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Abstract: It is well known that certain non B-DNA structures, including G-quadruplexes, are key
elements that can regulate gene expression. Here, we explore the theory that DNA modifications, such
as methylation of cytosine, could act as a dynamic switch by promoting or alleviating the structural
formation of G-quadruplex structures in DNA or RNA. The interaction between epigenetic DNA
modifications, G4 formation, and the 3D architecture of the genome is a complex and developing
area of research. Although there is growing evidence for such interactions, a great deal still remains
to be discovered. In vivo, the potential effect that cytosine methylation may have on the formation
of DNA structures has remained largely unresearched, despite this being a potential mechanism
through which epigenetic factors could regulate gene activity. Such interactions could represent
novel mechanisms for important biological functions, including altering nucleosome positioning or
regulation of gene expression. Furthermore, promotion of strand-specific G-quadruplex formation in
differentially methylated genes could have a dynamic role in directing X-inactivation or the control
of imprinting, and would be a worthwhile focus for future research.
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1. Introduction

DNA regulation is a complex process involving interactions among genomic, cellular,
and environmental factors. As our understanding of genomic regulation develops, mapping
how these factors interact to orchestrate tissue or cell-specific gene expression programmes
remains one of the fundamental challenges for modern genetics. Epigenetic processes
act at the interface between genetics and the environment, and include specific chemical
modifications that can occur on the DNA, RNA, or histone proteins. In particular, the
addition and removal of chemical groups to localised regions of DNA may have profound
effects on the structural and functional state of DNA, and is likely to influence wide-scale
genomic interactions. This process can influence gene regulation, and can direct cell specific
gene expression by influencing chromatin structure and chromosomal organization to
modify accessibility by the transcriptional machinery [1,2]. Although DNA largely exists in
the well-recognised helical form (B-DNA), nucleotide bases can potentially interact in a
variety of orientations. This enables the formation of non-canonical DNA (non B-DNA)
structures, such as triplex, G-quadruplex, cruciform, hairpin, and i-motif structures [3–5].
Of these, G-quadruplexes (G4s) have been the most widely researched. In this review we
focus our attention largely on G4 DNA structures and the evidence for impact of methylated
cytosine in modifying formation of these structures, and to a lesser extent consider impacts
of methylation on i-motif and H-DNA/triplex DNA structures. G4 structures have been
recognised for many decades, and the study of their in vivo properties is now an important
area of genetic research [6,7]. Emerging bodies of evidence are describing the role that
G4s contribute to genomic processes relevant to gene maintenance, regulation, and DNA
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replication. DNA methylation is an additional layer of regulation that acts on the genome
and the potential interaction between DNA methylation and G4 formation offers intriguing
possibilities for dynamic regulation of these processes.

In mammalian genomes, 5-methyl cytosine (5mC) is arguably the best understood of
the epigenetic modifications. It is involved in directing cell specific gene expression [8–10],
expression from imprinted genes, X-chromosome inactivation, transposon silencing [11,12],
and is an important regulator of DNA conformation [13]. The pattern of 5mC in genomic
DNA from different cell lineages (the ‘methylome’) is largely established during early
gestation [14] and methylation differences in different cell lineages partly control cell
differentiation [15]. However, the dynamic addition and removal of methylation from
cytosine also provides a mechanism through which gene activity can be modulated in
response to environmental cues. Subtle changes to the human methylome continue to
occur throughout adulthood, and many environmental factors including smoking [16],
pollutants [17,18], stress [19,20], exercise [21,22], and alcohol consumption [23] have been
strongly associated with changes in the adult methylome. Additionally, aging [24] and
disease development such as diabetes and heart disease [25,26] are strongly associated with
certain methylation profiles, and drastic alterations are a hallmark of most cancers [27,28].

