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Abstract

The use of the Cox proportional hazards regression model is widespread. A key assumption of the 

model is that of proportional hazards. Analysts frequently test the validity of this assumption using 

statistical significance testing. However, the statistical power of such assessments is frequently 

unknown. We used Monte Carlo simulations to estimate the statistical power of two different 

methods for detecting violations of this assumption. When the covariate was binary, we found that 

a model-based method had greater power than a method based on cumulative sums of martingale 

residuals. Furthermore, the parametric nature of the distribution of event times had an impact on 

power when the covariate was binary. Statistical power to detect a strong violation of the 

proportional hazards assumption was low to moderate even when the number of observed events 

was high. In many data sets, power to detect a violation of this assumption is likely to be low to 

modest.
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1. Introduction

Survival or time-to-event outcomes occur frequently in the medical literature [1]. In the 

medical and epidemiological literature, the Cox proportional hazards regression model is the 

most common regression model for examining the effect of covariates on survival outcomes. 

This model allows one to model the effect of explanatory variables on the hazard of the 
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outcome [2]. A key assumption of this model is that of proportional hazards: the relative 

effect of a covariate on the hazard function does not change over time.

Applied analysts often assess the validity of the proportional hazards assumption when 

fitting hazard models. However, the statistical power of such assessments has received little 

attention. The objective of this paper was to examine the statistical power to detect 

violations of the proportional hazards assumption when fitting a Cox proportional hazards 

model. In order to conduct simulations to assess the statistical power of different statistical 

methods for detecting violations of the proportional hazards assumption, there is a need to 

describe a data-generating process for the Cox proportional hazard model in the presence of 

time-varying covariate effects. The paper is structured as follows. In Section 2, we describe a 

data-generating process for settings in which there is a time-varying covariate effect (i.e. for 

settings in which the proportional hazards assumption is violated). We consider scenarios in 

which the distribution of event times follows one of three distributions: exponential, Weibull, 

and Gompertz. In Section 3, we conduct a series of Monte Carlo simulations to investigate 

the statistical power of different methods to detect violation of the proportional hazards 

assumption when fitting a Cox regression model. Finally, in Section 4 we summarize our 

findings and place them in the context of the existing literature.

2. Data-generating processes for models with time-variant covariate effects 

or non-proportional hazards

In this section we describe data-generating processes for models with time-varying covariate 

effects. For simplicity, we assume that there is a single covariate whose effect on the hazard 

function varies over time, while the remaining covariates have time-invariant effects on the 

hazard function. Our results easily generalize to more complex settings with multiple 

covariates with time-varying covariate effects. We consider the setting in which the 

regression coefficient changes as a linear function of time. In Section 2.1, we provide 

relevant background information. In Section 2.2, we summarize previous work on generating 

time-to-event data for a Cox model with time-invariant covariate effects. Data-generating 

processes for models with time-varying covariate effects, which are extension of these 

methods, are described in Section 2.3.

2.1. Background and notation

Let h(t|x) = h0(t) exp (β′x) denote the conventional Cox proportional model with time-

invariant covariate effects, where t denotes time, x is the vector of time-invariant covariates, 

β is the vector of time-invariant regression coefficients, and h0(t) denotes the baseline hazard 

function. The model can also be written in additive form: log(h(t|x)) = log(h0(t)) + β′x. The 

model can be modified to incorporate time-varying covariate effects as follows: h(t|x) = h0(t) 
exp (β(t)′x).

The survival function of the model with time-invariant covariate effects is S(t|x) = 

exp(−H0(t) exp (β′x)), where H0(t) is the cumulative baseline hazard function, which is 

defined as . The distribution function of event times under the Cox 

proportional hazards model is F(t|x) = 1 − exp(−H0(t) exp (β′x)).

Austin Page 2

J Stat Comput Simul. Author manuscript; available in PMC 2018 January 08.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



2.2. Generating data with time-invariant covariate effects

In the setting with time-invariant covariates and time-invariant covariate effects, both Leemis 

and Bender et al. showed that an event time, T, can be generated by 

, where u ~ U(0,1) (where U (0,1) denotes the standard 

uniform distribution) [3,4]. Both sets of authors had the key insight that simulating event 

times from a Cox model with time-invariant covariates requires inverting the survival 

function.

