species within “Campylobac-
terota”, and therefore there is still insufficient information on their genomes and intra-specific

diversity. This also leaves the classification of thermophiles unresolved as almost all thermo-

philic families are composed of only a single genus, which were mostly retrieved from deep-

sea hydrothermal vents.

The family Nitratiruptoraceae is one of the thermophilic groups within “Campylobacteria”

that is frequently detected in deep-sea hydrothermal environments globally [5, 14]. This family

consists so far of one validly described genus and species, Nitratiruptor tergarcus, isolated from

the deep-sea hydrothermal chimney structure in the Mid-Okinawa Trough [15]. The recently

described species “Nitratiruptor labii” was also isolated from the same deep-sea hydrothermal

region [9]. In addition to the importance of Nitratiruptoraceae species in biogeochemical

cycles [5], its potential for industrial applications has been described [16]. Isolation of the

novel Nitratiruptoraceae species and elucidation of its physiological and genomic characteris-

tics are both necessary to help understanding the diversity of this group and the evolutionary

relationships within “Campylobacteria”.
16S rRNA gene sequences have been the universal molecular chronometer for microbial

taxonomic affiliation for more than three decades, but this tool does not work well in classify-

ing either closely related species [17, 18] or distantly related taxa [1]. The rapid advances in

sequencing technology over the past decade have resulted in an increase in the amount of

whole genome data and have brought significant opportunities to introduce robust and accu-

rate criteria to improve microbial taxonomy [19]. One advance is the genome-based taxonomy

based on the use of a large number of conserved core genes [20] and indices such as in silico
DNA-DNA hybridization (DDH), average nucleotide identity (ANI), average amino acid

identity (AAI), which refines phylogenetic analyses using genome sequence data. These classi-

fiers enable the robust classification of novel species or genera, resulting in a more accurate

microbial taxonomy [19]. Genome-based methods could also be effective in classifying mem-

bers within the phylum “Campylobacterota”. However, the robust and accurate criteria using

genome relatedness indices have not yet been fully evaluated for all species within
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“Campylobacterota”. In order to further expand the knowledge of their phylogenetic relation-

ships and to propose a more robust classification methodology, establishment of clear classifi-

cation criteria is needed to be evaluated.

Here, we report on the thermophilic campylobacterium, strain EPR55-1T, belonging to the

novel genus Nitrosophilus, and evaluate the taxonomic assignment using a comprehensive

approach based on whole genome sequence of the phylum “Campylobacterota”.

Materials and methods

Sample collection, enrichment and purification

The sample of a sulfide chimney structure was collected from the Bio9 deep-sea hydrothermal

vent on the East Pacific Rise (9.83˚ N 104.28˚ W, water depth 2,511 m) by HOV Alvin during

the AT26-23 scientific cruise aboard the R/V Atlantis in 2014. The interior part of the chimney

sample was mixed anaerobically with 25 ml sterilized seawater containing 0.05% (w/v) neutral-

ized sodium sulfide in 100 ml glass bottles (Schott Glaswerke) soon after HOV Alvin was

recovered. The bottle was then tightly sealed with a butyl-rubber stopper under a gas phase of

100% N2 (0.2 MPa) and stored at 4˚C until use. For enrichment, 100 μl of the resultant slurry

was inoculated into 15 ml test tubes containing 3 ml MMJHS medium [21]. MMJHS medium

contained 1 g NaHCO3, 1 g Na2S2O3�5H2O and 1 g NaNO3, 10 g S0 per liter MJ synthetic sea-

water. The medium was prepared under a H2/CO2 (80:20, v/v) gas phase (0.3 MPa). Growth of

thermophiles was observed after one day at 55˚C. Strain EPR55-1T was isolated using the dilu-

tion-to-extinction technique [22] with MMJHS medium at 55˚C. The purity was confirmed

with a routine microscopic examination and by repeated partial sequencing of 16S rRNA gene

using several PCR primers [23].

Morphology and growth characteristics

Cells were observed using the ZEISS Axiophot microscope (Carl Zeiss Co., Oberkochen, Ger-

many). For transmission electron microscopy, cells grown in MMJHS medium at 60˚C in the

late-exponential phase were stained with 1% (v/v) phosphotungstic acid. Micrographs were

obtained using JEM-1011 transmission electron microscope (JEOL, Tokyo, Japan).

Growth was measured by direct cell counts after staining with 40,6-diamidino-2-phenylin-

dole [24]. The determination of the temperature range for growth was tested over the range

34-65˚C (i.e. 34, 40, 50, 55, 57, 60 and 65˚C) in 3 ml MMJHS medium. The pH range for

growth was tested at 60˚C in MMJHS medium buffered and adjusted to the required initial pH

(i.e. pH 3.2, 5.4, 6.0, 6.6, 7.0, 7.7, 8.6 and 9.8). The range of NaCl concentrations for growth

was tested over the range 0.8–4.0% (w/v) NaCl (i.e. 0.8, 1.6, 2.4, 3.2 and 4.0%, w/v) at 60˚C in

MMJHS medium.

