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Spatiotemporal dynamics 
of a glioma immune interaction 
model
Subhas Khajanchi1* & Juan J. Nieto2

We report a mathematical model which depicts the spatiotemporal dynamics of glioma cells, 
macrophages, cytotoxic-T-lymphocytes, immuno-suppressive cytokine TGF-β and immuno-
stimulatory cytokine IFN-γ through a system of five coupled reaction-diffusion equations. We 
performed local stability analysis of the biologically based mathematical model for the growth of 
glioma cell population and their environment. The presented stability analysis of the model system 
demonstrates that the temporally stable positive interior steady state remains stable under the small 
inhomogeneous spatiotemporal perturbations. The irregular spatiotemporal dynamics of gliomas, 
macrophages and cytotoxic T-lymphocytes are discussed extensively and some numerical simulations 
are presented. Performed some numerical simulations in both one and two dimensional spaces. The 
occurrence of heterogeneous pattern formation of the system has both biological and mathematical 
implications and the concepts of glioma cell progression and invasion are considered. Simulation of 
the model shows that by increasing the value of time, the glioma cell population, macrophages and 
cytotoxic-T-lymphocytes spread throughout the domain.

According to the report from National Brain Tumor  Society1, it was estimated about 700,000 people in the USA 
are living with primary brain tumor, and 84,170 people will be diagnosed with primary brain tumor among 
which 59,040 people are non-malignant (benign) and 25,130 are malignant brain tumor and 18,600 deaths are 
projected to occur in the year 2021. Brain tumor is a world-wide problem, which can be regarded as one of the 
major causes of death but still a mystery about its mechanism of growth, prevention and cure. Brain tumor com-
prises a heterogeneous group of intracranial neoplasms and it is difficult to treat due to its sequestered location 
beyond the blood-brain-barrier and their infiltrative  behavior2. More than 120 different kinds of tumor can be 
found in the human brain; among them glioblastoma is the most common type of primary brain tumor. It has 
median survival rate ranging from 12  to 14 months from the time of  diagnosis3. The most aggressive or grade 
IV gliomas are known as glioblastoma multiforme (GBM), which is the main goal of our study. According to 
the 2016 World Health Organization (WHO) grading scheme for GBM of the Central Nervous System, the 
GBM is mainly classified into (i) isocitrate dehydrogenase (IDH)-wildtype glioblastoma (nearly 90% of cases) 
that predominates in the patients over 55 years of age; (ii) IDH-mutant glioblastoma (nearly 10% of cases) that 
preferentially arises in younger  patients4. Most of the treatments like standard chemotherapy, surgery, radia-
tion therapy have limited success due to the heterogeneity of gliomas, infiltrative behavior, genomic instabil-
ity including the presence of blood-brain-barrier. Brain neoplasms may be explained as an irregular growth 
of normal tissues than its surrounding normal brain tissues. The interaction between malignant gliomas and 
immune system is a nonlinear and highly complex phenomena. This nonlinearity has attracted the attention of 
a significant number of scientists and researchers/oncologists in investigating the dynamics of glioma-immune 
system interactions throughout the world.

To better understand such complex phenomenon, researchers have used mathematical models of glioma-
immune system response, over the last few decades. The mathematical modeling is one of the important tools 
which provide realistic, quantitative and qualitative representations of important biological phenomena. The 
biological interpretation obtained from mathematical models give the realistic predictions of the state of brain 
tumors under different  situations5. A variety of mathematical models has been proposed by numerous authors 
(see the review  article6) to understand the complex biological process and to design better treatment strategies 
or to improve the patients’ quality of life. Immunotherapy has become a quickly developing process in glioma 
treatment, based on the assumption that the immune system can be strengthened to combat against gliomas. 
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Various immunotherapeutic treatments have been developed in aiding the immune system in efficient identifica-
tion and eradication of glioma  cells7.