The formation of 5mC in DNA involves DNA methyltransferase (DNMT) enzymes,
which recognize CpG dinucleotides and catalyse the addition of a methyl group to the
fifth carbon of a cytosine, converting it to 5mC [29]. The methyl group is positioned in
the major groove of DNA where it does not interfere with Watson–Crick base pairing,
but can modulate the binding of various proteins to DNA [30,31]. The genomic occur-
rence of CpGs in mammals is less frequent than expected, and the majority of CpGs are
sparsely distributed through genic and intergenic genomic regions. These tend to be highly
methylated, whereas CpGs found in dense GC-rich clusters called CpG islands (CGIs) are
mostly depleted of methylation [12,32]. Despite being a small chemical modification, 5mC
can have a variety of effects on DNA stability, chromatin structure, and accessibility of
DNA to transcription factors. By promoting the formation of tightly packed chromatin,
this in turn regulates gene activity by influencing whether regions of DNA are accessible
to factors and proteins required for the initiation of transcription [33–35]. However, it is
important to recognise that the function of DNA methylation is context dependent, and
the correlation between DNA methylation and transcription is more complex than initially
anticipated [32].

Although research is demonstrating correlative links between DNA methylation
changes and disease, mechanistic investigation into how subtle DNA methylation changes
can direct phenotypic outcomes has been limited. Likewise, our understanding of how
cytosine methylation can inhibit or promote DNA–protein binding, or influence DNA
structure, is also poorly understood. In many instances the genomic position at which
altered DNA methylation is observed does not correspond with regulatory elements, and
may often occur within intergenic regions, making the biological significance difficult to
interpret. It is often concluded that such changes could influence the expression of genes
through distal gene interactions, and changing the three dimensional (3D) organization of
the chromosome. Although Hardin et al. was the first to observe that cytosine methylation
may aid in the formation of secondary DNA structure [36], the implications of this are rarely
discussed in a genomic context. The interaction between epigenetic DNA modifications,
non B-DNA formation, and the 3D architecture of the genome is a complex and dynamic
area, and although there is developing evidence for such interactions, a great deal still
remains to be discovered. In vivo, the potential effect that cytosine methylation may have
on promoting or hindering non B-DNA formations has remained largely un-researched,
despite this being a potential mechanism through which epigenetic factors could regulate
gene activity. Such interactions could represent novel mechanisms for important biological
functions, such as the regulation of gene expression, altering nucleosome positioning (stable
G4s induce subsequent genomic rearrangements), or the control of genomic imprinting.
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1.1. G4 Formation and Cytosine Methylation

Guanine is unique among the four nucleoside bases due to its ability to self-associate
through Hoogsteen–hydrogen bonds between four nucleotides. This results in a stable,
square planar arrangement referred to as a G-tetrad, which forms the bases of a G4 structure
(Figure 1). Two or more stacked G-tetrads are then connected by a linker of nucleotides
that are not normally involved with the tetrads themselves [37]. The general basic pattern
of a G4-forming DNA sequence involves two or more guanine repeats that are separated
by up to seven linking nucleotides, repeated four times within a motif e.g., (GGGN(1-7)(3)-
GGG). Although the traditional description of a G4 consists of between one and seven
linking nucleotides, the maximum number of linkers is an estimate [38]. The propensity
of dsDNA sequence to adopt a G4 structure and the subsequent structural stability is
context dependent and determined by multiple factors, however, the main determinants
are the strength of the competing Watson-Crick base pairing, and the ionic conditions.
The presence of a positively charged monovalent cation (typically potassium) stabilizes
the G4 by neutralising the negative charge of inward facing O-6 oxygen atoms. The
incorporation of different cations into a G4 structure often promotes the formation of
distinct G4 topologies, and divalent cations such as magnesium have also been shown to
have diverse and unpredictable effects on both topology and stability [39–42]. The in vivo
formation of G4 [43,44] and their many potential topological variants have been extensively
reviewed [37,45,46], as have their biological roles [47–49].
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Figure 1. Schematic illustration of structural DNA motifs. From left: duplex, G-quadruplex, i-motif,
triplex, and G-triplex. Examples of the contributing base pairing pattern is depicted below each motif:
T-A and C-G for the duplex, G-tetrad for the G-quadruplex, C:C+ for the i-motif, T-A:T and C-G:C+

for the triplex, and G-triad for the G-triplex.