Bender et al. note that among the commonly-used distributions for survival times, only the 

exponential, the Weibull, and the Gompertz distributions also share the assumption of 

proportional hazards with the Cox model. The parameters required for each distribution, the 

hazard function, the cumulative hazard function, the inverse of the cumulative hazard 

function, and the formula for simulating survival times from each distribution in the setting 

of time-invariant covariates are described in Table 1 (see Bender et al. [4] for further details). 

While there are different parameterizations of the Weibull distribution, we use the 

parameterization of Bender et al.

2.3. Generating data with time-varying covariate effects

We let the vector of covariates be decomposed as follows: (x, z), where x denotes the vector 

of covariates whose effects on the hazard function are constant or time-invariant, while z 
denotes the single covariate whose effect on the hazard function varies over time. In each 

scenario we consider three distributions of event times: exponential, Weibull, and Gompertz. 

While the data-generating function is described in the text, complete derivations for all 

distributions are reported in Appendices A1.1–A1.3.

We used the framework described by Leemis and by Bender et al. [3,4], whose key 

observation was that survival times could be generated by inverting the survival function. 

This approach has been modified elsewhere for simulating time-to-event data from a model 

with time-varying covariates [5]. Each of our derivations follows the same pattern. First, we 

integrate the hazard function to determine the cumulative hazard function. Second, we 

compute the survival function as the exponential function evaluated at the negative of the 

survival function. Third, we invert the survival function. This method for simulating event 

times with time-dependent effects has been described previously by Crowther and Lambert 

[6].

Throughout this section we assume that the regression coefficient associated with z is a 

linear function of time: β(t)z = (β0 + β1t)z.

2.3.1. Exponential distribution of event times—If event times follow an exponential 

distribution, an event time can be simulated by evaluating
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where u ~U(0,1) (see Appendix A1.1 for derivation).

R and SAS code for simulating data from this distribution is described in Appendix A2.1.

2.3.2. Weibull distribution of event times—If event times follow an exponential 

distribution, then generation of event times requires determining the inverse of the survival 

function: exp[−λυeγxeβ0z(tυ (−β1tz)−υ (Γ(υ) − Γ(υ,−β1tz)))] (where Γ(x) and Γ(x, a) denote 

the Gamma and Incomplete Gamma functions, respectively), and evaluating it at u ~ U(0, 1) 

(see Appendix A1.2 for derivation).

A closed-form expression for the inverse of the survival function does not exist. Instead, 

numerical methods would need to be used to approximate the inverse of this function. For a 

given value of u, one can define a new function: S(t) – u and then find the roots of this 

function. Two options for finding roots are the Brent method and the Newton–Raphson 

method for root finding. Crowther and Lambert found that the former tended to have 

superior performance to the latter [6]. R code for simulating data from this distribution is 

described in Appendix A2.2 (SAS code is not provided due to limitations to implementing 

Brent’s root finder in SAS).

2.3.3. Gompertz distribution of event times—If event times follow a Gompertz 

distribution, then event times can be simulated by evaluating

where u ~ U(0, 1) (see Appendix A1.3 for derivation).

R and SAS code for simulating data from this distribution is described in Appendix A2.3.

3. Monte Carlo simulations to assess statistical power to detect violation of 

the proportional hazards assumption

We used Monte Carlo simulations to estimate the statistical power to detect violation of the 

proportional hazards assumption when fitting a Cox proportional hazards regression model. 

We allowed the covariate for which the proportional hazards assumption was violated to be 

either binary or continuous. We examined the effect of the following three factors on 

statistical power to detect this violation: (i) number of observed events; (ii) the magnitude of 

deviation from proportionality; (iii) the prevalence of the binary covariate.

3.1. Methods

3.1.1. The proportional hazards assumption was violated for a binary 
covariate—We assumed that there was a binary covariate with a time-varying covariate 

effect, such that its regression coefficient varied as a linear function of time after adjusting 

for a continuous covariate. The single continuous covariate can be thought of either as a 
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single covariate (e.g. age) or as a risk score summarizing the contribution of a vector of 

covariates. Furthermore, conditional on the covariates, we assumed that event times followed 

a Gompertz distribution with parameters α = 0.025 and λ = 0.001.