The isolate was tested for its ability to grow on combinations of a single electron donor and

acceptor. MJ synthetic seawater containing 0.1% (w/v) NaHCO3 was used as the basal

medium. For testing the growth on hydrogen as an electron donor, H2/CO2 (80:20) was used

as the gas phase. In an attempt to examine the growth on thiosulfate (0.1%, w/v), elemental sul-

fur (S0) (1%, w/v) or sodium sulfide (0.05% and 0.1%, w/v) as an electron donor, N2/CO2

(80:20) was used as the gas phase. Nitrate (0.1%, w/v), nitrous oxide (33%, v/v), thiosulfate

(0.1%, w/v), sulfite (0.1, 0.01, 0.05 and 0.001%, w/v), elemental sulfur (1%, w/v), molecular

oxygen (0.1 and 1%, v/v), nitrous oxide (33%, v/v) or fumarate (10 mM) were tested for poten-

tial electron acceptors. The presence or absence of growth was determined by microscopic

observation.

Heterotrophic growth of strain EPR55-1T was tested in MMJHS medium without NaHCO3

under a gas phase of 100% H2 (0.3 MPa), containing the following potential carbon sources:
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yeast extract, peptone, tryptone, casamino acids, D(+)-glucose, galactose, sucrose, fructose, lac-

tose, maltose, starch (all 0.2%, w/v), formate, acetate, glycerol, citrate, tartrate, malate, succi-

nate, propionate, lactate, oxalate, pyruvate (all 10 mM), methanol (0.05%, v/v), ethanol (0.1%,

v/v) and 2-propanol (0.2%, v/v). In addition, to assess the utilization of these organic com-

pounds as an energy source, substrates were added to MMJHS medium under a N2/CO2

(80:20) gas phase (0.3 MPa).

Potential nitrogen and sulfur sources required for growth were examined. To determine

the nitrogen sources utilization, NH4Cl (0.025%, w/v), NaNO3 (0.1%, w/v) and NaNO2 (0.1%,

w/v) were tested in MMJHS medium lacking all nitrogen sources, under a H2/CO2 (80:20) gas

phase (0.3 MPa). In addition, utilization of N2 was examined under a H2/N2/CO2 (60:20:20)

gas phase. In order to examine the sulfur sources for the growth of strain EPR55-1T, sulfate

(0.42%, w/v), thiosulfate (0.1%, w/v), sulfite (0.1, 0.05, 0.01, 0.005 and 0.001%, w/v) and ele-

mental sulfur (1%, w/v) were examined in MMJHS medium in which sulfur compounds were

replaced with the chloride salts under an H2/CO2 (80:20) gas phase (0.3 MPa).

Susceptibility to antibiotics was tested in MMJHS medium containing ampicillin, chloram-

phenicol, kanamycin, streptomycin and rifampicin (all 100 μg ml-1).

Molecular analysis based on 16S rRNA gene sequence

The 16S rRNA gene of strain EPR55-1T was amplified by PCR using primers Eubac 27F and

1492R [23]. The nearly complete rRNA gene sequence (1,366 bp) was obtained by direct

sequencing of both strands. The 16S rRNA gene sequence similarity analysis was conducted

using BLAST search algorithm with all nucleotides [25]. To determine the phylogenetic posi-

tion of the strain, the other “Campylobacterota” sequences were retrieved and aligned using

Silva database [26] and Silva Incremental Aligner v1.2.11 [27], respectively. A phylogenetic

tree was constructed using the neighbor-joining method [28] with the MEGA 7.0.21 software

[29] using 1,166 bases. Bootstrap analysis was done using 1,000 replications to provide confi-

dence estimates for the phylogenetic tree topologies.

Genome sequencing and assembly

Genomic DNA of strain EPR55-1T was extracted from the cells grown in MMJHS medium

with Wizard genomic DNA purification kit (Promega, Madison, Wisconsin, USA) according

to the protocol provided by the manufacturer. The genome was sequenced using Oxford

Nanopore Technology (ONT) and Illumina sequencing platforms. The paired-end library for

Illumina sequencing was generated using Nextera library preparation methods. Genome

sequence was then performed on the MiSeq platform (2x300 bp paired-end). Read data from

Illumina sequencing was trimmed with Platanus trim [30]. For the ONT sequencing, library

was prepared using the Rapid Barcoding Sequence kit (Oxford Nanopore Technologies,

Oxford, UK) according to the standard protocol provided by the manufacturer. The con-

structed library was loaded into the FlowCell (FLO-MIN106) on a MinION device and a

