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Throughout our life, long-lived somatic stem cells (SSC) regenerate adult tissues

both during homeostatic processes and repair after injury. The role of aberrant

regulation of SSC has also recently gained prominence in the field of cancer

research. Following malignant transformation, so termed cancer stem cells (CSC),

endowed with the same properties as SSC (i.e. the ability to both self-renew and

generate differentiated progenitors), play a major part in tumor initiation, ther-

apy resistance and ultimately relapse. The same signaling pathways involved in

regulating SSC maintenance are involved in the regulation of CSC. CSC exist in a

wide array of tumor types, including leukemias, and brain, breast, prostate and

colon tumors. Consequently, one of the key goals in cancer research over the

past decade has been to develop therapeutic strategies to safely eliminate the

CSC population without damaging the endogenous SSC population. A major hur-

dle to this goal lies in the identification of the key mechanisms that distinguish

CSC from the normal endogenous tissue stem cells. This review will discuss the

discovery of the specific CBP ⁄ catenin antagonist ICG-001 and the ongoing clinical

development of the second generation CBP ⁄ catenin antagonist PRI-724. Impor-

tantly, specific CBP ⁄ catenin antagonists appear to have the ability to safely elimi-

nate CSC by taking advantage of an intrinsic differential preference in the way

SSC and CSC divide.

M etastasis, multi-drug resistance and disease relapse con-
stitute the central challenge for the successful treatment

of advanced malignancies. Tumor initiation, metastasis and
disease relapse have all recently been attributed to subpopula-
tions of self-renewing, highly tumorigenic, drug-resistant tumor
cells termed cancer stem cells (CSC) or, alternatively, tumor
initiating cells (TIC).(1) CSC have many of the same attributes
that their normal somatic stem cell (SSC) counterparts are
endowed with, in that they have the ability to both self-renew
and go on to more differentiated cell types. SSC, alternatively
termed tissue stem cells, reside in specialized niches within tis-
sues or organs (e.g. hematopoietic stem cells, neuronal stem
cells and intestinal stem cells) and are critical during develop-
ment as well as in the adult for both normal tissue homeostasis
and regeneration after injury.(2) Therefore, a recent major focus
in cancer research has been to develop therapeutic strategies to
safely eliminate the CSC population without deleterious effects
on the normal SSC population.
To safely accomplish this goal, we need to identify the key

mechanisms that regulate stem cell self-renewal versus
differentiation and, even more critically, the features that
distinguish the control of self-renewal of CSC from their normal
endogenous SSC counterparts. However, essentially the same
evolutionarily conserved signaling pathways that govern

embryonic development (i.e. Wnt ⁄b-catenin,(3,4) Hedgehog(5)

and Notch(6)) appear to control the behavior of both normal
SSC as well as CSC. CSC express similar markers and exhibit
cellular behaviors highly reminiscent of SSC. One conclusion
that can be drawn from the literature is that there are multiple
points of intersection and crosstalk, including feedback and
feed-forward loops, connecting the various signaling cascades
that modulate “stemness.” The focus of this review will be on
the role of nuclear catenin (both b-catenin and c-catenin ⁄ plako-
globin) in the transcriptional regulation of CSC and the pros-
pects for safely and effectively targeting catenin coactivator
interactions to eliminate the CSC population in cancer.