Largely due to their high propensity for formation, and their potential application
as drug targets, especially for cancer, G4 structures have received more research activity
than other non-canonical DNA structures. This also extends to the in vitro characterisation
of how DNA methylation influences G4 structural properties. Consequently, there are
reports of varied effects of DNA methylation on structural conformation, stability, and the
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molecular association times of different G4-forming sequences. Bioinformatic prediction
algorithms can be used to perform genome-wide, in silico analyses of the location of puta-
tive G4 motifs, and have indicated that CpGs are generally precluded from co-localisation
with quadruplex motifs. This suggests that instances of overlap may be detrimental and
therefore selected against [50], or that their combination might serve a specific biological
function. Although the in vivo effects of 5mC on G4 formation are in the preliminary stages
of research, anecdotal evidence suggests that many of the observed in vitro properties may
reflect similar in vivo properties.

1.2. Cytosine Methylation Stabilises Non Watson-Crick Base Pairs

DNA methylation is known to alter the molecular dynamics in double stranded B-DNA
by decreasing backbone flexibility, and increasing thermal stability [51–53], an effect that
may be attributed to direct interactions of the methyl group with adjacent bases and adjacent
methyl groups [54]. Using circular dichroism spectroscopy, the chemical stabilisation
of G4 by methylation was first demonstrated in 1993 by Hardin et al. [36]. This effect
was attributed to non-Watson-Crick pairing between two cytosine bases in a G4-forming
sequence, where the addition of 5mC greatly increased the stability and kinetic associations
of the G4 structure, even though they did not directly contribute towards the guanine-
based Hoogsteen bonding [36]. The cytosine-to-cytosine bond involves protonation of one
cytosine base (C·C+), which facilitates hydrogen bonding, allowing for formation of three
hydrogen bonds and enabling cross-linking between two DNA strands (Figure 1) [55,56].
This can occur between opposing cytosine bases in G4 structures, and it was concluded
that cytosine methylation may alleviate the structural requirement for protonation in
cytosine:cytosine bonds, aiding in the formation of secondary DNA structures [36]. This
observation was later reinforced by Lin et al. [57] and a similar mechanism of stabilisation
was also documented for i-motif and DNA triplexes [57,58] (Figure 1).

Cytosine base pairing forms the basis for the formation of i-motif DNA structures,
which are composed of intercalated and hemi-protonated C·C+ base pairs in a head-to-tail
orientation [59]. The hemi-protonated nature of the C·C+ bond has a base-pairing energy,
which is actually stronger than the canonical Watson-Crick G·C base pairing, however, the
neutral C:C base-pairing energy is substantially less [59]. Because i-motifs require cytosine
repeats in nucleic acids they have a high propensity to form in DNA sequences that are
complementary to G4s [60–62]. However, unlike G4 topology, i-motif formation is highly
reliant on the protonation of cytosine. Despite early predictions that 5mC would destabilize
non B-DNA structures, empirical evidence suggests that there is generally a stabilizing
effect, especially for i-motif structures [63,64]. The addition of only a single methyl site
has been repeatedly observed to increase the thermodynamic stability of i-motifs by ap-
proximately 10 ◦C, with further modifications having less pronounced effects [65], and
hypermethylation resulting in destabilisation. This appears to be consistent regardless of
whether the methyl group is positioned in the core or loop [66], however, the stabilisation
effect does appear to be most pronounced at near-physiological pH [66]. Therefore, 5mC
in dsDNA may act on both DNA strands to promote non B-DNA formation by favour-
ing G-quadruplex structures on one strand and i-motif structures on the complementary
C-rich strand.