48-hour sequencing run with MinKNOW1.15.4 software was performed. After basecalling

ONT reads with Guppy v1.1 (Oxford Nanopore Technologies) with following settings:—

qscore_filtering and—calib_detect, basecalled reads were binned with Deepbinner [31]. Illu-

mina reads were combined with ONT reads for coassembly with Unicycler version 0.4.7 [32],

with default parameters. The genome was annotated using DFAST [33]. Metabolic pathways

were analyzed by KEGG Automatic Annotation Server [34]. Orthologous genes between strain

EPR55-1T and Nitratiruptormembers were determined with OrthoVenn [35] using protein

sequences annotated by Prodigal [36].
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Calculation of genome sequence similarities

In order to determine the taxonomic positioning of the strain, genome-based taxonomic

indexes were calculated. The in silicoDDH values of strain EPR55-1T against “Nitratiruptor
labii” HRV44T Nitratiruptor tergarcusMI55-1T [14], Nitratiruptor sp. SB155-2 [6] and Hydro-
genimonas thermophila EP1-55-1%T [37] were calculated using the Genome-to-Genome Dis-

tance Calculator [38] with the BLAST+ alignment tool. Results were based on recommended

formula 2, which is independent of genome length and is thus robust against the use of incom-

plete draft genomes.

To evaluate the genus-level AAI value of the phylum “Campylobacterota”, comprehensive

AAI calculation was performed by using the aai.rb script (https://github.com/lmrodriguezr/

enveomics). In addition, in order to further consider genus-level boundaries of the families

Nitratiruptoraceae and Nautiliaceae, genome-wide ANI (gANI), alignment fractions (AF)

[39], percentage of conserved proteins (POCP) [40], and the similarity of partial and/or com-

plete 16S rRNA gene sequences were also calculated by ANIcalculator [41], the POCP.sh script

developed by Harris et al. [42], and local blastn, respectively. A total of 160 “Campylobacterota”

genome retrieved from NCBI RefSeq and GenBank prior to 15 April 2020 and “Nitratiruptor
labii” genome were used for the analyses (S1 Table).

Phylogenomic tree analyses based on whole genome and multilocus

sequences of “Campylobacterota”

Phylogenomic tree was reconstructed using anvi’o v5.5 [43] based on protein sequences of 139

single-copy core genes (SCGs) from 160 genome sequences of members within “Campylobac-
terota”. The phylogenomics workflow (http://merenlab.org/2017/06/07/phylogenomics/) was

followed to infer evolutionary associations between genomes. Briefly, the fasta files containing

nucleotide sequences of genomes was used for generating the database of each genome (anvi-

script-FASTA-to-contigs-db). We then identified an HMM profiles (anvi-get-sequences-for-

hmm-hits) and extracted 139 SCGs proposed by Campbell et al. [44]. The amino acid

sequences of 139 SCGs were then concatenated in a fasta file (anvi-get-sequences-for-hmm-

hits). The optimal model for phylogenomic reconstruction was determined using Modelgen-

erator [45], and a ML tree was constructed using RAxML-NG version 0.9.0 [46] with LG+I

+G4+F model. To further understand the reticulate evolution of “Campylobacterota”, a NJ tree

was constructed using the same dataset using SplitsTree version 4.14.6 [47].

To deduce phylogenetic relationships among “Campylobacterota” species using a small set

of genes, we conducted the multilocus sequence analysis (MLSA), which is a powerful method

to elucidate genetic diversity [48] without whole genome sequencing. Nucleotide sequences of

seven genes (atpA, dnaK, glyA, gyrB,metG, pheS and tkt) used in previous studies [7] were

retrieved from 154 genome sequences of “Campylobacterota” including strain EPR55-1T using

the in silicomolecular cloning software (In Silico Biology, Yokohama, Japan). Sequences of

each genes were aligned using ClustalX version 2.1 [49] and then gaps were removed with a

consideration of the reading frame. Gap-removed alignments of all genes were concatenated

using Seaview [50]. NJ trees was constructed using SplitsTree based on concatenated amino

acid sequences [47].

Results

Morphology and growth characteristics

Cells of EPR55-1T were Gram-negative rods (1.0 μm long and 0.5 μm in wide) (Fig 1). Cells

were motile by means of flagella. Spore formation was not observed.
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Strain EPR55-1T grew at temperature between 50˚C and 60˚C, with optimum growth at

60˚C. No growth was observed below 40˚C or above 65˚C. Growth occurred between pH 5.4

and 8.6, with optimum growth at pH 6.6. No growth was detected below pH 3.2 or above pH

9.8. Growth was observed NaCl concentrations between 2.4 and 3.2% (w/v), with optimum

growth at 2.4%. No growth was observed at concentrations below 1.6% or above 4.0% (S1 Fig).