Cancer Stem Cells and Their Role in Tumorigenesis

Cohnheim et al.(7) first proposed the concept that cancer might
arise from a rare population of cells with stem cell-like proper-
ties almost 150 years ago. More recently, increasing evidence
has confirmed the existence of a small subset of cells termed
cancer stem cells (CSC) or, alternatively, tumor initiating cells
(TIC), which are believed to be responsible for tumor initia-
tion, drug resistance and metastasis. Acknowledgement of the
presence of CSC has forced a paradigm shift from the earlier
models of tumor homogeneity towards one of tumor hierarchy,
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where CSC play the critical role.(8) The CSC concept
postulates that a small population of CSC provide for the long-
term maintenance of the tumor, whereas the bulk of the tumor
consists of rapidly proliferating and differentiated (albeit aber-
rantly or only partially differentiated) cells. CSC are able to
self-renew,(9) actively express telomerase(10) and express multi-
drug resistance pathways.(11,12) CSC are generally quiescent,
but can give rise to rapidly dividing transient amplifying cells,
which form the bulk of tumor cells (Fig. 1). Despite some still
existing controversy regarding the CSC hypothesis,(13) it is
clear that distinct cancer cell populations have enhanced
tumorigenic capacity compared to bulk tumor cells. John Dick
and colleagues first isolated CSC (known as leukemic stem
cells [LSC]) from bulk acute myeloid leukemia cells in
1997.(14) LSC maintained or reacquired the ability to prolifer-
ate indefinitely without proper differentiation.(15) Over the past
decade, a large number of studies have also identified CSC in
solid tumors, including brain,(16) melanoma,(17) breast,(18)

liver,(19) pancreatic(20) and colon cancer.(21)

Catenin Dependent Transcription and “Stemness”

The entry of catenin (classically b-catenin, although other cate-
nins [.g. c-catenin ⁄plakoglobin] may also play a critical
role)(22) into the nucleus and the subsequent transcriptional
processes affected by b-catenin are classically controlled by
the so termed “canonical Wnt” signaling cascade. However,
there are a number of alternative signaling pathways that can
induce the nuclear translocation of b-catenin and its subse-
quent participation in transcription. For example, the process
of epithelial to mesenchymal transition (EMT) involves down-
regulation of E-cadherin, which normally binds cytoplasmic
b-catenin in a complex with a-catenin that stabilizes epithelial
architecture,(23) leading to the subsequent nuclear translocation
of b-catenin.(24) EMT is a hallmark of metastasis(25) and has
also been implicated in the generation of CSC.(26) A variety of
receptor tyrosine kinases(27) and non-receptor tyrosine kinases
including Src(28) and Abl(29) can also disrupt the E-Cadherin
⁄b-catenin interaction, thereby enhancing b-catenin mediated
transcription. In addition, hypoxia(30,31) and high glucose lev-
els(32) can also activate b-catenin mediated signaling. It is clear
that a wide range of signaling molecules and cascades also
influence b-catenin dynamics and b-catenin transcription.(33–35)

In collaboration with signals from a number of other key
pathways (e.g. Notch, Hedgehog, JAK ⁄Stat, BMP, Hippo and
FGF ⁄MAPK), Wnt glycoproteins and, in particular, nuclear
b-catenin, play essential roles in balancing self-renewal versus
differentiation of adult stem cells (Fig. 2). However, there has
been enormous controversy regarding whether Wnt signaling is
important for proliferation and maintenance of potency (pluri-
potency or multipotency)(1,36,37) or differentiation of stem ⁄
progenitor cells.(38,39) Wnt ⁄b-catenin signaling has been shown
to maintain pluripotency in ES cells(37) and expand neural
stem ⁄progenitors, thereby increasing brain size.(40) However,
Wnt ⁄b-catenin signaling is also required for the differentiation
of ES cells,(41) as well as fate determination in neural crest
stem cells.(42) Clearly, Wnt ⁄b-catenin signaling plays dichoto-
mous roles in stem cell biology.