DNA triplexes are three stranded structures involving two DNA strands that are
bound through Watson-Crick hydrogen bonds, with a third single-stranded, purine-rich
DNA strand bound to the dsDNA through Hoogsteen bonds (Figure 1). Similarly to
the i-motif, the triplex formation is also stabilised by pH and 5mC, and, similar to G4,
cation presence also plays a role in determining stability [67]. Replacing cytosine with
5mC within a triplex-forming strand has the effect of allowing the third strand to bind
at a physiologically relevant pH [68] and raises the thermal stability of the structure [58].
Few papers have further explored these observations beyond these initial observations, or
have attempted to verify the original mechanistic proposals [69]. However, the evidence
is supportive of similar observations with i-motif and G4 structures where the C·C+ base-
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pairing is stabilised by DNA methylation. This can influence the progression of polymerases
along DNA during replication and transcription through regions of methylated DNA [70].
It may also represent a novel method of gene silencing at differentially methylated genes
(or the X-chromosome in females), where RNA polymerase is trapped in the bubble by
the folding of the third RNA strand [70]. This is a similar concept to the formation of
R-loops, which can arise during transcription of the 5′-UTR in G-rich DNA. In this instance,
the newly synthesized RNA invades the upstream dsDNA and forms a three stranded
RNA:DNA hybrid with the template strand, by displacing the non-template strand. This
has been demonstrated to free up the non-template strand, increasing the propensity for
G4 formation and enhancing transcription [71]. Similar to G4 structures, R-loops are also
enriched in promoters, unmethylated CpG islands, and may also prevent methylation
of the underlying DNA sequence (discussed below) [72], which has been proposed as a
potential form of epigenetic regulation and transcription termination [73,74].

1.3. Cytosine Methylation and G4 Formation in RNA

RNA modifications are widely prevalent and chemically complex; however, there is
currently a limited knowledge of the function of RNA modifications and their effect on
RNA structure and function [75,76]. The in vivo formation of the G-quadruplex in RNA
has been demonstrated [77,78], where it likely functions as a regulator of translation and
impacts on protein binding [79]. This has been demonstrated in plants, where the RNA
G4 directs development and growth and is likely to be involved in novel functions, such
as post-transcriptional regulation of gene expression [78]. This is a developing area of
genetic research and represents one of the next big challenges for understanding gene
regulation [80]. It is plausible that many of the potential effects of 5mC on DNA G4
structures discussed in this review will also have a similar underlying function in RNA G4
structures and may play a dynamic role in regulating translation.

1.4. In Vitro Effects of G4 and DNA Methylation

One of the most widely recognised features of G4 is the ability to arrest polymerase
during DNA amplification [81–83], which has been attributed to several different types of
PCR failures, and allelic drop-out (ADO) [84,85]. During PCR amplification of a differen-
tially methylated gene locus, we found that the combination of cytosine methylation and
G4 formation can have profound effects on amplification efficiency, which leads to allelic
drop-out of methylated DNA during PCR [86]. Similar observations were subsequently
made by Yoshida et al., who used qPCR to demonstrate reduced amplification efficiency of
methylated G4 motifs when compared to non-methylated G4 motifs [87]. At these gene
regions, methylation appears to cause subtle changes in thermodynamics and the kinetic
properties of DNA, such that the presence of 5mC on the maternally methylated DNA copy
promotes the rapid reformation of G4 structures during PCR, inhibiting Taq polymerase
for a period sufficient to cause a complete amplification bias of the paternal DNA [88–90].
This observation of ADO is likely to be of wider relevance to imprinted genes that contain
at least one G4 motif, and, without stringent genotyping controls, could easily go unde-
tected [90]. It is also likely that this form of ADO may influence next-generation sequencing
preparations [91] and, theoretically, RNA sequencing, as both G4 and 5mC methylation are
commonly found in RNA. Our observation of decreased DNA G4 stability with 5mC [86]
is contrary to similar studies [57], which likely reflects differences in the experimental
conditions used. However, our observations that 5mC impacts transitions between duplex
or hairpin DNA and non B-DNA formation have been replicated by others [65,92]. It is also
likely that the effect of 5mC on G4 stability is dependent on additional parameters such
as ionic environment, G4 topology, G4 sequence, the position and number of methylated
cytosine within the G4 region, and molecular crowding [93].
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1.5. Potential In Vivo Effects of G4 and Methylation

