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Abstract: Neuroinflammation, which is mediated by microglia and astrocytes, is associated with the
progression of neurodegenerative diseases. Increasing evidence shows that activated microglia induce
the expression and secretion of various lysosomal cathepsins, particularly during the early stage of
neuroinflammation. This trigger signaling cascade that aggravate neurodegeneration. To date, most
research on neuroinflammation has focused on the role of cysteine cathepsins, the largest cathepsin
family. Cysteine cathepsins are primarily responsible for protein degradation in lysosomes; however,
they also play a role in regulating a number of other important physiological and pathological
processes. This review focuses on the functional roles of cysteine cathepsins in the central nervous
system during neuroinflammation, with an emphasis on their roles in the polarization of microglia
and neuroinflammation signaling, which in turn causes neuronal death and thus neurodegeneration.
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1. Introduction

Neuroinflammation is a common mechanism that plays a crucial role in the pathogen-
esis of various neurodegenerative diseases [1,2]. Primarily, it is a defense mechanism that
protects the brain from diverse pathogens [3]. However, it may trigger both beneficial and
detrimental effects on neurons [2,4,5]. Much evidence points to the neuroinflammatory
effects of glia cells, supporting cells for neurons in the central nervous system (CNS) [6,7].
Studies have indicated that neuroinflammation is actually beneficial in certain circum-
stances, secreting neurotrophic factors that prevent neural injury, stimulate myelin repair,
and remove toxic aggregated proteins and cell debris from the CNS [8–11]. Persistent in-
flammatory responses, however, are detrimental and involve glia activation, subsequently
leading to neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s disease
(AD), and amyotrophic lateral sclerosis [2,12–14].

Glia cells, consisting of microglia, astrocytes, and oligodendrocyte lineage cells, are su-
perior to neurons in cellular diversity and function and are considered neuron-supporting
cells [15]. In the CNS, microglia represent resident innate immune cells, and their con-
tribution to inflammatory signaling pathways between neurons, astrocytes, and other
components of brain tissue largely sets the magnitude of the immune response [16,17].
Microglia in the brain are highly plastic and can adopt distinct phenotypes (Figure 1),
including the classically (M1) and alternatively (M2) activated states in response to vari-
ous stimuli [18]. During inflammation, polarized M2 microglia secrete anti-inflammatory
mediators and neurotrophic factors that are involved in restoring homeostasis, whereas
polarized M1 microglia produce pro-inflammatory cytokines, neurotoxic molecules that
contribute to neural network dysfunction and promote inflammatory reactions [19]. Charac-
terizing and understanding the mechanism of action of endogenous biomolecules involved
in detrimental neuroinflammation may be critical for the development of novel therapeutic
strategies for treating neurodegenerative diseases that involve neuroinflammation.
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matory) following stimulation of lipopolysaccharide (LPS) or interferon (IFN)-γ, whereas microglia polarize M2-like state
(alternative, anti-inflammatory, protective) by protective cytokines such as interleukin (IL)-4 or IL-13. The M1-like responses
are shown by the upregulation of pro-inflammatory cytokines such as interleukin IL-1β, IL-6, tumor necrosis factor (TNF)-α,
cluster of differentiation (CD)16/32, CD86, CD40, inducible nitric oxide synthase (iNOS), and cysteine cathepsins. The
M2-like responses are shown by the upregulation of markers such as arginase-1, L-proline and anti-inflammatory cytokines,
IL-4, IL-10 and transforming growth factor (TGF)-β, and neurotrophic factors.

Peptidases have been identified as important players in chronic innate neuroinflam-
mation mediated by microglia and astrocytes ultimately associated with the progressive
nature of neurodegenerative disorders [20,21]. Peptidases catalyze the hydrolysis of pep-
tide bonds, linking amino acid residues in the polypeptide chain. They belong to seven
main groups according to the characteristics of their catalytic site: serine, cysteine, thre-
onine, aspartyl, glutamic, asparagine and matrix metallopeptidases [22]. Proteolysis is
stringently regulated in biological systems by various mechanisms, including: regulation
of their expression at transcriptional and translational levels; specificity of the catalytic
cleft; synthesis of peptidases as inactive zymogens; their compartmentalization away from
their substrates and their release only after a specific signal; activation by co-factors; and, fi-
nally, by irreversible or reversible suppression of proteolytic activity by protease inhibitors
which prevents access of the substrate to the catalytic cleft [23]. Any dysregulation in
the peptidase expression and/or their proteolytic activity disrupts cellular homeostasis,
leading to pathological conditions [24]. Namely, matrix metallopeptidases receive great
attention as mediators of neuroinflammation. They are widely distributed in the brain
and regulate various processes including microglial activation and tissue degradation
through processing of pro-inflammatory cytokines [21,24,25]. On the other hand, certain
aspartic and cysteine peptidases have been shown to play important roles in the major
histocompatibility complex class II-mediated antigen presentation of microglia, or in clear-
ance of phagocytosed amyloid-beta peptides [21]. Additionally, increasing evidence shows
that activated microglia express and secrete lysosomal cathepsins, particularly during
the early stage of neuroinflammation, which triggers signaling cascades that aggravate
neurodegeneration [26–29]. Therefore, this review highlights new insights into the roles of
lysosomal peptidases, particularly cysteine cathepsins during neuroinflammation.

2. Lysosomal Peptidases

Lysosomal peptidases represent lysosomal hydrolytic enzymes that catalyze the break-
down of proteins [30,31]. They are predominantly located within endosomes/lysosomes
but can also be found in the nucleus, cytosol, cell membrane, or extracellularly [31,32].
According to the site of peptide bond hydrolysis, they can be divided into endo- and
exo-peptidases. Most of them preferably function as endopeptidases, by cleaving peptide
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bonds within a polypeptide chain, whereas only a few peptidases function as exopepti-
dases. The latter can cleave polypeptide protein chains at the N-terminal (aminopeptidases)
or C-terminal end (carboxypeptidases) [30,33]. Depending on the catalytic group in the
active site, they belong to the aspartic, serine, or cysteine peptidase families of hydrolytic
enzymes [22].