There are some interesting literatures, which described the temporal dynamics of tumor growth in presence 
of immune system interaction through a system of ordinary differential  equations8–13. Spatiotemporal pattern 
formation in reaction-diffusion equations has been studied continuously and become an important issue to 
the researchers due to the pioneering work by Turing  195214. After that a significant number of mathematical 
models for tumor growth have been developed and the application of these models have been increased recently 
by using a system of reaction-diffusion  equations6,15. Different kinds of brain tumor models have already been 
developed by the researchers, and each one contributes in its own way to a better understanding of brain tumor 
and the complicated dynamics that delineate the patient’s  outcome16–20. Numerous articles have been focused 
on the mathematical modeling of gliomas environment in various aspects through a system of differential equa-
tions to put forward the theoretical models for glioma immunology and immunotherapy or  chemotherapy21–32. 
A series of work has been done on the basis of pioneering mathematical model for brain tumor developed by 
Swanson et al.5,20,33,34 and  Murray35. Swanson et al.5,20,25,33,34,36 investigated the mathematical models that have 
been developed by  Murray35 and herself. Their models quantify the spatiotemporal proliferation and invasion 
of malignant gliomas in the virtual human brain.

Celiku et al.26 investigated a computational model by introducing new concepts of phenotype to delineate 
probable spatial-phenotypic trajectories on the basis of patient data. Engwer and  Wenske27 studied a advection-
diffusion-reaction equations to understand the complicated dynamics of glioblastoma invasion at the time of a 
given MRI/DTI scan by utilizing the stationalized approach. Corbin et al.28 studied a mathematical model for 
glioma invasion by considering the dynamics of brain tissues being actively degraded by glioma cells through 
excessive production of acidity. Their method admits switching phenomena between slow and faster moving 
regimes based on the local tissue anisotropy. Perrillat-Mercerot et al.29 studied a mathematical model for the 
growth of glioma cells that describes the modeling history, attentiveness and the limitations of the study of glio-
blastomas.  In30, the authors developed a mathematical model for glioblastomas by assuming that the immune cells 
migration to the glioma site along with chemotactic gradient field. The authors performed numerical simulations 
based on the experimental data.  In31, the authors studied a mathematical model as an alternative therapeutics 
for glioma cell population by combining the chemotherapy and oncolytic virotherapy. Conte et al.32 proposed 
a multiscale mathematical model for the migration of glioma cells and proliferation by considering the role of 
therapeutics. Swanson et al.33 studied a mathematical model for drug delivery of chemotherapeutic agents to treat 
malignant gliomas. In the review  article5, the authors investigated a mathematical model for glioma prolifera-
tion and aggressiveness with and without treatment strategy through a system of reaction-diffusion equations. 
Kirkby et al.37 developed a very generic experimentally validated phenomenological mathematical model for 
the proliferation and invasion of aggressive brain tumors. They used Monte Carlo simulation to fit the model 
with clinical investigations.

Owen and  Sherratt15 proposed a mathematical model through a system of reaction-diffusion equations by 
considering the spatial interplays for macrophages, mutant cells and the normal cells, indicating the capability 
of macrophages to destroy the tumor cells. Habib et al.24 studied a theoretical and numerical framework of a 
continuum model for brain tumor consists of six reaction-diffusion system to describe chemotactic and hapto-
tactic cell dynamics. Tanaka et al.38 constructed a hybrid compartment-continuum-discrete model with a goal to 
investigate the progression and infiltration of malignant gliomas. Kim et al.22 developed a mathematical model 
to describes the dynamics of glioma cells in presence of immune responses using a reaction-diffusion system by 
introducing the effect of adhesion and gives an elucidation for the different patterns of cell migration. Later on, 
Kim et al.23 constructed another mathematical model of high-grade glioblastoma evolution that concentrated 
on the relative balance of the migration and proliferation of glioma cells. Their model gives an interpretation 
for the growth-invasion cycling patterns of glioma cell population in response to high/low glucose uptake in 
microenvironment. Toma et al.39 investigated a mathematical model that determine the proliferation and infil-
tration of malignant gliomas at a cellular level by introducing the role of microglia/macrophages cells with the 
help of reaction-diffusion equations.