Temperature, pH, and NaCl ranges for growth of strain EPR55-1T were similar to those of

“Nitratiruptor labii”HRV44T [9] (Table 1).

Strain EPR55-1T was only able to use H2 as electron donor. Nitrate (0.1%, w/v), N2O (33%,

v/v), thiosulfate (0.1%, w/v), elemental sulfur (1%, w/v) and molecular oxygen (0.1%, v/v) were

able to serve as the sole electron acceptors. The isolate could not utilize any organic com-

pounds as energy or carbon sources. These results indicated that strain EPR55-1T was a strictly

hydrogen-oxidizing thermophilic chemolithoautotroph. The isolate was able to use ammo-

nium as its sole nitrogen source and utilization of N2 was not observed. Strain EPR55-1T uti-

lized thiosulfate, sulfite (0.01 to 0.001%, w/v) and elemental sulfur as sulfur sources. None of

the chemosynthetic “Campylobacterota” isolated so far are reported as possessing the ability to

Fig 1. Electron micrograph of negatively stained cells of strain EPR55-1T. Scale bar represents 1.0 μm.

https://doi.org/10.1371/journal.pone.0241366.g001
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utilize sulfite as its sulfur source. Strain EPR55-1T was sensitive to ampicillin, chlorampheni-

col, kanamycin, streptomycin and rifampicin.

Phylogenetic analysis based on 16S rRNA gene sequences

With a nearly full length of 16S rRNA gene sequence of strain EPR55-1T as a query in BLAST

search, 96.0%, 94.3%, 93.0%, and 93.0% similarity were estimated with “Nitratiruptor labii”
HRV44T, Nitratiruptor sp. SB155-2,Nitratiruptor tergarcusMI55-1T, andHydrogenimonas ther-
mophila EP1-55-1T, respectively, indicating that strain EPR55-1T may be a new species of Nitra-
tiruptor or even a member of newly described genus with strain HRV44T. The phylogenetic

analysis showed that strain EPR55-1T was closely related to theNitratiruptor species (Fig 2).

Genome properties

Hybrid genome assembly with Unicycler resulted in a single complete circular contig with a

length of 1,807,889 bp. Of the 1,833 genes predicted, 1,783 were coding sequences (CDSs), 41

tRNA genes, and 3 set of rRNA genes (Fig 3). These values were comparable to those of closely

rerated Nitratiruptor isolates; “Nitratiruptor labii” HRV44T (1,990,315 bp and 2,050 CDS with-

out a plasmid) Nitratiruptor tergarcusMI55-1T (1,894,691 bp and 1,935 CDSs) and Nitratirup-
tor sp. SB155-2 (1,877,931 bp and 1,857 CDSs) (Nakagawa et al., 2007). The G + C content was

37.7%, which is similar to that of Nitratiruptor sp. SB155-2 (39.7%) (Table 1).

Taxonomic placement of EPR55-1T on the basis of genomic analyses

The in silicoDDH values of strain EPR55-1T against “Nitratiruptor labii” HRV44T,Nitratiruptor
tergarcusMI55-1T andHydrogenimonas thermophila EP1-55-1%T were 18.7%, 18.1% and

17.4%, respectively, well below a threshold of 70% in silicoDDH used for the definition of bacte-

rial species [38]. In addition, ANI values of strain EPR55-1T against “Nitratiruptor labii”
HRV44T, Nitratiruptor tergarcusMI55-1T andHydrogenimonas thermophila EP1-55-1%T were

77.5%, 71.4% and 70.4%, respectively, well below the species threshold (95.0%) [51]. These

results support the proposal that the isolate is a novel species within the class “Campylobacteria”.

Table 1. Comparison of physiological characteristics of EPR55-1T with species of the families Nitratiruptoraceae and Hydrogenionaceae.

Characteristics 1 2 3 4 5

Origin East Pacific Rise Mid-Okinawa Trough Mid-Okinawa Trough Mid-Okinawa Trough Central Indian Ridge

Temperature range (˚C) 50–60 45–60 40–55 37–65 35–65

Optimum temperature (˚C) 60 53 55 55 55

pH range 5.4–8.6 5.4–6.4 5.4–6.9 ND 4.9–7.2

Optimum pH 6.6 6.0 6.4 ND 5.9

NaCl range (%, w/v) 2.4–3.2 2.0–4.0 1.5–4.0 ND 1.6–5.6

Optimum NaCl (%, w/v) 2.4 2.5 2.5 ND 3.2

Electron donors H2 H2, H2 H2, S2-, S0, S2O3
2- H2

Electron acceptors NO3
-, N2O, S2O3

2-, O2, S0 NO3
-, N2O, S0, O2 NO3

-, O2, S0† NO3
-, O2 NO3

-, O2, S0

Carbon sources other than CO2 - - - ND -

Nitrogen sources NH4
+ NO3

-, NH4
+ NO3

-, NH4
+ ND NO3

-, NH4
+

DNA G + C content 37.7 33.4 36.9 39.7 33.5

-, negative; ND, not determined.