The name cathepsin derives from the Greek verb katahepsein (“to digest”) and was
first proposed for peptidases active in slightly acidic environments but was later used
for all aspartic, serine, and cysteine cathepsins [31,34]. Because of their proteolytic activ-
ity, cathepsins are integral in many biological processes, such as the immune response,
cell cycle, apoptosis, antigen presentation, phagocytosis, prohormone activation, and
metabolism [31,33,35]. Peptidase expression and activity are regulated to avoid any disrup-
tion of cellular homeostasis. Since peptidases catalyze the irreversible cleavage of peptide
bonds, any dysregulation in their expression, localization, or proteolytic activity can result
in pathological processes. Therefore, peptidase signaling pathways are strictly controlled
by several mechanisms: through the regulation of gene expression; post-translational
modifications; zymogen activation; accessibility of the susceptible peptide bond in the
substrate; and, ultimately, their endogenous inhibitors [36].

2.1. Cysteine Peptidases

The most extensive group of peptidases are cysteine peptidases, which includes
11 cathepsins (cathepsins B, C, F, H, K, L, O, S, V, X, and W) [22]. They belong to the
cysteine peptidase clan CA and are widely distributed among living organisms [22,31].
Most cysteine cathepsins (F, K, L, O, S, and V) are predominantly endopeptidases, whereas
cathepsins C and X are exclusively exopeptidases (Figure 2). Cathepsin C has aminopepti-
dase activity, and cathepsin X has carboxypeptidase activity. Furthermore, cathepsins B and
H exhibit both endo- and exo-peptidase activity. Apart from their endopeptidase activity,
cathepsins B and H also act as carboxypeptidases and aminopeptidases, respectively [37].

The expression of cysteine cathepsins depends on tissue distribution and their bi-
ological function. Most cathepsins are ubiquitously expressed in human tissues, while
others have more specific distributions. For example, cathepsin K is mainly expressed
in osteoclasts, osteoblasts, and epithelial cells and is involved in bone resorption [38].
Cathepsin S is restricted to antigen-presenting cells derived from bone marrow and plays
a role in the major histocompatibility complex class II antigen-presenting pathway [39].
Cathepsin W is expressed exclusively in CD8 T-lymphocytes and natural killer cells [40].
Cathepsin V is found in the thymus, testis, and cornea [41]. Cathepsin X is expressed in
immune cells such as macrophages, dendritic cells, microglia, B lymphocytes, and natural
killer cells [42,43].

Cathepsins are synthesized as inactive preproenzymes. Cleavage of the signaling
protein and N-glycosylation of the remaining pro-cathepsin occurs during the passage
to the endoplasmic reticulum. Glycosylated pro-cathepsin then enters lysosomes via the
mannose-6-phosphate receptor pathway, where it is converted to the active form by the
acidic conditions, autocatalytically, or by other peptidases [44]. Optimal cathepsin function
and stability occurs at a slightly acidic pH within lysosomes, whereas cathepsin function is
lost at neutral pH in the cytosol and extracellular environment. An exception is cathepsin
S [45], which is stable at a neutral or slightly alkaline pH [31]. Furthermore, the proteolytic
activity of cathepsins can be increased or decreased due to pathological abnormalities.
Reduced activity most often originates from genetic defects, excessive inhibitory activity,
or limited activation. By contrast, enhanced proteolysis is, in addition to genetic causes, a
consequence of the endogenous and/or exogenous action of various factors that trigger
signaling pathways and result in unwanted peptidase activation. Increased proteolytic
activity has been detected in bacterial, viral, parasitic, cardiovascular, inflammatory, and
neurodegenerative diseases as well as in cancer [33]. Increasing evidence suggests that
disturbance of the normal balance of enzymatic activities is the first insult in brain aging
and age-related diseases [21].
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2.2. Cysteine Cathepsins in the CNS

Although all cathepsins are targeted to endosomes/lysosomes, they are not equally
distributed among different tissues [46,47]. Variations in cathepsin concentration and
distribution in the CNS have been reported in normal aged brains [48]. Some cathepsins,
e.g., cathepsins B, H, L, C, and O, are ubiquitously present in various tissues and cells
(including the brain), whereas other cathepsins, e.g., cathepsins F, K, S, V, X, and W,
show more limited cell and tissue distribution and expression. However, all of them,
except cathepsin W, were found to be involved in CNS biology and pathology [46,47].
Increasing evidence indicates that cathepsins, including cathepsins B, L, H, C, S, and X,
play important roles in CNS diseases. During neurodegeneration, cathepsins contribute
to neuronal injury induced by excitotoxins, through degradation of axonal and myelin
proteins, by converting protein precursor into active peptide neurotransmitters and by
amplifying apoptotic signaling [49,50]. Furthermore, a central role in the neuronal cell death
mechanism has been proposed for cathepsins [37,51]. Cysteine cathepsins were identified
as hallmarks of aging and neurodegeneration with a role in oxidative stress, mitochondrial
dysfunction, abnormal intercellular communication and dysregulated trafficking, and
deposition of protein aggregates in neuronal cells. However, again, their deficiency may
result in other pathological states such as lysosomal storage disease [47]. Therefore, their
role is CNS is discussed in more detail.
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Of all the cathepsins, cathepsin B is the most studied cathepsin expressed in the
CNS. It is found in different brain regions, preferentially in neocortical and hippocampal
neurons [52,53]. Its proteolytic activity seems to be important in neuronal development [54]
and cell proliferation [55]. It engages in digesting proteins, chromatin, lipids, and carbohy-
drates and physiological protein turnover in neurons [21,48]. Increased cathepsin B levels
were found to be responsible for the activation of nuclear factor-κB (NF-κB) [56] and the
degradation of mitochondrial transcription factor A in aged microglia [57]. Cathepsin B
is also involved in inducing apoptosis by activating pro-caspases-1 [58] and -11 [59] and
cleaving the Bcl-2 family member Bid [60]. It plays an important role in the proteolytic cas-
cade of the breakdown of connective tissue within the extracellular matrix (ECM) [61–63]
and in the shedding of integrins [64]. In chromaffin cells, cathepsin B is associated with the
production of neurotoxic amyloid β (Aβ) peptides [65–67].