Wnt ⁄Catenin, Cancer and Cancer Stem Cells

Wnt signaling is an enormously complex and ancient pathway
that dates back to the first anaerobic metazoans. The Wnt ⁄ cate-
nin pathway is critical in both normal embryonic development
and throughout the life of the organism in virtually every
tissue and organ system.
The pathway has emerged as a pivotal player in the specifi-

cation and maintenance of stem cell lineages in multiple stem
cell compartments in a wide array of tissues and organs,
including intestines, the heart, and hematopoietic, neuronal and
mammary glands.(43) Therefore, not surprisingly, a recurrent
theme in cancer biology involves the aberrant regulation of
Wnt signaling.(44,45) The discovery in 1991 that mutations in
the tumor suppressor adenomatous polyposis coli (APC)(46,47)

were associated with >80% of sporadic colorectal cancers via
aberrant activation of Wnt signaling provided significant ratio-
nale to therapeutically target this pathway. APC is the most
frequently mutated gene in human cancers.(48,49) However,
mutations affecting the Wnt pathway are not restricted to colon
cancer. Loss-of-function mutations in Axin have been found in
hepatocellular carcinomas, and oncogenic b-catenin mutations,
first described in colon cancer and melanoma,(50) have also
been found in a wide variety of solid tumors,(51) including
hepatocellular carcinomas,(52) thyroid tumors(53) and ovarian
endometrioid adenocarcinomas.(54)

Safely Targeting Cancer Stem Cells

The significant role of aberrant Wnt signaling in cancer and
CSC has engendered substantial efforts into the development
of therapeutic approaches to target this pathway. However, a
number of factors have thwarted progress in this field. First,
the Wnt signaling cascade is bewilderingly complex, in that in
mammals there are 19 Wnt ligands and more than 15 receptors
and co-receptors distributed over seven protein families,(55)

and this represents only the tip of the iceberg in regards to the
difficulty in attempting to develop safe and effective specific
Wnt pathway therapeutics. Further adding to the complexity of
targeting transcriptionally competent b-catenin is the fact that
b-catenin can bind to a broad spectrum of transcription factors
other than TCF ⁄LEF. Transcriptionally active b-catenin there-
fore modulates a plethora of downstream biological processes,
including pluripotency, EMT, oxidative stress and lineage
commitment.(56)

Successful therapeutic manipulation of endogenous “stem-
ness” (normal or cancerous) will require significant precision
to affect the desired transformations without deleterious effects
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Fig. 1. Cancer stem cells both self-renew and undergo differentiative
divisions to maintain or expand the cancer stem cell population or
generate transient amplifying cells that go on to rapidly divide to
form the bulk of the tumor.
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(depletion, in particular) to the normal stem cell populations.(4)

Thus, the ability to target aberrant catenin transcriptional sig-
naling offers enormous promise. However, just like the Sword
of Damocles, significant risks and concerns regarding targeting
such a critical pathway in stem cell maintenance and tissue
homeostasis are ever present.

Differential Coactivator Modulation

To generate a transcriptionally active complex, b-catenin must
recruit one of the two Kat3 transcriptional coactivators, cAMP
response element binding protein (CREB)-binding protein
(CBP) or its closely related homolog p300 (E1A-binding pro-
tein, 300 KDa), as well as other components of the basal tran-
scriptional apparatus.(57–59) Recent studies have documented
that CBP and p300 interact with hundreds of proteins in their
roles as master orchestrators of transcription. Due to their high
degree of homology, these two coactivators have long been
considered as largely redundant. However, accumulating evi-
dence indicates that CBP and p300 are not redundant but have
definitive and unique roles both in vitro and in vivo.(60–62)

Using the TopFlash reporter gene system in SW480 colon
carcinoma cells, we identified ICG-001 from a library of 5000
secondary structure mimetics. ICG-001 (Fig. 3) had an IC50
value of 3 lM in this assay. Using an affinity chromatography

approach, we identified and subsequently validated that ICG-
001 binds specifically and with high affinity (approximately
1 nM) to the coactivator CBP, but, importantly, not to its clo-
sely related homolog p300, despite the fact that these two co-
activators are up to 93% identical, with even higher homology,
at the amino acid level.(63,64) We demonstrated that selectively
blocking the interaction between CBP and b-catenin with ICG-
001 led to the initiation of a differentiation program in a wide
variety of stem ⁄progenitor cells.(65,66) This led us to develop
our model of differential coactivator usage, which highlights
the distinct roles of the coactivators CBP and p300 in catenin-
mediated transcription.(58) The critical decision by b-catenin to
utilize either CBP or p300 is the first decision that guides the
cell to either proliferate ⁄maintain potency or initiate a differen-
tiation transcriptional program, respectively (Fig. 4).
Subsequently, we have identified several small molecules