†S0 could not serve as a sole electron acceptor to support growth.

1, Strain EPR55-1T; 2, “Nitratiruptor labii” HRV44T [9]; 3, Nitratiruptor tergarcusMI55-1T [14]; 4, Nitratiruptor sp. SB155-2 [6]; 5, Hydrogenimonas thermophila EP1-

55-1%T [37].

https://doi.org/10.1371/journal.pone.0241366.t001
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AAI values of the novel isolate against “Nitratiruptor labii” HRV44T,Nitratiruptor tergarcus
MI55-1T, Nitratiruptor sp. SB155-2 andHydrogenimonas thermophila EP1-55-1%T were 69.9%,

64.1%, 63.7% and 59.4%, respectively, which fall within the threshold for genus-level differentia-

tion (60–80%) [52]. The gANI and AF of strain EPR55-1T against the closely related species

were 73.85% and 0.53 to “Nitratiruptor labii” HRV44T, 71.45% and 0.38 to Nitratiruptor tergar-
cusMI55-1T, 71.32% and 0.38 to Nitratiruptor sp. SB155-2, respectively (S2 and S3 Tables).

These values below the genus level threshold (gANI value of 73.98 (mean) and 73,11 (median)

[39], AF value of 0.33 (mean) and median (0.345) [39]) are indicative of genus-level differentia-

tion of strain EPR55-1T with strain HRV44T, though POCP values of strain EPR55-1T against

the all three relative strains were>70.1%, higher than genus threshold (�50%) (S4 Table).

The Venn-diagram showed the presence of a conserved core set of 1,270 gene clusters that

are shared by all Nitratiruptor genomes, representing more than a half of the proteins in each

strain. In addition, strain EPR55-1T, HRV44T, MI55-1T and SB155-2 possessed 215, 345, 250

and 245 singletons, respectively (S2 Fig).

Comparison of phylogenomic and genomic distance within

“Campylobacterota”

AAI analysis between 160 genomes, which vary extensively within “Campylobacterota”, illus-

trates that there are genera, which need to be considered reclassification. AAI, gANI, AF, and

POCP values between type strains of the family Nautiliaceae, Nautilia profundicola AmHT,

Caminibacter mediatlanticus TB-2T, Cetia pacifica TB-6T, and Lebetimonas natsushimae
HS1857T, were 71.6–74.2%, 76.1–78.0%, 0.52–0.81, and 76.02–84.0%, respectively, within or

higher than the genus demarcation given by previous studies (S2–S4 Tables). The phyloge-

nomic analyses based on both SCGs and MLSA genes also showed these strains could be

regarded as one clade (Figs 3 and S4 and S5). Although the genome-based taxonomy indicated

these strains could be considered to the species belonging the same genus, the current inter-

genus 16S rRNA gene sequence identities of these strains were below 94.5% [53] with the

Fig 2. Phylogenic tree based on 16S rRNA gene sequences. Phylogenetic tree of the members of thermophilic

“Campylobacterota”, inferred by the neighbor-joining algorithm using 1,166 homologous sequence positions.

Numbers at branches are bootstrap values (%) based on 1,000 replicates.

https://doi.org/10.1371/journal.pone.0241366.g002
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exception of Cetia pacifica TB-6T which showed>95% identity to all type strains of the genus

Caminibacter (S5 Table).

In addition to the thermophilic taxa, some differences compared to the current classifica-

tion were observed for the genusHelicobacter and the family Arcobacteraceae [54].

Fig 3. Maximum likelihood tree of 160 members within “Campylobacterota”. Maximum likelihood tree was constructed based on amino acid sequences of 139 SCGs

using RAxML. Support of internal nodes was calculated using 100 bootstrap iterations. Bootstrap support of 100% and>75% are denoted by solid and hollow,

respectively.

https://doi.org/10.1371/journal.pone.0241366.g003
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Helicobacter pametensis andHelicobacter cholecystus,Helicobacter brantae showed low AAI

values against otherHelicobacter species (48.5–55.8%). Similarly, Helicobacter equorum and

Helicobacter himalayensis, andHelicobacter anseris andHelicobacter mustelae showed AAI val-

ues below the genus threshold [52] against otherHelicobacter species (50.0–59.9% and 49.8–

55.9%, respectively). Phylogenomic analyses also showed that these six species formed new

three clades (Helicobacter E F, and G). Additionally, Helicobacter pylori,Helicobacter acinony-
chis andHelicobacter cetorum, currently belonging to theHelicobacter clade [1], showed lower

AAI values than the genus threshold against other currentHelicobacter clade species (57.0–