Cathepsin L is abundantly distributed throughout different brain areas and is prefer-
entially expressed in neurons [68], astrocytes, and microglia [69]. In the CNS, it mediates
cell–cell communication as it participates in the biosynthesis of peptide neurotransmit-
ters [70]. It cleaves pro-neuropeptide Y and is consequently involved in the production of
mature pro-neuropeptide Y in cortical neurons and neuronal chromaffin cells [68]. It is also
involved in the production of other neurotransmitters, including enkephalin, dynorphin,
and cholecystokinin [70]. Extracellular cathepsin L plays an important role in tissue remod-
eling in vitro, as it stimulates axonal growth in cortical and spinal cord neurons [71] and is
also involved in cleaving ECM proteins [62].

A novel role for cathepsin H in pro-neuropeptide processing has been demonstrated.
Cathepsin H has been associated with neuropeptide-producing secretory vesicles due to its
cleavage of N-terminal basic residues of (Met)enkephalin [72]. Conversely, cathepsin H can
also act as an endopeptidase, metabolizing neuropeptides and bradykinin [73]. In human
tissues, it is mainly found in secretions and extracellular fluids, with high concentrations
in cerebral spinal fluid [74]. It is distributed in all regions of the brain and is mainly
produced by astrocytes [75]. Apart from its involvement in the metabolism, production,
and inactivation of neuropeptides [73], a recent study demonstrated its involvement in Toll-
like receptor 3 (TLR3)/interferon β (IFN-β) signaling. Cathepsin H deficiency decreases
hypoxia–ischemia-induced hippocampal atrophy in neonatal mice by affecting TLR3/IFN-
β signaling [76].

Cathepsin C is expressed in a variety of mammalian tissues, with the highest levels
in lungs, kidneys, liver, and spleen, but relatively low levels in the brain. The distribution
of cathepsin C in normal brain is restricted to the neurons of the limbic system and
several nuclei of the brainstem. Its granular immunohistochemical signals were found
in neuronal perikarya of particular brain regions, such as the accessory olfactory bulb,
septum, CA2 of the hippocampus, part of the cerebral cortex, medial geniculate, and
inferior colliculus [77,78]. Cathepsin C is predominantly induced in activated microglia
following systemic injection of lipopolysaccharide (LPS) or stimulation with factors such
as interleukin 1β (IL-1β) and interleukin 6 (IL-6) [78]. Cathepsin C can regulate normal
neuronal functions, e.g., by inducing glia-derived chemokine ligand 2 production, which
attracts inflammatory cells to sites of myelin sheath damage in a cuprizone model [79].

Cathepsin S is unique within the cysteine cathepsin family due to its ability to retain
activity at a neutral pH, which increases its potential involvement in extracellular prote-
olytic processes [80,81]. It is expressed in all regions of the brain, preferentially localizes in
microglia cells, and is an important player in microglia-neuron communication [82]. Cathep-
sin S is released by microglia and macrophages following stimulation with inflammatory
cytokines and pro-inflammatory LPS [21,48,82,83]. Because of its extracellular activity,
it can degrade several ECM components and support microglial migration to inflamma-
tion sites in the CNS [84,85]. For instance, it cleaves several ECM molecules, including
fibronectin, laminin, neurocan, and phosphacan [86]. Cathepsin S-induced microglial
migration also protects facial motoneurons against axotomy-induced injury [87]. Further-
more, cathepsin S activity is critical for invariant chain degradation in antigen-presenting
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cells [88], including dendritic cells and microglia, and therefore plays an important role in
antigen presentation [87].

Another cathepsin that has been studied for its role in inflammation-associated neu-
rodegenerative diseases is cathepsin X. Cathepsin X is an important cysteine peptidase
in degenerative processes during normal aging and in neurodegenerative diseases. It is
primarily expressed in cells of the immune system, such as monocytes, macrophages, and
dendritic cells, but also widely expressed in brain cells, which implies its involvement in
neuroinflammatory processes. In the brain, it is localized in microglia, astrocytes, aged
neurons, and even oligodendrocytes [43,46,89]. With its proteolytic activity in neuronal
cells, cathepsin X cleaves C-terminal amino acids of γ-enolase and consequently abolishes
its neurotrophic activity [42,90]. Additionally, cathepsin X inhibition increases plasmin gen-
eration, which is essential for neuronal differentiation and changes the length distribution
of neurites, especially in the early phase of neurite outgrowth. Moreover, cathepsin X inhi-
bition increases neuronal survival and reduces apoptosis induced by serum deprivation,
particularly in the absence of nerve growth factor [90].

Apart from all of the mentioned roles of cathepsins in CNS, cathepsin K expression
was also observed in multiple neurons as well as in astrocytes and white matter oligoden-
drocytes [91]. Several studies have described the presence of cathepsin K in the CNS of rats
and post-mortem human brain tissue [91,92]. It is capable of cleaving neuroactive peptides
(i.e., bradykinin and other kinins) and plays a role in processing β-endorphin to release
met-enkephalin [91]. Furthermore, it was suggested that cathepsin K deficiency in mice has
a multiple-level impact on brain development and metabolism. In the brain of cathepsin
K-deficient animals, the analysis of neuronal markers demonstrated that the architecture of
the neuronal layers was affected by cathepsin K deficiency in the hippocampus, a region
important in regulation of anxiety and memory. The study also confirmed a clear impact of
cathepsin K deficiency on learning and memory [93]. Cathepsin K activity is enhanced also
in schizophrenia [91].