For each of N subjects, a continuous covariate was simulated from a standard normal 

distribution: x ~ N(0, 1) and a binary covariate was simulated from a Bernoulli distribution 

with parameter pbinary: z ~ Be(pbinary). Time-to-event outcomes were simulated from the 

following model using methods described in the previous section: log (h(t|x, z)) = log(h0(t)) 
+ log(1.5)x + (log(1.1) + t log(hrinteraction))z, where the baseline hazard function h0(t) = λ 
exp (αt). Thus, a one-standard deviation increase in the continuous covariate is associated 

with a 50% increase in the hazard of the outcome. The effect of the binary covariate varies 

with time. At t = 0, the presence of the condition indicated by z is associated with a 10% 

increase in the hazard of the outcome, while at t = 365, the presence of the condition is 

associated with an exp(log(1.1) + 365 log (hrinteraction)) increase in the hazard.

The values of the time-specific hazard ratios are described in Figure 1 for 12 values of 

hrinteraction: 1.0001 to 1.0010 in increments of 0.0001, and 1.002 and 1.003. Each of the 12 

lines shows the value of the time-specific hazard ratio as time ranges from 0 to 730 (i.e. two 

years). For all values of hrinteraction, the value of the hazard ratio was 1.1 at t = 0. When 

hrinteraction = 1.003, the value of the hazard ratio for the binary exposure variable was 9.8 at 

two years (t = 730). When hrinteraction = 1.002, the value of the hazard ratio was 4.7 at two 

years. In the simulations that follow, we made the subjective decision to use hrinteraction = 

1.003 to denote a very strong violation of the proportional hazards assumption and 

hrinteraction = 1.002 to denote a strong violation of the proportional hazards assumptions.

In each simulated data set, we fit the following hazard regression model: log(h(t|x, z)) = 

log(h0(t)) + γx + (β0 + β1t)z. We tested the statistical significance of the time-varying effect 

of z: H0: β1 = 0. The proportional hazards assumption was rejected if the significance of this 

component was less than or equal to 0.05. This process was repeated 1000 times for each of 

the scenarios. The estimated statistical power was the proportion of the simulated data sets 

in which the proportional hazards assumption was rejected.

The methods described above permit an assessment of the statistical power of a model-based 

approach to assessing the validity of the proportional hazards assumption. We also examined 

the statistical power of an alternative approach based on cumulative sums of martingale 

residuals over time that was described by Lin et al. [7]. We used a Kolmogorov-type 

supremum test that was computed on 1000 simulated patterns. When using this method, the 

following model was fit in each simulated data set: log(h(t|x, z)) = log(h0(t)) + β1x + β2z. 

For this method, 500 iterations were conducted for each of the scenarios due to the increased 

computational complexity of each individual analysis.

We then repeated the above analyses simulating data such that the distribution of event times 

was exponential with parameter λ = 0.01.

We conducted three separate sets of simulations. In the first set of simulations, we examined 

the effect of the observed number of events on statistical power to detect violation of the 

proportional hazards assumption. We fixed hrinteraction in the above data-generating process 
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at 1.002 (to denote a strong violation of the proportional hazards assumption) and the 

prevalence of the binary covariate at 0.25. We then allowed the sample size to range from 

100 to 1000 in increments of 100. We did not induce censoring in the simulated data set, so 

that the number of events would equal the sample size. In the second set of simulations, we 

examined the effect of the magnitude of the change in the hazard ratio over time on 

statistical power to detect violation of the proportional hazards assumption. We fixed the 

sample size at 1000 subjects (and did not induce censoring, so that the number of observed 

events would equal 1000) and the prevalence of the binary covariate at 0.25. When then 

allowed hrinteraction to take 12 values: 1.0001 to 1.0010 in increments of 0.0001, and 1.002 

and 1.003 (see text above and Figure 1 for illustration of the magnitude of the violation of 

the proportional hazards assumption). In the third set of simulations, we examined the effect 

of the prevalence of the binary covariate on statistical power to detect violation of the 

proportional hazards assumption. We fixed the sample size at 1000 subjects (and did not 

induce censoring, so that the number of observed events would equal 1000) and hrinteraction 

at 1.002 (to denote a strong violation of the proportional hazards assumption). We then 

allowed the prevalence of the binary covariate to range from 0.05 to 0.50 in increments of 

0.05.