58.1%). In the both NJ and ML phylogenomic trees on the basis on 139 SCGs, the currentHeli-
cobacter clade branched to two clades (Helicobacter I and II) (Figs 3 and S4). Same branching

patterns were also observed in the NJ tree based on amino acid sequences of MLSA genes (S5

Fig). In the genera of the family Arcobacteraceae, AAI values between species belonging to dif-

ferent genera Aliarcobacter, Poseidonibacter,Malaciobacter, Arcobacter,Halarcobacter were

61.9–78.7%, indicating they could be regarded as different species of the same genus. The large

clade consisting of these genera was also identified by phylogenomic analyses based on both

SCGs and MLSA genes (Figs 4 and S4 and S5). However, some species showed the inter-genus

16S rRNA gene sequence identities below 94.5% [53] (S5 Table), indicating differentiation at

genus level. AAI values among Campylobacter B were relatively lower (57.02–65.86%), possibly

due to the low degree of relatedness between Campylobacter B species (<94.5% 16S rRNA

gene similarities).

Based on results of phylogenomic analyses, the AAI values between species belonging to

same clades or the different clades were evaluated (Fig 4). The minimum AAI value between

species belonging to same clades was 59.7% (Helicobacter muridarum ST1T vsHelicobacter
saguiniMIT 97-6194T), and the maximum AAI value between species belonging to different

clades was 61.9% (Campylobacter geochelonis RC20T vs Campylobacter hominis ATCC BAA-

381T) with the exception of Nitratiruptoraceae, Nautiliaceae, and Arcobacteraceae whose 16S

Fig 4. The beeswarm based on the AAI values. Beeswarm plots showing the AAI values between species of “Campylobacterota”. Each dot shows a comparison

between species. Comparisons between species within reclassified same genus and between species of different genera are colored in red and blue, respectively.

Genera consisting of more than two species were shown in this figure.

https://doi.org/10.1371/journal.pone.0241366.g004
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rRNA gene sequence similarities were not reflected in the genome relatedness. These values

indicated the AAI threshold for genus demarcation of “Campylobacterota” was about 60–62%,

though there are some exceptions.

Discussion

Comparison of strain EPR55-1T with related species

Strain EPR55-1T was the first Nitratiruptoraceae species isolated from the East Pacific Rise.

The strain shows some physiological differences from other Nitratiruptoraceae isolates, and

represents the only Nitratiruptoraceae species which is able to utilize thiosulfate and sulfite as

its sole electron acceptor and sulfur source, respectively. The ability to utilize sulfite has also

never been reported in any other thermophilic campylobacterial species. The strain EPR55-1T

possessed lophotrichous flagella, unlike the monotrichous and amphitrichous flagella of

“Nitratiruptor labii” and Nitratiruptor tergarcus, respectively [9, 14]. 16S rRNA gene sequence

similarities, gANI, and AF values of the strain against closely related species suggested that

strain EPR55-1T designate the strain as a novel genus with strain HRV44T. The strain EPR55-

1T therefore represents a novel genus within a new genus of the family Nitratiruptoraceae, for

which the name Nitrosophilus alvini gen. nov., sp. nov. is proposed.

Proposed reclassifications among “Campylobacterota”

The 16S rRNA gene sequence similarity between of strain EPR55-1T and HRV44T was above

95%. Additionally, phylogenetic trees based on sequences of 16S rRNA gene, 139 SCGs, and

MLSA genes showed that strain EPR55-1T and HRV44T formed a distinct branch from the

genus Nitratiruptor. Considering the relationship between strain EPR55-1T and “Nitratiruptor
labii” HRV44T, we propose that “Nitratiruptor labii” should be transferred to the genus Nitro-
sophilus as a new combination, Nitrosophilus labii comb. nov.

While thermophilic species within the genera Nautilia, Caminibacter, Cetia, and Lebetimo-
nas exhibited genome indexes where values exceeded the genus thresholds proposed in previ-

ous studies, their pairwise similarities of 16S rRNA gene sequences were below 94.5% except

for similarities obtained by the comparison between Cetia pacifica TB-6T and Caminibacter
species. 16S rRNA gene-based and genome-based phylogenetic trees also indicated Cetia pacif-
ica formed a clade with members of the genus Caminibacter. Consequently, we propose that

Cetia pacifica should be transferred to the genus Caminibacter as a new combination, Camini-
bacter pacificus comb. nov.

In the genusHelicobacter, results of both AAI comparison and phylogenomic analyses indi-

cate thatHelicobacter pametensis,Helicobacter cholecystus,Helicobacter equorum,Helicobacter
himalayensis,Helicobacter anseris, andHelicobacter mustelae could be regarded as three novel

genera ofHelicobacteraceae (Helicobacter E, F, and G). In addition, our results also suggest

thatHelicobacter pylori,Helicobacter acinonychis andHelicobacter cetorummight be differenti-

ated from current genusHelicobacter and be representatives of a novel genus (Helicobacter II).