3. Processes Triggered by Microglial Cathepsins in the Brain

Inflammatory processes in the CNS are directly involved in neuronal death and there-
fore in the development of neurodegenerative diseases such as Alzheimer’s and Parkinson’s
disease. Microglia are the resident innate immune cells in the brain and actively contribute
to neuronal damage in neurodegenerative diseases [6]. Various stimuli can activate mi-
croglia, including endogenous pro-inflammatory mediators, such as tumor necrosis factor
α (TNF-α), IL-1β, interferon γ (IFN-γ), Aβ peptide, and exogenous pathogenic bacteria
or viruses [84,94]. Chronic microglia activation causes neuronal damage by excessive
release of potentially toxic molecules, e.g., pro-inflammatory cytokines (TNF-α and IL-
1β), nitric oxide, and reactive oxygen species [95,96], and by inducing the synthesis and
secretion of lysosomal cathepsins [21,84]. Pro-inflammatory mediators released by acti-
vated microglia cells rapidly trigger further activation of surrounding microglia cells and
astrocytes [84]. Additionally, dying neurons release factors that maintain further microglia
activation. This creates a cyclical relationship between microglia activation and neuronal
death, contributing to neurodegeneration [84].

3.1. Cysteine Cathepsins Convert Protein Precursors into Toxic Peptides

One of the major proteins responsible for the formation of amyloid plaques and toxic
fragments in AD is neurotoxic Aβ, a polypeptide formed by the proteolytic cleavage of
amyloid precursor protein (APP) [65] in secretory vesicles of neuronal chromaffin cells [97].
Furthermore, β- and γ-secretases are largely responsible for the proteolytic cleavage of APP
into Aβ, and cathepsins B, L, and S exhibit β-secretase activity [98]. Among them, cathepsin
B is the most common β-secretase for the production of neurotoxic Aβ peptide [67,99,100].
Immunoelectron microscopy revealed colocalization of cathepsin B and Aβ in secretory
vesicles [97]. Furthermore, selective cathepsin B inhibitor CA074 and its cell-permeant
analog CA074Me prevent Aβ production from endogenous APP in isolated secretory
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vesicles, resulting in reduced Aβ release from neuronal cells. CA074Me also reduces the
production of APP-derived COOH-terminal-β-secretase-like cleavage product, suggesting
that cathepsin B acts as a β-secretase in secretory vesicles of neuronal chromaffin cells [97].
Another study, using a transgenic mouse model containing the wild-type β-secretase site
sequence of APP that is present in most AD patients, showed that cathepsin B gene deletion
improves memory deficits and reduces brain amyloid plaque load [66]. Deletion of the
cathepsin B gene also reduces amyloid plaque load and decreases Aß1-40 and Aß1-42 [66,101].
Aβ1-40 and Aβ1-42 are two of several forms of Aβ that have the same N-terminal but differ
in their C-terminal residues [101]. Cathepsin B preferably cleaves wild-type β-secretase
substrate, but not Swedish mutant substrate, which explains why E-64d-induced cathepsin
B inhibition had no effect in AD mice expressing the Swedish mutant β-secretase site of
APP [100].

In addition to the pathogenic role of cathepsin B in aging and age-related neurode-
generation, cathepsin B seems to degrade Aβ via C-terminal truncation, thus leaving its
involvement in Aβ metabolism unclear [102,103]. It has been demonstrated that cathepsin
B actually reduces Aβ peptide levels, especially the aggregation-prone species Aβ1-42 [103].
Furthermore, a study on cultured astrocytes showed different effects of cathepsin B on
Aβ regulation that might depend on the cellular localization of active cathepsin B. Non-
lysosomal cathepsin B mediates Aβ production in astrocytes, while Aβ degradation seems
to depend on lysosomal cathepsin B and the production of Aβ peptides [104]. This em-
phasizes the need to consider organelle targeting in drug development that promotes Aβ

degradation and clearance [104].
Besides cathepsin B, also cathepsins L and S have been identified to cleave the wild-

type β-secretase site [98]. Cathepsin L levels in the brain are similar to that of cathepsin B.
High levels of cathepsins L were found in neurons and amyloid plaques in the brain of
AD patients [105]. It has been demonstrated that human cathepsin L cleaves the human
wild type β-secretase site sequence 74-fold better than β-site APP cleaving enzyme 1. On
the other hand, human cathepsin S cleaves the human wild type β-secretase site sequence
1170-fold better than β-site APP cleaving enzyme 1 [98]. Cathepsin S expression in a normal
brain is very low but is induced in the brains of AD patients. Cathepsin S may be relevant
to the pathogenesis of AD, since transfecting human kidney cells with cathepsin S increases
the secretion of modified Aβ into the culture medium. Furthermore, Aβ secretion was
blocked with the cysteine peptidase inhibitor E-64d [106]. Cathepsin S also takes part in the
clearance of Aβ peptides in vivo, both intracellularly or extracellularly, since it is able to
degrade monomeric and dimeric Aβ peptides at both acidic and neutral pH [83]. Therefore,
it modulates peptide levels at the very initial stages of peptide aggregation, which in turn
might have an effect on Aβ neurotoxicity [107].

3.2. Cysteine Cathepsins Play an Important Role in Neural Tissue Remodeling

The localization of cathepsins is not restricted to only intracellular compartments but
can also be found in the extracellular space, indicating their broad spectrum of biological ac-
tivities [63,108,109]. Several mechanisms participate in lysosomal permeabilization, which
results in the release of lysosomal enzymes into the cytosol. The amount of potentially haz-
ardous proteolytic enzymes, mainly cathepsins, in the cytosol may overcome the protective
inhibitory effect of endogenous protein inhibitors [44,108]. The extracellular localization
of cysteine cathepsins is often associated with their increased expression that results in
pathological conditions [21,48,108]. Cysteine cathepsins are the major cysteine proteases
involved in ECM reorganization and the nonspecific degradation of ECM proteins [44,110].

Upon stimulation with inflammatory mediators, cathepsin S can be released from
activated microglia [21,48,86]. Among all the cathepsins, cathepsin S is the most suited for
such extracellular processes, as it retains most of its proteolytic activity at neutral pH [86].
This feature enables cathepsin S to degrade proteins outside of the lysosomal compartment,
including ECM components, and to support microglial migration in the CNS [86]. Cathep-
sin S cleaves many components of the ECM, e.g., fibronectin, laminin, neurocan, fosfacan,
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and heparan sulfate proteoglycans [86]. In AD brains, heparan sulfate proteoglycans are
components of the senile plaques that can protect the potentially neurotoxic Aβ peptide
from proteolysis. Moreover, the proteoglycan protein moiety is critical for amyloid fibril
formation and persistence. It is therefore possible that cathepsin S plays a modulatory role
in the formation and persistence of amyloid fibrils in senile plaques [86]. Furthermore,
cathepsins B and L play a role in cleaving the heparan sulfate proteoglycan perlecan. The
latter is a key component of the ECM and is involved in generating a C-terminal LG3
fragment with neuroprotective roles. Thus, perlecan could represent one of the defense
mechanisms against ischemic injury [110].