3.1.2. The proportional hazards assumption was violated for a continuous 
covariate—We modified the simulations described above in order to examine scenarios in 

which there was a continuous covariate with a time-varying covariate effect, such that its 

regression coefficient varied as a linear function of time after adjusting for a second 

continuous covariate. The following minor modification was made to the simulations 

described above: for each subjects a continuous covariate was simulated from a standard 

normal distribution: x ~ N(0, 1) and a second continuous covariate was simulated from a 

standard normal distribution: z ~ N(0, 1). The two normal distributions were assumed to be 

independent of one another. Apart from this modification, the simulations and analyses were 

identical to those described above (with the obvious exception that we only examined the 

effect of the number of events and the magnitude of the interaction with time on statistical 

power and did not consider prevalence). The values of the time-specific hazard ratios for the 

continuous covariate are described in Figure 1 for 12 values of hrinteraction. For this set of 

simulations, the hazard ratios can be interpreted as the relative change in the instantaneous 

hazard of the event associated with a one standard deviation increase in the continuous 

covariate.

3.2. Results

3.2.1. Results – binary covariate with a time-varying effect—The effect of the 

number of observed events on the statistical power of each of the two methods for assessing 

the validity of the proportional hazards is described in Figure 2 for each of the two 

distributions of event times. We have superimposed on the figure a horizontal line denoting 

statistical power of 0.8 (or 80%). As would be expected, statistical power increased with 

increasing number of events. For a given distribution of event times, the model-based test of 

the proportional hazards assumption had greater power to detect violation of this assumption 

than did the method based on sums of cumulative martingale residuals. Differences in 

statistical power between the two methods were greater when event times followed an 
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exponential distribution than when event times followed a Gompertz distribution. 

Interestingly, for a given method of assessing non-proportionality, there was greater 

statistical power to detect a violation of the proportional hazards assumption when event 

times followed an exponential distribution than when the distribution was Gompertz. Despite 

the fact that the effect of the covariates on the hazard function was the same between the two 

models, the underlying distribution of event times had a substantial impact on the statistical 

power to detect a violation of the proportional hazards assumption. For both distributions, 

statistical power to detect a strong violation of the proportional hazards assumption 

(hrinteraction = 1.002) was low to moderate. When the distribution of event times was 

exponential and the number of events was equal to 1000, statistical power was 0.63 when 

using a parametric test. When the distribution of event times was Gompertz and the number 

of events was 1000, statistical power was 0.28when using a parametric test. In no scenarios 

was the empirical estimate of statistical power close to 0.80, which is often used as the 

minimally acceptable power when designing studies.

The effect of the magnitude of the time-covariate interaction (i.e. hrinteraction) on the 

statistical power of each of the two methods for assessing the validity of the proportional 

hazards is described in Figure 3 when the number of observed events was 1000 and the 

prevalence of the binary covariate was 0.25. As would be expected, for a given statistical 

method and distribution of event times, statistical power increased as the magnitude of the 

deviation from proportionality (hrinteraction) increased. As above, for a given distribution of 

event times, the model-based test of the proportional hazards assumption tended to have 

greater power than did the method based on sums of cumulative martingale residuals (when 

the interaction was weak and the distribution of event times was Gompertz, then the method 

based on sums of cumulative martingale residuals had slightly greater power; however, the 

power of both methods was very low in these settings). As above, there was greater 

statistical power to detect a violation of the proportional hazards assumption when event 

times followed an exponential distribution than when the distribution was Gompertz. When 

the distribution of event times was exponential, statistical power to detect non-

proportionality exceeded 80% only once the value of hrinteraction was 1.003, which, as 

illustrated above, is a very strong violation of the proportional hazards assumption (Figure 

1). When the distribution of event times was Gompertz, then neither method had statistical 

power that exceeded 80% even when there was a very strong violation of the proportional 

hazards assumption. When the magnitude of the violation of the proportional hazards 

assumption was weak to moderate, statistical power to detect this violation was low.

The effect of the magnitude of the prevalence of the binary covariate on the statistical power 

of each of the two methods for assessing the validity of the proportional hazards is described 

in Figure 4 when the number of observed events was 1000 and the value of hrinteraction was 

1.002 (which, as described above, is a strong violation of proportionality). Statistical power 

to detect violation of proportionality increased as the prevalence of the binary covariate 

increased from 0.05 to 0.50. As above, for a given parametric distribution of event times, the 

model-based test of the proportional hazards assumption had greater power than did the 

method based on sums of cumulative martingale residuals. Similar to above, there was 

greater statistical power to detect a violation of the proportional hazards assumption when 

event times followed an exponential distribution than when the distribution was Gompertz. 
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Even with a large number of observed events (N = 1000) and a strongly non-proportional 

effect (hrinteraction = 1.002), statistical power was still below 80% regardless of the 

prevalence of the binary covariate and the distribution of event times. Statistical power 

approached 80% when the prevalence of the binary covariate was 0.50 and the distribution 

of event times was exponential.