These results are sufficient to propose the reclassification of the genusHelicobacter into eight

genera (Helicobacter I, II, A, B, C, E, F, and G) updating the previously suggested grouping [1,

55]. When considering their habitat,Helicobacter I and II, and A to G including “Pseudohelico-
bacter” [55] are characterized as gastric and enteric genera, respectively [56]. In addition,

based on the reclassification of the genusHelicobacter, physiological characteristics of 44 spe-

cies were compared at the clade level (S6 Table). Since diverse physiological characteristics

were observed in each clade, it is difficult to classify Helicobacter species by conventional

method based on both physiological characteristics and 16S rRNA gene sequences. The
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classification method based on the genome sequences is therefore necessary to robustly classify

the genusHelicobacter.
The historical genus Arcobacter was recently reclassified into six genera, Arcobacter, Aliar-

cobacter, Pseudoarcobacter,Malaciobacter,Halarcobacter, and Poseidonibacter, based on com-

prehensive phylogenetic approaches using genomic relatedness indices, housekeeping genes,

core genomes, and the 16S rRNA gene [54]. This reclassification seems to be orversubdivided

by comparing other genera within “Campylobacterota”, as AAI values between species belong-

ing to different genera within family Arcobacteraceae were much higher level than those of

genera within other families and as also refuted by On et al [57] (Fig 4). However, when con-

sidering the similarities of 16S rRNA gene sequences among these species, it is reasonable to

maintain the multiple genera in Arcobacteraceae (S5 Table). Members of the genus Pseudoar-
cobacter formed a clade with members of the genus Aliarcobacter, which may be incorporated

into the Aliarcobacter (Figs 3 and S4 and S5).

Availability of MLSA for phylogenomic assignments of

“Campylobacterota”

In the MLSA, selection of protein-coding genes and their number often vary between each

taxon, and therefore common recommendations are still not in place [58]. For example, in the

genus Vibrio, nine genes are used for describing the vibrio clades [59], and the number of

MLSA genes for identifying the species could be reduced to four [60]. In addition, genes used

for MLSA of pathogenic “Campylobacteria” vary between species (https://pubmlst.org/

databases/). It is therefore necessary to establish a universal MLSA scheme for all “Campylo-
bacterota” species in order to accurately reflect taxonomic relationships. The NJ trees on the

basis of amino acid sequences of seven MLSA genes identified in the present study showed a

similar topology to those on the basis of the whole genome sequences, suggesting that MLSA

could reconstruct the taxonomic relationships within “Campylobacterota” as accurately as the

whole genome analysis. However, the topology of NJ tree and decomposition network based

on nucleotide sequences of MLSA genes differed from the taxonomic results based on amino

acid sequence. Considering our results the MLSA based on amino acid sequences appears to

be an effective tool to classify the novel species within the phylum “Campylobacterota” when

whole genome sequence information in not available.

Genome-based taxonomic scheme for the phylum “Campylobacterota”

16S rRNA gene sequencing is widely recognized and useful at the first step in the identification

of the isolates. However, when the similarity between novel strains and its closest relatives are

at around 94–96%, additional genome-based analyses are required to decide the if strain repre-

sents a novel species or a novel genus. Although the families Nautiliaceae, Nitratiruptoraceae,
and Arcobacteraceae have relatively higher inter-genus AAI genome similarities, extensive

comparison of AAI values within “Campylobacterota” showed that the genus threshold of

“Campylobacterota” could be 60–62%, correlating well with the branching pattern of phyloge-

netic trees based on whole genomes. This threshold value corresponds to the observed genus-

level differentiation (60–80% AAI) [52]. However, due to the genomic diversity of “Campylo-
bacterota”, the AAI-based approach alone may be insufficient to classify a novel isolate at the

genus level. In addition to the 16S rRNA-gene based phylogeny, constructing the phylogenetic

trees based on SCGs and/or MLSA gene sequences is helpful to determine the taxonomic posi-

tion of new isolates. When the strain forms clade with close relatives, the strain is classified in

the same genus as its relatives. When a novel strain forms a clade with undescribed relatives,

the strain could be classified as a novel genus.
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Description of Nitrosophilus gen. nov.

Nitrosophilus (Ni.tro.so.phi’lus. L. masc. adj. nitrosus, full of natron, here intended to mean

nitrate and nitrous oxide; N.L. masc. adj. philos, loving, friendly to; N.L. masc. n. Nitrosophilus
nitrate- and nitrous-oxide-loving, referring to the use of nitrate and nitrous oxide as a sole

electron acceptor.