In the present paper we address a mathematical model that describes the interplay between malignant glio-
mas, macrophages, cytotoxic T-lymphocytes, immuno-stimulatory cytokine IFN-γ and the immuno-suppressive 
cytokine TGF-β, through a coupled system of reaction-diffusion equations. The main aim of this article is to gain 
an insight into mechanisms of spatiotemporal pattern formation in a glioma-immune interaction model. We 
investigate the heterogeneous nature of high-grade gliomas, macrophages, cytotoxic T-lymphocytes in both one 
and two dimensional spaces. The outcomes of our computational studies highlight a wide range of spatiotemporal 
dynamics, most important of which are patterns of spatiotemporal heterogeneity. Interestingly, the investigated 
spatiotemporal heterogeneity is mainly caused by the interplay of the cell populations in space and time which 
indicates the phenomena of long-term dynamics of the glioma-immune interaction.

The organization of this article is as follows. After the introduction, we described the glioma-immune inter-
action model and their microenvironment through a reaction-diffusion system. In the “Qualitative study the 
model”, we analyze the mathematical model and state the conditions for local asymptotic stability without dif-
fusion, then investigate the model system with diffusion coefficient. In the same section, we observed that the 
temporally stable interior equilibrium point E∗ remains stable under the small inhomogeneous spatiotemporal 
perturbations. In the “Sensitivity analysis”, sensitivity analysis is studied using Partial Rank Correlation Coef-
ficient (PRCC) to identify which system parameters are most effective with respect to the model output. In the 
“Spatiotemporal dynamics”, we presented some numerical simulations in one and two-dimensions. Finally we 
discuss the main outcomes of the present analysis and propose future directions of our research.
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The spatiotemporal model
Our aim in the creation of a model system is to allow sufficient complexity so that the model will qualitatively 
generate clinically observed in vivo malignant gliomas growth patterns, while it simultaneously maintains enough 
simplicity to admit model analysis. Our previous mathematical model that we modified  here16 depicts the prolif-
eration of glioma cell population and immune system interaction through a system of coupled nonlinear ordinary 
differential equations by considering the effect of immunotherapeutic drug T11 target structure. However, the 
work was significant but simple in the sense that the authors did not take into account the movement of malig-
nant gliomas and immune system responses. The glioma cells are highly diffusive and invasive in nature and its 
survival rate varies from 1 year to 3 years in the category of Grade IV and Grade III,  respectively3,36. Also, the 
glioma cells are the heterogeneous group intracranial neoplasms, undifferentiated and genomically  unstable5.

Different factors influence glioma cell migration in the brain. Migration can be stimulated by extracellular 
matrix (ECM) in a process known as haptotactic  migration22. Glioma cells motility is also stimulated by different 
molecules which they secrete, leading to chemotactic  migration23. Despite progresses in understanding the rudi-
mentary biology of glioblastoma, studies on glioma cell migration are hindered due to the lack of efficient in vitro 
or in vivo migration models. Migration of human glioma stem cells occurs in the brain parenchyma through 
continuous interplay with axon fibers, glial cells, microglia, and endothelial cells that likely affect their migra-
tory  efficiency40,41. Glioma cells have been expressed to respond to a variety of migratory cues, incorporating 
chemotactic, galvanotactic as well as mechanical  cues42,43. These migratory cues are being actively investigated to 
promote the understanding of glioblastoma migratory behavior and to identify possible methods of intervention.

In patients, glioma cells usually follow preferred dispersion routes such as along white matter tracts and 
the basal lamina of brain blood vessels. This indicates that glioma cell migration may be dependent on specific 
substrates and structures in the brain. There are some existing literatures which focused on the spatiotemporal 
dynamics of glioma-immune interactions to better understand the invasion of malignant gliomas and immune 
system interplays in the brain of  patients5,20–25,27–30,32–34,36,38,44–47. Altogether it is clear that the overall extent and 
pattern of invasion is due to multiple factors including the inherent properties of the glioma cells themselves 
and their microenvironment.

We present a schematic diagram for the glioma-immune interaction model in Fig. 1 that describes the pro-
liferation and inhibition of cell populations as well as the interactions between all model species. The glioma-
immune interaction model itself is presented in Eqs. (1)–(5), which we have interpreted to give a full description 
of each of the terms in the model.