3.2.2. Results – continuous covariate with a time-varying effect—In this section 

we present the results for the simulations in which the variable that had a non-proportional 

effect was continuous. The effect of the number of events on statistical power is described in 

Figure 5. As one would expect, statistical power increased as the number of events 

increased. Apart from this unsurprising observation, some of the observations differed from 

the setting in which a binary covariate had a time-varying effect. First, statistical power 

tended to be modestly higher when the covariate was continuous compared to when the 

covariate was binary. When the number of events was large (≥900) then the statistical power 

to detect a non-proportional covariate effect exceeded 80% for some distributions of event 

times and some methods of testing non-proportionality. Second, for a given testing method 

(model-based or sums of cumulative of Martingale residuals), statistical power was not 

always higher when event times followed an exponential distribution compared to a 

Gompertz distribution. Indeed, the distribution that resulted in the greatest statistical power 

depended on the method used to test for non-proportionality. Third, when the distribution of 

events was exponential, the method based on the sums of cumulative of Martingale residuals 

resulted in greater statistical power than did the model-based method of testing (whereas the 

converse was true when the distribution of events was Gompertz).

The effect of the magnitude of the time-covariate interaction (i.e. hrinteraction) on the 

statistical power of each of the two methods for assessing the validity of the proportional 

hazards is described in Figure 6 when the number of observed events was 1000. As would be 

expected, statistical power increased as the magnitude of the deviation from proportionality 

(hrinteraction) increased. However, some differences were observed from the scenario with a 

binary covariate. First, when event times followed an exponential distribution, the use of the 

method based on the sums of cumulative of Martingale residuals had greater statistical 

power to detect non-proportionality compared to the model-based method. Second, for a 

given statistical method of assessing non-proportionality, statistical power was not 

consistently greater under the exponential distribution than under the Gompertz distribution. 

When the deviation from proportionality was weaker, greater statistical power was observed 

under the exponential distribution than under the Gompertz distribution. However, the 

reverse was true when the deviation from proportionality was stronger.

4. Discussion

The analysis of survival data is pervasive in modern biomedical and epidemiological 

research and the use of the Cox proportional hazards regression model is ubiquitous in 

modern biostatistical applications. One of the assumptions of the Cox proportional hazards 

models is that the effect of a given covariate on the hazard function is proportional over 

time. Applied biomedical investigators often assess the validity of this assumption in their 

analyses. While this assumption is often tested (either at the analyst’s initiative or at the 
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request of a reviewer after submission of a manuscript for peer-review), the statistical power 

of such assessments have not been well described. We used MonteCarlo simulations to 

assess the statistical power to detect violation of the proportional hazards assumption.

We found that even when the number of events that were observed was large (e.g. 1000) 

statistical power was low to modest to detect a strong violation of the proportional hazards 

assumption when the covariate in question was binary. Statistical power tended to be higher 

when the covariate was continuous. Statistical power was very low to moderate (<80%) to 

detect a weak to modest violation of the proportional hazards assumption. We suspect that in 

many clinical data sets, statistical power to detect violations of the proportional hazards 

assumption would be poor. However, in studies conducted using large electronic health care 

administrative databases, which typically have much larger sample sizes, statistical power to 

detect such a violation is likely substantially higher. However, when studying rare outcomes, 

even large electronic administrative databases may result in sub-optimal power to detect 

violation of the proportional hazards assumption. From our simulations it would appear that 

three conditions need to be met simultaneously in order for statistical power to exceed 80%: 

(i) a large number of events, (ii) a strong deviation from proportionality, and (iii) a binary 

covariate that has a prevalence close to 0.50. When the covariate is continuous then one 

requires both a large number of events and a strong deviation from proportionality.

We explicitly described data-generating processes for simulating data with a non-

proportional effect of a given covariate on the hazard of the outcome. We have provided R 

and SAS code for implementing these data-generating processes in the Appendices. This 

will allow analysts to estimate the statistical power in scenarios that are representative of 

their research setting. The simulations described in this paper can be customized to specific 

settings to permit an investigation of statistical power in diverse settings.