In the instances where DNA methylation modulates the stability or propensity of
non-B-DNA formation [36], this may hold potential for harnessing as a targetable property
in cancer therapeutics. G4 sequences have been demonstrated to occur more frequently
near transcription start sites, telomeres, ribosomal DNA, immunoglobulin heavy-chain
switch regions, and CpG islands [48,94–96]. G4 formation in promoter regions has generally
been associated with transcriptional suppression, and this has been demonstrated with
several proto-oncogenes [97–100], including RET [101], c-MYC, BCL-2 [102], and VEGF [103].
However, there is also evidence that gene expression can be enhanced by the selection
of alternative G4 conformations [104]. The potential interaction between 5mC and G4
structure could represent an additional layer of regulatory control, where addition or
removal of methylation from G4 structures could regulate gene expression or enzyme
recruitment by altering G4 structural potential or topology. Although it is widely accepted
that 5mC can change the structural properties of DNA by reducing DNA flexibility, which
may aid in promoting chromatin formation [105], the ability of 5mC to change the chemical
and physical properties of DNA has received surprisingly limited research.

Transcription factors perform the first step in decoding the genome by directing
gene expression and chromatin structure through protein–DNA interactions at specific
genome locations [106,107]. Based on in vitro binding studies, it has been demonstrated
that binding of transcription factors can be affected by cytosine methylation [107,108]
and numerous transcription factors are recruited to sites of G4 formation [109]. Several
transcription factors that bind to G4 structures can have high binding affinities, which are
comparable to that of canonical DNA double-strand interactions. Furthermore, G4s in
gene promoters (especially for highly expressed genes) also appear to be bound by a large
number of transcription factors, such as SP2, E2F4, NRF1, or FUS [110,111]. The ability of
DNA methylation to direct both transcription factor binding and formation of G4 structures
could represent a mechanism for the dynamic regulation of transcription, especially in
directing cell specific transcription programmes. Recent research is supporting this role,
and has suggested that G4s may act as an epigenetic mark responsible, at least in part, for
the recruitment of SP1 [52].

One of the few in-depth analyses into the mechanistic effects of DNA methylation on
G4 formation, demonstrated that 5mC in CTCF transcription factor binding sites promotes
quadruplex formation. In the instance of the hTERT gene, this prevented CTCF from
binding and lead to increased expression [92]. It was demonstrated that 5mC alone was
not sufficient to inhibit CTCF binding to the first exon of hTERT, which suggested that G4
formation (promoted by CpG methylation) inhibited CTCF binding and further regulated
gene expression [92]. It is reasonable to suggest that these effects occur in vivo and could
impact on the process of epigenetic gene regulation. In the instance of hTERT, these findings
provided mechanistic insight into how hypermethylation of an oncogenic promoter can
lead to expression in most telomerase-positive tumors.

DNA replication is a highly regulated procedure, where replication originates at mul-
tiple sites across genomic DNA, with certain sites associated with early and late timing.
These origins of replication have been demonstrated to be intricately linked to G4 for-
mation, where the number of G4 on each strand appears to influence the efficiency and
timing of individual origins [112]. G4-based origins were subsequently demonstrated to be
mainly localised in non-coding regions with low epigenetic marks, yet a high level of DNA
methylation within the G4 forming motif [113]. Similar to the widely recognised ability of
G4 to hinder DNA amplification by Taq polymerase, DNA replication through G4-forming
regions is also not straightforward and often requires recruitment of specific helicases such
as Pif1, Wrn1, FANCJ, BLM, RTEL1, and DDX11 that resolve G4 structures [114–119].