Cathepsins also contribute to damaging neurons and oligodendrocytes by their prote-
olytic action on axons and myelin proteins [50,111]. It was demonstrated that the balance
between cathepsins and their inhibitor cystatin C changes during the course of demyelina-
tion, possibly leading to cytotoxic effects on neurons (axons) and oligodendrocytes [111].
Conversely, extracellular cathepsin L has an important role in tissue remodeling in vitro,
as it stimulates axonal growth in cortical and spinal cord neurons [71].

3.3. Cysteine Cathepsins Induce Neuronal Death

Neuronal death is normal during nervous system development but can become
devastating if not regulated, e.g., neuronal degeneration in chronic neurodegenerative
diseases. It can be divided into necrosis and apoptosis and is regulated by several proteins
and signal-transduction pathways. Players in the cell death and cell survival orchestra
include: Fas receptor; Bcl-2 and Bax cytochrome c; caspases; p53; and extracellular signal-
regulated protein kinases [112]. Lysosomes and lysosomal peptidases, including cathepsins,
have often been linked with cell death. It is now clear that cysteine peptidases from the
caspase family play a major role in neuronal apoptosis and that their activation is a critical
step in apoptosis [113].

As already discussed, cathepsins are either localized intracellularly (within lysosomes)
or extracellularly [48] and are differentially expressed in microglia in response to pro-
inflammatory stimuli [83,94]. Factors released by microglia can kill neurons directly by
promoting neuronal self-destruction or indirectly by promoting non-neuronal cells to
produce other factors that induce neuronal death [94]. Lysosomal peptidases have been
suggested to interfere with the apoptotic cascade in microglia by cleaving and activating
caspases [114]. Secreted cathepsin B is a major causative factor of microglia-induced neu-
ronal apoptosis. It cleaves pro-caspases-1 and -11, which are, however, only indirectly
implicated in the apoptotic process [114]. Cathepsin B affects the production of the mature
cytokine IL-1β by proteolytically activating pro-caspase-1. IL-1β is then rapidly secreted
from microglia by exocytosis [58] and involved in the release of reactive nitrogen and
oxygen species from microglia and in the mediation of microglial activation and prolifer-
ation. Therefore, IL-1β production may enhance microglial inflammatory responses and
cause neuronal apoptosis [115]. Furthermore, cathepsin B is also involved in activating pro-
caspase-11. Active caspase-11 is important for pro-caspase-1 activation and thus pro-IL-1β
maturation [59].

Cathepsins are also involved in caspase activation and thus neuronal degradation by
cleaving Bid protein. The cysteine peptidases B, H, K, L, and S are involved in cleaving
pro-apoptotic Bid protein, a member of the Bcl-2 family, leading to the mitochondrial
release of cytochrome c that causes apoptotic caspase activation [47,116]. Bid cleavage
results in the formation of truncated (t)BID that, after lysosomal leakage, activates Bax and
Bak proteins by promoting their oligomerization to form pores in the outer mitochondrial
membrane. Cytochrome c exits mitochondria through these pores and, once in the cytosol,
activates caspase-9 and thus promotes the executioner caspases-3 and -7 [117]. The main
roles of these cathepsins in microglial functions are illustrated in Figure 3.
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Figure 3. The involvement of microglial cathepsins in inflammation-induced neurodegeneration.
Cysteine cathepsins can be released from activated microglia following various toxic insults, and
their activity through various pathways may be lethal to neurons. Extracellular cathepsins B, L, and
X promote inflammation through the nuclear factor-kappa B (NF-κB) pathway. Cathepsin B also
promotes inflammation by participating in the maturation of interleukin-1β (IL-1β) and cleavage
of pro-apoptotic Bid protein, which leads to the release of cytochrome c. Cathepsin X also cleaves
the C-terminal end of γ-enolase, abolishing its neurotrophic activity, and releases pro-inflammatory
cytokines. Cathepsin C induces chemokine production. Extracellular cathepsin S assists microglial
migration by degrading extracellular matrix (ECM) components. The relationship between microglia
activation and neuronal death is cyclical.

Cathepsin H is involved in lysosomal protein degradation [118,119]. The neuropatho-
logical role of cathepsin H was investigated in an LPS-induced neuroinflammation cell
model [120]. It was demonstrated that the percentages of apoptosis and necrosis in cathep-
sin H-treated cells were significantly higher than those of control cells. This indicates that
cathepsin H could have a neurotoxic influence on neurons resulting in neuronal death;
however, the exact mechanism remains to be determined. It is suggested that secreted
cathepsin H may function as a ligand, directly binding to yet unidentified specific receptors
on the surfaces of neurons, triggering intracellular death-related signaling pathways [120].

Additionally, cathepsin X promotes the apoptosis of neuron-like cells induced by 6-
hydroxydopamine by activating the caspase cascade [121]. Substantially increased cathep-
sin X secretion from microglia has been observed in response to inflammatory stimuli,
leading to microglia activation-mediated apoptosis and cell death of neuron-like cells [42].
Overall, these findings indicate that cysteine cathepsins play an important role in neu-
roinflammation, as microglia activation and excessive cathepsin release lead to neuronal
cell death.
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4. Cysteine Cathepsin as a Key Player in Neuroinflammation

Accumulating evidence suggests that neuroinflammation mediated by microglia
and astrocytes is involved in the progressive nature of neurodegenerative disorders [13].
Neuroinflammation can be divided into acute and chronic phases [122]. Inflammatory
stimuli activate glia cells, which release inflammatory cytokines and phagocytose debris
and dead cells to initiate tissue repair and, thus, resolve inflammation. However, the
persistence of the initiating factors, such as injury, infection, exposure to a toxin, or a
failure of mechanisms required for resolving the inflammatory response, result in a self-
propagating and persistent stage of chronic inflammation. The latter leads to neuronal
toxicity, accompanied by oxidative stress [123,124], mitochondrial dysfunction [125], and
activation of the apoptotic cascade [126,127]. This finally leads to aggressive neuronal
loss and neurodegeneration [128–131]. In addition to inflammatory molecules, activated
microglia also secrete lysosomal peptidases, which support various microglial immune
functions and key inflammatory pathways [21,84,132]. These lysosomal peptidases also
include cysteine cathepsins [27,29,83,86,133].