We compared the empirical estimates of statistical power of two different approaches to 

detect violation of the proportional hazards assumption. The first approach was model-based 

and was based on testing the statistical significance of the interaction between time and the 

regression coefficient for the variable of interest. The second approach was the method 

proposed by Lin et al. that used cumulative sums of martingale residuals over time [7]. 

When the covariate that a non-proportional effect was binary, we found that the model-based 

approach had higher statistical power to detect violation of the proportional hazards 

assumption. However, when the covariate that had a non-proportional effect was continuous, 

the statistical method for assessing non-proportionality that had the highest statistical power 

depended on the distribution of event times. When the covariate was binary the distribution 

of event times had a moderate impact on statistical power. Statistical power was moderately 

greater when event times followed an exponential distribution compared to when event times 

followed a Gompertz distribution. However, this was not the case when the covariate was 

continuous.

A Cox regression model with a time-invariant hazard ratio (i.e. a model in which the 

proportional hazards assumption is satisfied) provides a simple interpretation of the effect of 

the covariate: the relative effect of the covariate on the instantaneous hazard of the outcome 

is constant across time. Such an interpretation is relatively simple to communicate to non-
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statistical audiences. However, if this assumption is violated, then the relative effect of the 

covariate on the instantaneous hazard of the outcome varies over time. Authors can report 

time-specific hazard ratios (e.g. the hazard ratio at one year, two years, etc.) [8]. A relevant 

question is what are the consequences of ignoring a time-varying covariate effect and fitting 

a model with a time-invariant covariate effect. Beyersmann et al. suggest that fitting a model 

that assumes a time-invariant covariate effect produces a coefficient that can be interpreted 

as a time-averaged effect [9] (page 144). Thus, a model that ignores the time-varying effect 

of a covariate can be thought of as estimating the average instantaneous effect of the 

covariate over the duration of follow-up. In settings that are likely to have sub-optimal 

statistical power to detect violations of the proportional hazards assumption, the analyst may 

have to be satisfied with reporting time-averaged effects of the model covariates.

In summary, statistical power was modest to detect a strong violation of the proportional 

hazards assumption even when the number of observed events was large. Detecting a weak 

to moderate violation of the assumption would require a very large number of observed 

events. Many clinical data sets may have insufficient sample size to detect meaningful 

departures from the proportional hazards assumption.
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Appendix 1

A1.1. Exponential distribution of event times (covariate effect is a linear 

effect of time)

If event times follow an exponential distribution, the baseline hazard function is equal to 

λ0(t) = λ. Then the cumulative hazard function is equal to

The distribution function of the event times is equal to

Therefore,

Solving for t gives:

thus

thus

thus
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resulting in

If β1z = 0, then the effect of the covariate is time-invariant and methods based on those 

described by Bender et al. can be used to generate an event time.

A1.2. Weibull distribution of event times (covariate effect is a linear effect of 

time)

The baseline hazard function is equal to λ0(t) = λυtυ−1. Then the cumulative hazard 

function is

The cumulative hazard function involves a difference of a Gamma function and an 

Incomplete Gamma function. Then, the cumulative distribution of event times is

and

An event time can be generated by solving the above expression for t and evaluating the 

expression at u ~ U(0, 1). However, a closed-form expression for the inverse of the above 

expression cannot be obtained. As an alternative approach, one could use numerical methods 

to find an approximate inverse to the above expression for a given value of u.

A1.3. Gompertz distribution of event times (covariate effect is a linear effect 

of time)

The baseline hazard function is equal to λ0(t) = λeαt. Then the cumulative hazard function 

is
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Then the cumulative distribution of event times is

and

To invert this function, we have that

thus

so that

so that
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If α + β1z = 0 then the calculation of the cumulative hazard function must be modified as 

follows:

Then, we have that u = exp(−H(t|x, z)) = exp(−λeγxeβ0zt). To invert this expression, we have 

that log(u) = −λeγxeβ0zt and hence that

Appendix 2

A2.1. R and SAS code for simulating event time data with an exponential 

distribution when the log-hazard ratio of the binary variable changes linear 

with time

# The following software code is provided for illustrative purposes

only and comes with absolutely no warranty.