Cells are rod-shaped, motile and stain Gram-negative. Anaerobic to microaerobic. Strictly

chemolithoautotrophic. Thermophilic, adapted to the salinity of the ocean. On the basis of 16S

rRNA gene and single-copy core-gene analyses, the genus Nitrosophilus belongs to the family

Nitratiruptoraceae within the class “Campylobacteria”. The type species is Nitrosophilus alvini.

Description of Nitrosophilus alvini sp. nov.

Nitrosophilus alvini (al.vi’ni. N.L. gen. masc. n. alvini from the name of the HOV Alvin which

collected the deep-sea hydrothermal samples harbouring this strain).

Cells are Gram-negative, motile, and rod-shape. The temperature range for growth is at 50–

60˚C (optimum 60˚C). The pH range for growth is pH 5.4–8.6 (optimum 6.6). NaCl concen-

tration range for growth is 2.4–3.2% (w/v) (optimum 2.4%). Strain EPR55-1T is hydrogen-oxi-

dizing, facultatively anaerobic and chemolithoautotrophic with molecular hydrogen as its sole

electron donor and with nitrate, nitrous oxide, thiosulfate, molecular oxygen or elemental sul-

fur as its sole electron acceptors. Ammonium is utilized as its sole nitrogen source. Thiosulfate,

sulfite or elemental sulfur are utilized as its sole sulfur source. The complete genome size is

1,807,889 bp. The G + C content of DNA is 37.7%. The type strain, EPR55-1T (= JCM 32893T

= KCTC 15925T), was isolated from a deep-sea hydrothermal vent in the East Pacific Rise.

Description of Nitrosophilus labii comb. nov.

Basonym: Nitratiruptor labii Fukushi et al., 2020 [9].

The description is the same given by Fukushi et al. (2020) [9]. The type strain is HRV44T (=

JCM 34002T = DSM 111345T).

Description of Caminibacter pacificus comb. nov.

Basonym: Cetia pacifica Grosche et al., 2015 [12].

The description is the same given by Grosche et al. (2015) [12]. The type strain is TB-6T (=

DSM 27783T = JCM 19563T).

Supporting information

S1 Fig. Growth rates of strain EPR55-1T. Growth rates of temperature (a), pH (b) and NaCl

concentration (c) in MMJHS medium.

(TIF)

S2 Fig. Graphical circular map of the strain EPR55-1T genome. Tracks from inside to out-

side are as follows: GC skew, G + C content, rRNA, reverse strand CDS, and forward strand

CDS (color by COG categories).

(TIF)

S3 Fig. Venn diagram of orthologous gene clusters among the genera Nitratiruptor and

Nitrosophilus. This Venn diagram represents shared or unique orthologous gene clusters

between EPR55-1T, HRV44T, Nitratiruptor tergarcusMI55-1T and Nitratiruptor sp. SB155-2.

(TIF)
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S4 Fig. Consensus NJ tree of “Campylobacterota” based on SCGs. The phylogenomic tree

was constructed based on 139 SCG protein sequences retrieved from 160 genomes belonging

to “Campylobacterota”. The emended and newly proposed taxa in the phylum “Campylobac-
terota” (Nitrosophilus, Caminibacter,Helicobacter I, II, E, F, G, and Arcobacter) were shown in

bold.

(TIF)

S5 Fig. Consensus NJ tree of “Campylobacterota” based on MLSA genes. The phylogenetic

tree was constructed based on amino acid sequences of MLSA genes (i.e. atpA, dnaK, glyA,

gyrB,metG, pheS and tkt) retrieved from 154 members of “Campylobacterota”. Arcobacter cloa-
cae F26, Arcobacter ebronensis CECT 8441, Arcobacter mediterraneus F156-34, Campylobacter
mucosalisDSM 21682,Helicobacter bizzozeronii CIII-1,Hydrogenmonas sp. MAG80, and

Thiovulum sp. ES were excluded because of lack of at least one MLSA gene sequence.

(TIF)

S1 Table. Genome data used in this study.

(XLSX)

S2 Table. gANI values between species belonging to the families Nitratiruptoraceae and

Nautiliaceae.

(XLSX)

S3 Table. AF values between species belonging to the families Nitratiruptoraceae and Nau-
tiliaceae.

(XLSX)

S4 Table. POCP values between species belonging to the families Nitratiruptoraceae and

Nautiliaceae.

(XLSX)

S5 Table. Similarities of 16S rRNA gene sequences between species belonging to the fami-

lies Campylobacteraceae, Sulfurospirillacee, Helicobacteraceae, Arcobacteraceae, Nitratir-
uptoraceae, and Nautiliaceae. The values of�94.5% are shown in red. Intra-genus

similarities are highlighted in grey.

(XLSX)

S6 Table. Comparison of physiological characteristics of the genus Helicobacter based on

the clade classification.

(XLSX)
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(TXT)
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(PDF)

S3 File.
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