Faithful replication through G4 structures requires a highly conserved multistep mech-
anism of G4 resolution, which has only recently been resolved [120]. Stalling of DNA
polymerase during replication can induce single stranded breaks, making G4 forming
regions hot-sports for genomic rearrangements [121–123]. Arrest at G4 sites on the leading
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template strand during replication has been demonstrated to partially delink replication
from repackaging of newly made chromatin. This can result in errors in copying parental
histone modifications, and can compromise epigenetic memory [124]. Formation of G4
structures is generally suppressed in the heterochromatin of human cells, with their pres-
ence associated with dynamic epigenetic features in chromatin and correlated with genes
showing elevated transcription [125]. Given that 5mC also promotes the formation of chro-
matin [126], this effect could be additionally enhanced by the combination of methylation
and G4 structures, or on the inactivated X chromosome. Conversely, G4 have also been
demonstrated to promote replication by recruiting helicases, and it has been proposed
that Reversionless1 (REV1), a key enzyme involved in aiding replication through sites of
DNA lesions or damage (translesion synthesis), acts at G4 motifs formed at the replication
fork [124]. Given the further complications for Taq polymerase caused by the interaction
of 5mC and G4 formation, it would be worth investigating whether these properties are
enhanced in vivo in areas containing both G4 and DNA methylation.

It has been proposed that G4 structures could provide signals which direct the enzy-
matic activity of methyltransferases [127], which are known to have a higher affinity for
unusual structures in DNA relative to B-form DNA [128]. During DNA replication, DNA
methyltransferase enzymes (DNMT) transfer the pattern of DNA methylation from the
parental strand to the newly synthesized daughter strand. This process ensures the faithful
transfer of tissue specific DNA methylation patterns across cellular generations. It has been
demonstrated that G4s are a genomic feature that direct methylation at CpG islands [109],
which may explain the observation that CpG islands predominantly lack 5mC [1,129].
G4 sites are enriched for DNMT1 binding, which support previous hypotheses that high
affinity of DNMT1 for binding G4 has a sequestering effect, thereby preventing certain CpG
islands from becoming methylated [109]. In this instance, CpG islands in active chromatin
that contained a G4 structure were depleted in methylation and the surrounding flanking
regions displayed higher than average methylation. This suggests that G4s may play an im-
portant function in the establishment of the epigenome [109]. DNA methyltransferases can
also carry out de novo methylation to create new methylation patterns, and there is evidence
that DNA structures can act in vivo to initiate or block de novo methylation in adjacent
DNA. It has been proposed that double stranded DNA may not be the primary substrate
for de novo methylation. Instead, single stranded structures formed during DNA replication
may serve as nucleation sites for de novo methylation of adjacent DNA regions [130]. It
has also been hypothesised that G4 structures could be involved in maintaining epigenetic
signatures through several cycles of replication [46,124]. These observations draw several
parallels with R-loop formation [72–74], and given the high propensity for overlap between
R-loop and G4 forming DNA sequences, these two factors may act in unison, or through
similar mechanistic paths.