4.1. Microglial Cathepsins in Neuroinflammation-Induced Neurodegeneration

Overactivation of microglia and excessive amounts of released pro-inflammatory
cytokines by microglia might result in neurotoxic consequences in neurodegenerative
diseases. Increasing evidence indicates that microglial activation is an early and ongoing
event in several neurodegenerative diseases [21]. Several studies using in vivo models of
neurodegeneration demonstrated marked increases in the expressions of cathepsins B [134],
L [135], H [120], C [78], and X [136] in different brain regions following LPS-induced
neuroinflammation. Among them, microglial cathepsin B has been extensively studied.
Cytoplasmic cathepsin B acts as a pro-inflammatory factor as it enhances the activation
of caspase-1 and consequently the production and secretion of IL-1β [58] through pyrin
domain-containing protein 3 inflammasome-independent processing of pro-caspase-3 in
phagolysosomes [137]. Cathepsin B leakage from the endosomal/lysosomal system during
aging is associated with the proteolytic degradation of mitochondrial transcription factor A,
which can stabilize mitochondrial DNA. Therefore, microglial cathepsin B may function as
a major driver of inflammatory brain diseases and brain aging (reviewed in [132]). Indeed,
secreted cathepsin B has been shown to be a major causative factor of microglia-induced
neuronal apoptosis [27]. During LPS-induced inflammation, cathepsin B is also translocated
from lysosomes to other subcellular compartments in hippocampal neurons [138].

Similarly, the expression of microglia-secreted cathepsin C is enhanced during CNS
inflammation. Cathepsin C expression in the brain is predominantly induced in activated
microglia [78], and microglial cathepsin C plays a role in promoting chemokine production
during brain inflammation [79]. Similarly, the expression of microglia-secreted cathepsin S
is also enhanced during CNS inflammation and aging in mice [82].

Altered cathepsin S expression is controlled by a built-in molecular clock in cortical
microglia, and the circadian expression of cathepsin S is involved in diurnal variations
of neuronal synaptic strength via proteolytic modification. Cathepsin S has also been
associated with some sleeping disorders, as its genetic ablation causes reduced synaptic
strength during sleep by inducing hyperlocomotor activity, which is required to obtain
novel information after waking [139].

Cathepsin L is also reported to play important roles in neuroinflammation-induced
neurodegeneration. Cathepsin L is widely distributed throughout the CNS and is involved
in the activation of microglia, an important source of cathepsin L [140]. Cathepsin L is upreg-
ulated in the substantia nigra pars compacta (SNc) of patients with Parkinson’s disease [141].
Substantially increased cathepsin L secretion from microglia has also been observed in
response to LPS, supporting its role in contributing to inflammatory responses [142].

Cathepsin H importantly contributes to peripheral inflammatory pathologies [120].
It has been implied that cathepsin H provokes acute inflammation characterized by the
accumulation of polymorphonuclear leukocytes when it is injected intracutaneously into
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newborn rats [143]. Cathepsin H immunoreactivity in the hippocampus is increased in an
animal model of cerebral ischemia, and cathepsin H activity increases in affected brain areas
in Huntington’s disease [118]. A recent in vivo study showed a prominent upregulation
of cathepsin H expression in brain microglia after LPS injection, supported by an in vitro
study confirming a potential role of cathepsin H in the neuroinflammatory pathogenesis of
neurological diseases [120].

Another cysteine cathepsin with an inflammatory role in the CNS is cathepsin X [89].
The expression and proteolytic activity of cathepsin X were strongly upregulated in the
degenerating brain regions in a transgenic mouse, especially in glial cells and aged neu-
rons [89,144]. Cathepsin X is disproportionately expressed and secreted by activated
microglia and astrocytes in response to neuronal damage and inflammatory stimuli, both
in vitro and in vivo [29,42,145,146]. In vitro, substantially increased cathepsin X secretion
from microglia has been observed in response to the inflammatory stimulus induced by
LPS, leading to microglia activation-mediated neurodegeneration [29,42]. In vivo, unilat-
eral LPS injection into the striatum increased cathepsin X expression and activity in the
striatum and surrounding areas on the ipsilateral side. In addition to the striatum, cathep-
sin X overexpression was detected in other brain areas such as the cerebral cortex, corpus
callosum, subventricular zone, and external globus pallidus, and prominent upregulation
was mainly restricted to activated microglia and reactive astrocytes (Figure 4). Moreover,
the administration of a cathepsin X inhibitor along with LPS injection revealed its potential
protective role in neuroinflammation-induced striatal lesions [136]. Additionally, dendritic
cells in aging mouse brains had increased cathepsin X protein levels, which correlated with
known markers of neuroinflammation [89]. Allan et al. showed that cathepsin X-deficient
mice have reduced neuroinflammation and circulating IL-1β levels during experimental
autoimmune encephalomyelitis [147].
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Figure 4. Microglial upregulation of cathepsin X in rat brain after intrastriatal LPS injection. Representative images of double
immunofluorescence staining of microglial marker Cd11b (green fluorescence; B) and cathepsin X (red fluorescence; C)
in the ipsilateral side of the striatal brain slices 4 weeks after LPS-induced lesion. Nuclei were counterstained with DAPI
(blue fluorescence; A). In the striatum (Cpu; D), caudate-putamen/ventricular (Cpu/V; E), corpus callosum (Cc; F), cortex
(Ctx; G), and external globus pallidus (GPe; H), upregulated cathepsin X was predominantly restricted to Cd11b-positive
cells. However, some cathepsin X-positive signal did not overlap with Cd11b-positive signal in Cpu/V and GPe. Images
were acquired using an LSM 710 Carl Zeiss confocal microscope and ZEN imaging software. Scale bars, 20 µm.