(IQ-1, ID-8 and, most recently, YH249 ⁄250) that selectively
block the p300 ⁄b-catenin interaction, thereby increasing the
CBP ⁄b-catenin interaction, which maintains potency (pluripo-
tency or multipotency) in a variety of stem cell populations,
both in mouse and human.(65,67–69) The therapeutic potential of
the selective CBP ⁄b-catenin antagonist ICG-001 has been
examined in a variety of preclinical tumor models, where it
has demonstrated the ability to safely eliminate drug-resistant
tumor-initiating cells.(70–72)

Fig. 2. The ultimate decision for a cell to retain potency or initiate differentiation is dependent upon numerous inputs from various signaling
pathways (e.g. JAK ⁄ STAT, Wnt, Growth Factors, Hippo, Notch and Hedgehog) that also play critical roles during development. In the end, those
multiple pathways must be integrated and funneled down into a simple decision point. b-catenin plays a central role in integrating these sig-
nals.
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Interestingly, CBP ⁄b-catenin antagonists have also demon-
strated efficacy in a variety of injury models, including pulmo-
nary and renal fibrosis(73,74) and myocardial infarction.(75) It

appears that the differential effects of CBP ⁄b-catenin antago-
nists on CSC versus normal SSC (i.e. forced differentiation
and elimination versus differentiation and enhanced repair
without apparent depletion) are apparently cell intrinsic and
not due to the selective targeting by CBP ⁄b-catenin antago-
nists of CSC versus normal SSC. We proposed that CBP ⁄b-
catenin antagonists take advantage of the intrinsic propensity
of CSC to increase their number of symmetric divisions at the
expense of asymmetric divisions due to various mutations (e.g.
p53 and PTEN).(76,77) Normal endogenous long-term repopu-
lating stem cells preferentially divide asymmetrically with one
daughter cell remaining in the niche and the other going on to
a transient amplifying cell required for generating the new tis-
sue involved in repair processes.(78) However, if CSC undergo
more symmetric differentiative divisions when treated with
CBP ⁄ catenin antagonists, the CSC in the niche will eventually
be cleared out, whereas normal SSC that divide asymmetri-
cally will always maintain one of the dividing daughter cells
in the stem cell niche (Fig. 5). This fundamental and cell
intrinsic difference between SSC and CSC provides a unique
opportunity to therapeutically target CSC without damaging
the normal endogenous stem cell populations utilizing specific
CBP ⁄ catenin antagonists.(78)

To The Clinic

Although the Wnt signaling pathway was discovered over
30 years ago, only recently have therapeutic agents that specifi-
cally target the Wnt pathway been introduced into clinical
trials, although a few US Food and Drug Administration
(FDA)-approved drugs do affect Wnt signaling, albeit non-spe-
cifically.(4) Despite intensive investigation of the pathway and
the unveiling of a multitude of potential therapeutic points of
intervention in the pathway, as well as the identification of
reagents that interfere with some of these targets, it is still
unclear whether most approaches will provide both clinical
efficacy and safety. To date, pre-clinical and clinical experience
with both small molecules and biologics that target different