The right hand side of Eq. (1) describes the growth of malignant gliomas without any immune responses, 
using logistic growth function where G represents glioma cell numbers at any moment. The term r1 represents 
the proliferation rate and Gmax stands for the carrying capacity or maximum glioma cell burden. The second 
term of (1) designates the eradication of glioma cells by the immune components macrophages (M) and cyto-
toxic T-lymphocytes (CT ) at the rates α1 and α2 , respectively. The immuno-suppressive factor TGF-β secreted 
by malignant  gliomas48 has tried to down-regulate the activity of both the immuno-stimulatory components 
macrophages and activated cytotoxic T-lymphocytes49. The final term describes the random motility of malig-
nant glioma cells where DG represents the diffusion coefficient. Combining these assumption gives the following 
reaction-diffusion equation for malignant gliomas:

Figure 1.  A schematic diagram represents the interaction of cells and cytokines that are used in the model. The 
model represents cells (colored rectangles) and cytokines (clear rectangles). Sharp arrows indicate proliferation/
activation, blocked arrows indicate killing/blocking/inhibition and round arrows indicate self-proliferation of 
cells.
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Macrophages are one of the crucial innate immune cells associated in the regulation of anti-cancer immuno-
therapies, having either immuno-stimulatory or immunosuppressive  effects50. The heterogeneity of macrophages, 
with phenotypes varying from the anti-tumor classically-activated M1 (pro-inflammatory) macrophages to 
the pro-tumor alternatively-activated M2 (anti-inflammatory) macrophages, makes it hard to understand and 
progression and control of tumor cell  population51. M1 macrophages are activated by IFN-γ, and secrete high 
levels of IL-12 and low levels of IL-10 whereas M2 macrophages produce high levels of IL-10, TGF-β and low 
levels of IL-12. Tumor-associated macrophages are mainly M2 phenotype, and actively promote growth of tumor 
 cells50,51. In our study, we have considered M1 phenotype that is mainly activated by IFN-γ and suppresses the 
activity of glioma cell  population52.

The macrophage populations are highly heterogeneous in nature, in terms of its activation/proliferation and 
 chemotaxis53, and so one can predict a more extensive set of variables that would include numerous subpopula-
tions of macrophages. The macrophages population are able to move through pseudopodia; so our assumption 
in the previous  paper16 was unrealistic in the sense that the activation of macrophages are pointwise in space. 
In order to overcome this restriction, we introduce the movement of macrophages through a reaction-diffusion 
system.

We assume that macrophages can proliferate logistically with intrinsic growth rate r2 and maximum carry-
ing capacity Mmax due to crowding effect of all cell types. The macrophages cell populations are activated by 
the immuno-stimulatory cytokine IFN-γ at the rate a1 , and at the same time it is down-regulated by immuno-
suppressive cytokine TGF-β. We assume that the cell count of macrophages decrease due to the interaction with 
glioma cell population at the rate α3 and their interaction follow the Michaelis–Menten saturation dynamics 
with k2 being a half saturation constant. The Michaelis–Menten kinetics is described by a linear denominator 
with the constant k2 representing the accessibility of the glioma cells to macrophages. So that the conversation 
equation for macrophages population is given by

Now, we study the kinetics of activated cytotoxic T-lymphocytes and other cell population as well as the 
mechanisms of migration and the diffusion of cytotoxic T-lymphocytes54. In our study, we considered activated 
cytotoxic T-lymphocytes as the activated cytotoxic T-lymphocytes can cross the blood-brain-barrier and gain 
entry into the  brain18. It is important to take into account that there is no ‘nonlinear’ movement of cytotoxic 
T-lymphocytes and no ‘nonlinear’ diffusion of chemokine, that is, all the random motility and diffusion terms 
are supposed to be  constant55.