4.2. Cathepsins Promote Neurotoxic Polarization of Microglia

During inflammation, M1-polarized microglia, evoked by exposure to IFN-γ or bac-
terial toxins (e.g., LPS), are characterized by an ameboid shape, high mobility, strong
phagocytic activity, the production of pro-inflammatory mediators (e.g., IL-1β, TNF-α,
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and IL-6), and an increased expression of surface markers (e.g., CD16/32, CD86, CD40,
and inducible nitric oxide synthase), which fuel the inflammatory process [148]. In vitro
exposure to inflammatory stimuli (e.g., LPS) increases the levels of certain cysteine cathep-
sins in culture supernatants of the microglia cell line BV2 [29,142]. Substantially increased
cathepsin L secretion from microglia has been observed in response to LPS treatment for
1 h, which is earlier than the upregulation of pro-inflammatory cytokines. This indicates
that the earlier release of lysosomal cathepsin L in microglia may contribute to inflamma-
tory responses [142]. Upon pro-inflammatory stimulation, activated microglia also release
cathepsin B, which has been shown to be a major causative factor of microglia-induced
neuronal apoptosis [27]. Cathepsin B promotes neurotoxic polarization of microglia, for
which two differential mechanisms have been suggested. One is the direct killing of neu-
rons by cathepsin B secreted from neurotoxic microglia [27]. The other is that cathepsin B
is involved in the production and secretion of inflammatory mediators from M1 polarized
microglia [29]. The latter mechanism is more likely, as cathepsin B inhibition by CA-074
failed to block neuronal death [56]. Likewise, cathepsin C aggravates neuroinflammation
by promoting microglia polarization towards the M1 phenotype [149].

Recent studies have shown that cathepsin X is also strongly associated with microglia
polarization towards the neurotoxic phenotype. The proteolytic activity of cathepsin X
in culture supernatants of activated microglial cells can be evoked by LPS stimulation.
Upregulated expression and increased release and activity of microglial cathepsin X can
lead to neurotoxicity mediated by microglia activation [29,42]. We demonstrated that the
specific irreversible cathepsin X inhibitor AMS36 reduces excessive release of nitric oxide,
a marker of activated microglia, whereas it does not affect the basal nitric oxide level.
Furthermore, cathepsin X inhibition with AMS36 reduced the LPS-induced elevated IL-6
and TNF-α levels in BV2 cell culture supernatants [42], indicating cathepsin X as a potential
therapeutic target for neuroinflammation-induced neurodegeneration.

Alternatively, microglia can assume an M2 phenotype evoked by IL-4 or IL-13 that is
characterized by thin cell bodies and branched processes. This could improve phagocytotic
function and release numerous protective and trophic factors, triggering anti-inflammatory
and immunosuppressive responses [150]. IL-4-stimulated microglia generally produce
less nitric oxide and more L-proline and type-2 cytokines (e.g., IL-10 and TGF-β) that
help promote tissue repair and ECM reconstruction [151,152]. IL-4 increases cathepsin S
expression in primary cultured rat microglia and is involved in microglial migration and
invasion [85]. This indicates a regulatory role of cathepsin S in the migration of microglia
to a site of inflammation via ECM degradation [84].

4.3. Cysteine Cathepsins Trigger Neuroinflammatory Signaling

A growing body of evidence shows that TLRs, which recognize a wide variety of
danger signals and activate inflammatory cascades [153] and their downstream signaling
molecules, modulate microglial responses during acute neuroinflammation [154]. The
inflammatory stimulus LPS is a major component of the cell wall of Gram-negative bacteria
and is recognized by a receptor complex that consists of TLR4/myeloid differentiation
protein 2 and CD14 [155–157]. Conversely, poly(I:C) is a synthetic analog of double-
stranded RNA that can be generated during the replication of RNA and DNA viruses
(18) and is mainly recognized by the TLR3 receptor [158–160]. Furthermore, exposure to
TLR4 agonist LPS leads to an increase in cathepsins B, L, K, S, H, and X [29,42,120]. As
well as this, TLR3 and TLR4 co-activation results in increased inflammatory responses
compared to individual TLR activation; poly(I:C) and LPS induce distinct patterns of pro-
inflammatory factors together with different patterns of cathepsin X expression and activity.
TLR co-activation decreases intracellular cathepsin X activity and increases cathepsin X
localization at the plasma membrane together with extracellular cathepsin X protein levels
and activity (Pišlar et al., under review). Additionally, cathepsins have been linked with
regulating TLR3, which is processed by cathepsins within Loop1 of leucine-rich repeat 12.
When proteolytic cleavage is inhibited by either a cathepsin inhibitor or Loop1 deletion,
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TLR3 can still be activated by poly(I:C) in many types of cell lines that express transiently
transfected TLR3. Moreover, unprocessed TLR3 is degraded more rapidly than processed
TLR3 fragments, suggesting that the cathepsin-mediated proteolytic processing of TLR3
increases TLR3 stability [161].