Fig. 3. Chemical structure of the CBP ⁄ catenin antagonist ICG-001.
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Fig. 4. Wnt signaling is a complex pathway, believed to be involved
in the regulation of divergent processes, including the maintenance of
pluripotency and commitment to differentiation. We developed a
model in which b-catenin ⁄ CBP-mediated transcription is critical for the
maintenance of potency, whereas b-catenin ⁄ p300-mediated transcrip-
tion is the first critical step to initiate differentiation. Hence, the bal-
ance between CBP and p300-mediated b-catenin transcription
regulates the balance between maintenance of potency, and the initia-
tion of commitment to differentiate in stem and progenitor cells.
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Fig. 5. Model depicting symmetric and asymmetric
modes of division. The intrinsic difference between
normal somatic stem cells (SSC) and cancer stem
cells (CSC) is that normal SSC favor asymmetric
division whereas CSC favor symmetric divisions.
Treatment of CSC with CBP ⁄ catenin antagonists
causes CSC to undergo symmetric differentiative
divisions, thereby eventually clearing CSC from the
niche. In sharp contrast, SSC undergo asymmetric
divisions when treated with CBP ⁄ catenin
antagonists.
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points of intervention (porcupine, tankyrase, Fzd receptors and
extracellular Wnt ligands) suggest that a therapeutic window
does exist for the use of Wnt inhibitors in cancer patients.
However, the full anti-tumor potential of these agents may not
be realized due to side effects involving on target inhibition of
Wnt ⁄b-catenin signaling including intestinal toxicity and bone
breakage.(79)

PRI-724, a specific CBP ⁄ catenin clinical compound. In principle,
significant concerns about specificity could be raised about the
use of small molecule inhibitors that target the coactivator pro-
tein CBP, which has perhaps as many as 500 molecular part-
ners, including a wide array of transcription factors. However,
to date, these concerns have not been borne out either pre-
clinically or clinically. This is perhaps at first surprising and a
full discussion of why a small molecule therapeutic that selec-
tively targets the N-terminus of CBP has many therapeutic
advantages is beyond the scope of this review.(78) However, a
few salient features are worth mentioning: (i) the extremely
high biochemical selectivity of ICG-001 ⁄PRI-724 for its
molecular target; (ii) the disruption of only a small subset of
CBP interactions; and (iii) the unique properties of the two
Kat3 coactivators, CBP and p300.
PRI-724 is a second generation specific CBP ⁄ catenin antago-

nist (IC50–150 nM) developed by Prism Pharma and partnered
with Eisai Pharmaceuticals for oncology. PRI-724 proved to
be extremely safe in pre-clinical investigational new drug
enabling toxicology studies. The No Adverse Event Level for
PRI-724 was 120 mg ⁄kg ⁄day in dogs given 28-day continuous
infusion. An open label Phase Ia safety study in subjects with
solid tumors, where the expression of the biomarker survivin
⁄BIRC5 was measured by immuno-magnetic RT-PCR in circu-

lating tumor cells for PRI-724 was initiated at USC in March
2011. The results of this trial were reported at ASCO in June
2013. In all, 18 patients were treated (dose escalation from 40
to 1280 mg ⁄m2 ⁄day) via continuous infusion for 7 days. Just
as had been observed in preclinical studies, PRI-724 had a
very acceptable toxicity profile, with only one DLT of grade 3
of reversible hyperbilirubinemia. Downregulation of the bio-
marker survivin ⁄BIRC5 with upregulation of the differentiation
antigen CK20 in circulating tumor cells strongly correlated
with increasing plasma concentrations of the drug.(80) Addi-
tional trials with PRI-724 are underway, including combination
trials with a modified Folfox6 regimen for refractory colorectal
cancer patients, a Phase Ib trial for refractory pancreatic cancer
patients in combination with gemcitabine and a Phase 1 ⁄ 2 trial
for heme malignancies.
As mentioned above, CBP ⁄b-catenin antagonists have also

demonstrated efficacy in a wide variety of injury models,
including pulmonary and renal fibrosis(73,74) and myocardial
infarction.(75) Given the apparent safety of these agents both
pre-clinically and clinically, additional clinical trials targeting
these indications are anticipated in the future.
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