Imprinted genes are a subset of genes, which are monoallelically expressed and display
differential gene methylation depending on the parental origin of the alleles. Imprinted
gene clusters are unusually rich in CpG islands [131] and these differentially methylated
regions (DMRs) frequently overlap with CpG islands. Thus, CpG islands of imprinted genes
may contain special DNA elements that distinguish them from CpG islands of biallelically
expressed genes. Likewise, the inactivated X-chromosome and imprinting control regions
(ICRs), also contain methylation on one chromosomal copy, determined by the parent of
origin. The methylated copy in such regions tends to a correspondence with the inactivation
of that gene, although the processes that lead to this are not fully understood [131,132].
Minor changes in the methylation levels of ICRs often cause substantial errors in the
imprinting of the corresponding domain, reinforcing the integral role methylation plays in
ICRs [133]. It has previously been suggested that G4 formation may play a role in enzyme
recruitment at DMRs [124]. However, based on the differential effect that methylation
can have on G4 propensity, it seems logical that this could also drive selective enzyme
recruitment towards a single parental (either methylated or non-methylated) DNA strand.
Although it has received limited scientific investigation, it is possible that G4 formation
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plays a fundamental role in directing gene silencing at imprinted genes, which are often
associated with differential methylation. Our observations that methylation in DMRs can
substantially alter G4 propensity, and hinder Taq polymerase, may be relevant to processes
of DNA replication or transcription.

1.6. Potential for Novel G4 Formation in Cancer Due to Abnormal Methylation

Abnormal DNA methylation changes are a ubiquitous observation in cancer and an
important factor in tumour development and progression [134,135]. For example, key genes
involved in promoting cell growth and division often have less methylation in tumour cells
when compared with ordinary tissue, which results in their over expression. Alternatively,
genes involved in directing cell apoptosis pathways often have increased methylation
leading to gene silencing in cancer cells [136]. It has been observed that a characteristic of
solid tumours is the occurrence of large hypomethylated blocks of genomic DNA [137].
Hypomethylation in regions of high G4 propensity has been suggested to cause genomic
hotspots for recombination, by inducing double-stranded DNA breaks [138–140], which
could be a factor that drives cancer development [50]. This has been hypothesized to bridge
the roles of genetic and epigenetic influences directing tumorigenesis [138]. Furthermore,
a disproportionately high incidence of G-quadruplex motifs has been observed in the
promoters of oncogenes, in contrast to the promoters of tumour suppressors which exhibit
an extremely low G-quadruplex formation potential [97]. These abnormal methylation
and expression profiles, which are a frequent characteristic of cancer, could provide an
environment for formation of G4 structures not otherwise expected elsewhere in the human
genome, outside of the tumour environment. This may lead to the selective formation
or inhibition of key regulatory G4 structures that drive oncogenic gene expression, and
provide a substrate for therapeutic targets. G4 structures have been extensively investigated
as novel drug targets in cancer therapeutics [141]. Characterising the in vivo effects of
DNA methylation on G4 structures may provide a possible therapeutic avenue to further
enhance specificity in the tumour environment. Additional DNA modifications, such as
8-oxoguanine [142] or methylation at CpA dinucleotides [143] can affect the structural
kinetics of non B-DNA formations and have been linked to the silencing of cancer genes
in lymphoma and myeloma cell lines [144]. However, the effect that these could have
on non B-DNA structural formation has not attracted substantial scientific investigation.
Further investigations into the role that DNA methylation could play in directing RNA-
mediated G4 structures or the formation of regulatory R-loops could also play a role in
selective lethality in cancer cells, and further progress research towards considering G4s as
therapeutic targets in human diseases [79].

2. Conclusions

There is a growing body of literature supporting the idea that methylation of G4
structures may be of fundamental importance to genome structure and function, playing
an integral role in directing regulatory G4 formation in gene promoters and also directing
wider establishment of epigenetic marks. Despite having substantial biotechnological,
therapeutic, and biological relevance, the potential for 5mC to regulate formation of G4
structures has received relatively little scientific attention. This hypothesised additional
layer of regulation could allow for methylated G4s to act as a dynamic epigenetic switch,
selectively activating or repressing gene expression in a cell specific or environmental con-
text. Furthermore, the potential influence of methylation on G4 formation in differentially
methylated gene regions may facilitate parent of origin gene expression at imprinted genes
or in the instance of X-inactivation. There is also substantial scope for selective therapeutic
applications in the context of the tumour environment.
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