# Simulate data from a Cox-exponential model when the effect of

# treatment

# varies as a linear function of time.

N <- 10000

# Number of subjects in each simulated dataset.

# Parameter of the exponential distribution.

lambda <- 0.01

g1 <- log(1.5)

# Log-hazard ratio for the continuous covariate.

b0 <- log(1.1)

# Log-hazard ratio for the binary covariate at t = 0.

hr <- 1.005

b1 <- log(hr)

# Effect of time on the log-hazard ratio for the binary covariate.

prev <- 0.25

# Prevalence of the binary covariate.

set.seed(1)

# Set random number seed for reproducibility.

x <- rnorm(N)

z <- rbinom(N,size=1,prob=prev)

u <- runif(N,0,1)

event.time <- ifelse(b1*z= =0,

        −log(u)/(lambda*exp(g1*x)),
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     (1/b1*z) * log(1−b1*z*log(u)/(lambda*exp(g1*x + b0*z))))

simdata <- cbind(x,z,event.time)

write(t(simdata),ncol=3,file=”exp.dat”,append=T)

%macro dgp_exp(N=,lambda=,hr_cont=,b0=,b1=,prev=0,ranseed=);

*** N is the size of the simulated dataset;

*** lambda is the parameter for the exponential distribution of

       event times;

*** hr_cont is the hazard ratio for the continuous covariate;

*** b0 is the hazard ratio for the binary variable at time t = 0;

*** b1 is the relative change in the effect of binary covariate

       as a function;

**        of time;

*** prev is the prevalence of the binary covariate;

*** ranseed is a seed for random number generation to ensure ;

***       reproducibility of the results.;

data randata;

   call streaminit(&ranseed);

   do i = 1 to &N;

       /* Random uniform variable for generating event times */

       u = rand(“Uniform”);

       /* The binary covariate with a time-varying covariate effect */

       z = rand(“binomial”,&prev,1);

       /* The continuous covariate for which we are adjusting */

       x = rand(“normal”,0,1);

       /* Parameter for the exponential distribution */

       lambda = λ

       gamma = log(&hr_cont);

       /* A one-standard deviation increase in x increases the hazard

           of the outcome by this amount */

       b0 = log(&b0);

       b1 = log(&b1);

       if (b1*z=0) then

         event_time = −log(u)/(lambda*exp(gamma*x));

       else

         event_time = (1/b1*z) * log(1 − b1*z*log(u)/(lambda*

            exp(gamma*x + b0*z)));

       event = 1;

       output;

   end;

run;

%mend dgp_exp;

%dgp_exp(N=10000,lambda=0.01,hr_cont=1.5,b0=1.1,b1=1.005,

     ranseed=1,prev=0.25);

Austin Page 15

J Stat Comput Simul. Author manuscript; available in PMC 2018 January 08.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



A2.2. R code for simulating event time data with a Weibull distribution when 

the log-hazard ratio of the binary variable changes linear with time

# The following software code is provided for illustrative purposes

only and comes with absolutely no warranty.

# Simulate data from a Cox-Weibull model when the effect of

# treatment varies as a linear function of time.

# There is not a closed-form expression for the inverse of the

# survival function (S).

# Numerical methods are used to invert the survival function.

# We use Brent’s method for root finding to invert the function.

library(pracma)

# pracma package has a function for Brent’s method for finding

# roots and a function for the incomplete Gamma function.

N <- 10000

# Number of subjects in each simulated dataset.

# Parameters of the Weibull distribution.

lambda <- 0.001

nu <- 1

g1 <- log(1.5)

# Log-hazard ratio for the continuous covariate.

b0 <- log(1.1)

# Log-hazard ratio for the binary covariate at t=0.

hr <- 1.001

b1 <- log(hr)

# Effect of time on the log-hazard ratio for the binary covariate.

set.seed(1)

# Set random number seed for reproducibility.

simdata.matrix <- NULL

# Define the survival function

S2 <- function(t){

    exp(−lambda*nu*exp(g1*x + b0*z) * ((tˆnu) * (−b1*t*z)ˆ( − nu) *

        (gamma(nu) − gammainc(−b1*t*z,nu)[2]) ) ) − u

}

for (i in 1:N){ u <- runif(1,0,1)

   x <- rnorm(1)

   z <- rbinom(1,size=1,prob=0.25)

   if (z= =0){

     event.time <- (−log(u)/(lambda*exp(g1*x)))ˆ(1/nu)

   } else {

     brent.sol <- brent(S2,0.001,250000)

     event.time <- brent.sol$root

   }
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   simdata <- c(x,z,event.time)

   simdata.matrix <- rbind(simdata.matrix,simdata)

}

   write(t(simdata.matrix),ncol=3,file=”weibull.dat”,append=T)

A2.3. R and SAS code for simulating event time data with a Gompertz 

distribution when the log-hazard ratio of the binary variable changes linear 

with time

# The following software code is provided for illustrative purposes

only and comes with absolutely no warranty.