Pro-inflammatory cytokines, TLRs, and other stress-like stimuli activate NF-κB [162],
a transcriptional factor that regulates the innate inflammatory response [56]. Proteolytic
relay of cathepsin B along with lysosomal aspartic peptidase cathepsin E activates NF-κB
in activated microglia. Cathepsin E increases cathepsin B expression in microglia after
hypoxic-ischemic brain damage in neonatal mice through proteolytic modulation of TNF-
related apoptosis-induced ligand (TRAIL), which in turn activates NF-κB in a proteasome-
dependent manner. Conversely, in activated microglia following hypoxic-ischemic brain
injury of neonatal mice, cathepsin B-mediated autophagy machinery promotes the degra-
dation of NF-κB inhibitor alpha and subsequent NF-κB nuclear translocation [56]. Thus,
the critical role of the proteolytic relay through the early cathepsin E/TRAIL-dependent
proteasomal and late cathepsin B-dependent autophagic pathways for NF-κB activation
has been suggested as a phenotypic switch in microglia along with the M1-M2 pheno-
types [56,132]. Other cathepsins are also involved in the NF-κB pathway, namely cathep-
sins L and X. Cathepsin L inhibition alleviates microglia-mediated neuroinflammatory
responses through the caspase-8 and NF-κB pathways [135]. Similarly, the impact of cathep-
sin X on the molecular pathways mediated by neurotoxin 6-hydroxydopamine is reflected
in the NF-κB pathway. Neurotoxin-induced NF-κB nuclear translocation was decreased by
the cathepsin X inhibitor AMS36, which coincided with the blocked degradation of NF-κB
inhibitor alpha [121].

Cysteine cathepsins have also been linked to the mitogen-activated protein kinase
(MAPK) signaling pathway in microglia. The inflammatory response elicited by activated
microglia is associated with MAPK activation, and this can lead to a variety of phys-
iological processes, such as cell growth, differentiation, and apoptotic cell death [163].
The MAPK family, which includes c-Jun N-terminal kinase (JNK), p38, and extracellular
signal-regulated kinase (ERK), plays a critical role in the production of cytokines and
mediators associated with the pathogenesis of inflammation [164]. Indeed, LPS induces
p38, JNK, and ERK activation in BV2 cells [165,166]. Under LPS stimulation, cathepsin C
enhances microglia activation and production of IL-1β and TNF-α, and this activation oc-
curs through the phosphorylation of p38 MAPK, thus aggravating neuroinflammation. In
this way, triggered activation of the Ca2+-dependent protein kinase C/p38 MAPK/NF-κB
cascade controls a range of cellular processes, including chemotaxis, phagocytosis, and
cytokine secretion [149]. Additionally, cathepsin X is a modulator of the MAPK signaling
pathway in activated microglia. Inhibition of excessive cathepsin X proteolytic activity by
AMS36 in LPS-activated BV2 cells markedly blocked LPS-induced p38 and JNK activation
and reduced LPS-induced phosphorylation of ERK1 and ERK2, suppressing the increased
cytokine release from activated microglia [42].

Furthermore, p38 MAPK is activated in damaged areas in many neuroinflammation-
related diseases, including lysosomal storage diseases. In Niemann-Pick disease type C
(NPC), which is characterized by intracellular accumulation and redistribution of choles-
terol in several tissues, including the brain [167], cathepsins B and L are recognized as
major lysosomal peptidases that control lysosomal function. Inhibition of cathepsins B and
L leads to lysosomal impairment. Furthermore, loss of cathepsin B and L activity leads
to the accumulation of free cholesterol in late endosomes/lysosomes, resembling a phe-
notype characteristic of NPC [168]. However, an in vitro study revealed that intracellular
cholesterol accumulation induced by the NPC1 mutation enhances cysteine cathepsin S
expression via abnormal p38 MAPK activation in microglia, and in turn stimulates Cx3cl1-
Cx3cr1. In the CNS, Cx3cl1 (also known as fractalkine) is constitutively produced by
neurons and binds to its receptor Cx3cr1 on microglia [169]. Cathepsin S-mediated Cx3cl1
secretion seems to be crucial for the development of neuropathic pain, because inhibition
of cathepsin S activity facilitates pain control in a peripheral nerve injury model [26,170].
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Seo et al. therefore addressed the significance of Cx3cl-Cx3cr1 interactions in the devel-
opment of microglial neurotoxicity, in which cathepsin S has been suggested as a key
upstream regulator [171]. Taken together, alterations in the expression and activity levels
of microglial cysteine cathepsins affect inflammatory signaling, which is reflected in the
severity of neuroinflammation.

5. Conclusions and Future Perspectives

It is widely accepted that neuroinflammation is an important factor in the pathogenesis
of several neurodegenerative diseases and that the process is driven by activated microglia,
which release pro-inflammatory mediators into the neuronal environment. Microglia-
derived cysteine cathepsins are recognized as important pro-inflammatory mediators,
triggering signaling pathways in inflammation-related cascades. Distinct cathepsins are
upregulated in brain cells in the CNS during neurodegenerative pathologies associated
with inflammation. Certain cysteine cathepsins have been found to be highly expressed
and secreted from activated microglia, where a more detailed role of cathepsins in the
microglia polarization towards M1 phenotype has been proposed. As cysteine cathepsins
exhibit increased expression, activity, and subsequent secretion from activated microglia
and participate in neuroinflammation-induced neurodegeneration, these peptidases are
identified targets for the development of new diagnostic and therapeutic interventions
in patients with neurodegenerative diseases. The beneficial effects of cystatins, endoge-
nous cathepsin peptidase inhibitors, have yet to be demonstrated in neurodegenerative
pathologies. Nevertheless, as they are general inhibitors, i.e., not cathepsin-specific, they
can be expected to show off-target side effects. Therefore, rather than cystatins and other
endogenous cysteine peptidase inhibitors, studies to date have focused on small synthetic
inhibitors of appropriate specificities, with an emphasis on inhibiting excessive proteolytic
activity of cysteine cathepsins associated with neuroinflammation-induced neurodegener-
ation. The design of selective and reversible cathepsin inhibitors is expected to improve
peptidase-targeted therapy, which could significantly improve the treatment of patients
with neurodegenerative disorders.
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42. Pišlar, A.; Božić, B.; Zidar, N.; Kos, J. Inhibition of Cathepsin X reduces the strength of microglial-mediated neuroinflammation.
Neuropharmacology 2017, 114, 88–100. [CrossRef]

43. Kos, J.; Sekirnik, A.; Premzl, A.; Bergant, V.Z.; Langerholc, T.; Turk, B.; Werle, B.; Golouh, R.; Repnik, U.; Jeras, M.; et al.
Carboxypeptidases Cathepsins X and B display distinct protein profile in human cells and tissues. Exp. Cell Res. 2005, 306,
103–113. [CrossRef]
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