# Simulate data from a Cox-Gompertz model when the effect of

# treatment varies as a linear function of time.

N <- 10000

# Number of subjects in each simulated dataset.

# Parameters of the Gompertz distribution.

lambda <- 0.0001

alpha <- 0.025

g1 <- log(1.5)

# Log-hazard ratio for the continuous covariate.

b0 <- log(1.1)

# Log-hazard ratio for the binary covariate at t=0.

hr <- 1.005

b1 <- log(hr)

# Effect of time on the log-hazard ratio for the binary covariate.

prev <- 0.25

# Prevalence of the binary covariate.

set.seed(1)

# Set random number seed for reproducibility.

x <- rnorm(N)

z <- rbinom(N,size=1,prob=prev)

u <- runif(N,0,1)

event.time <- ifelse(alpha+b1*z= =0,

   −log(u)/(lambda*exp(g1*x + b0*z)),

    (1/(alpha + b1*z)) * log(1 − (alpha + b1*z)*log(u)

   /(lambda*exp(g1*x + b0*z))))

simdata <- cbind(x,z,event.time)

write(t(simdata),ncol=3,file=”gompertz.dat”,append=T)

%macro dgp_gompertz(N=,lambda=,alpha=,hr_cont=,b0=,b1=,

      prev=0,ranseed=);

*** N is the size of the simulated dataset;

*** lambda and alpha are the parameters of the Gompertz

       distribution;
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*** hr_cont is the hazard ratio for the continuous covariate;

*** b0 is the hazard ratio for the binary variable at time t = 0;

*** b1 is the relative change in the effect of binary covariate

       as a function;

**        of time;

*** prev is the prevalence of the binary covariate;

*** ranseed is a seed for random number generation to ensure;

***       reproducibility of the results.;

data randata;

    call streaminit(&ranseed);

do i = 1 to &N;

    /* Random uniform variable for generating event times */

    u = rand(“Uniform”);

    /* The binary covariate with a time-varying covariate effect */

    z = rand(“binomial”,&prev,1);

    /* The continuous covariate for which we are adjusting */

    x = rand(“normal”,0,1);

/* Parameters for the Gompertz distribution */

    lambda = λ

    alpha = α

    gamma = log(&hr_cont);

    b0 = log(&b0);

    b1 = log(&b1);

    if alpha + b1*z = 0 then

       event_time = −log(u)/(lambda * exp(gamma*x + b0*z));

    else

       event_time = (1/(alpha + b1*z)) * log(1 − (alpha + b1*z)

       *log(u)/(lambda*exp(gamma*x + b0*z)));

    event = 1;

    output;

    end;

run;

%mend dgp_gompertz;

%dgp_gompertz(N=10000,lambda=0.0001,alpha=0.025,hr_cont=1.5,

     b0=1.1,b1=1.005,prev=0.25,ranseed=1);
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Figure 1. 
Hazard ratio as a function of time.
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Figure 2. 
Effect of number of events on power to detect violation of the proportional hazards 

assumption (binary covariate).
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Figure 3. 
Effect of magnitude of interaction with time on power to detect violation of the proportional 

hazards assumption (binary covariate).
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Figure 4. 
Effect of prevalence on power to detect violation of the proportional hazards assumption 

(binary covariate).
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Figure 5. 
Effect of number of events on power to detect violation of the proportional hazards 

assumption (continuous covariate).

Austin Page 23

J Stat Comput Simul. Author manuscript; available in PMC 2018 January 08.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



Figure 6. 
Effect of magnitude of interaction with time on power to detect violation of the proportional 

hazards assumption (continuous covariate).
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Table 1

Characterization of the exponential, Weibull, and Gompertz distributions.

Characteristic Exponential distribution Weibull distribution Gompertz distribution

Parameter Scale parameter λ > 0 Scale parameter λ > 0
Shape parameter ν > 0

Scale parameter λ > 0
Shape parameter −∞ < α < ∞

Hazard function h0(t) = λ h0(t) = λνtν−1 h0(t) = λ exp(αt)

Cumulative hazard function H0(t) = λt H0(t) = λtν

Inverse cumulative hazard function

Simulating survival times with time-
invariant covariates and time-invariant 
covariate effects (u ~ U(0, 1))
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