We consider that the proliferation of cytotoxic T-lymphocytes occur due to direct presence of malignant 
glioma cell population, where the parameter a2 models the rate of antigenicity of malignant gliomas. Antigenic-
ity can be considered as a measure of how different the gliomas are from ‘self ’. The recruitment of cytotoxic 
T-lymphocytes is inhibited by immunosuppressive cytokine TGF-β where k5 is termed as an inhibitory parameter. 
Cytotoxic T-lymphocytes have a lifespan on an average 1/µ1 days. The clearance of cytotoxic T-lymphocytes by 
malignant gliomas occur through the Michaelis-Menten saturation dynamics at the rate α4 and the half satura-
tion constant k3 . Michaelis-Menten form represents the saturated effects of the immune response due glioma 
cell population. Therefore, the reaction-diffusion equation governing the evolution of cytotoxic T-lymphocytes 
density is

Transforming growth factor β (TGF-β) signaling is related to the regulation of proliferation, differentiation 
and survival (or apoptosis), among several type of cells including glioma  cells7. The glioma induced cytokines 
TGF-β, prostaglandin E2 and IL-10 suppress the activity of immune system and stimulate the production of 
malignant gliomas. When the gliomas are sufficiently small it secrete small amount of TGF-β to obtain ample 
nutrients from the neighboring tissue. However, as the glioma cell population grows sufficiently large, glioma 
cells suffer from the lack of oxygen, nutrients and space, it begins to produce TGF-β to stimulate angiogenesis 
and to invade the immune response once glioma growth  resumes48,56.

TGF-β has a constant source rate s1 in central nervous system (CNS). Production of TGF-β is proportional 
to the size of glioma cell population, at the rate b1 . TGF-β is also supposed to decay linearly at the rate µ2 . We 
assume that TGF-β diffuse throughout the tissue with a slower rate than glioma cell population. Therefore, the 
reaction-diffusion equation for the density of TGF-β is given by

(1)∂G
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=
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Interferon-γ (IFN-γ) is a cytokine acting on cell-surface receptors and activated transcription of genes. IFN-γ 
is produced by cytotoxic T-lymphocytes in the glioma micro-environment57. The dynamics of IFN-γ is depicted 
in Eq. (5). First term on the right side of (5) represents the linear production of IFN-γ and b2 represents the release 
rate of a single cytotoxic T-lymphocytes. We consider that the source of IFN-γ is cytotoxic T-lymphocytes18. 
The density of IFN-γ is also assumed to decay linearly at the rate µ3 . We assume that the immuno-stimulatory 
cytokine IFN-γ diffuse throughout the tissue within the brain. Hence, the reaction-diffusion equation governing 
the evolution of the IFN-γ is

where ∇2
(

≡ ∂2

∂x2
+ ∂2

∂y2

)

 represents the two-dimensional Laplacian operator, subject to the zero-flux boundary 
conditions with the given nonnegative initial distribution of glioma cell population (G), macrophages (M), 
activated cytotoxic T-lymphocytes (CT ) , cytokine TGF-β (Tβ) and the cytokine IFN-γ (Iγ ) are given by

Here � represents the bounded square domain (simply connected) with boundary ∂� , ∂/∂n indicates out-
ward drawn normal derivative on ∂� with DG , DM , DC , DT and DI are the diffusion coefficients for glioma cell 
population (G), macrophages (M), CD8+T cells (CT ) , TGF-β (Tβ) and IFN-γ (Iγ ) , respectively. In the model 
of Eqs. (1)–(5), G(x, y, t), M(x, y, t), CT (x, y, t) , Tβ(x, y, t) and Iγ (x, y, t) represents the densities glioma cells, 
macrophages, CD8+ T cells, TGF-β and IFN-γ respectively, at time t with (x, y) ∈ � is the position in space.

Qualitative study the model
In this section, we shall investigate the spatially homogeneous steady states of the glioma-immune interaction sys-
tem (1)–(5) and their local stability analysis. In order to do that, we consider DG = DM = DC = DT = DI = 0 
and the reaction-diffusion model system (1)–(5) reduces to the temporal system as follows

The biologically feasible steady states of the temporal model (8) are the positive solutions of the following 
equations fi(G,M,CT ,Tβ , Iγ ) = 0, for i = 1 to 5. The model system (8) has three biologically relevant steady 
states, namely 

 (i) boundary steady state E1(0, 0, 0,Tβ , 0) , that is, E1(0, 0, 0, s1
µ2
, 0),

 (ii) glioma cell free steady state Ē(0, M̄, 0,Tβ , 0) , that is, Ē(0,m1, 0,
s1
µ2
, 0) , and

 (iii) an interior equilibrium point E∗(G∗,M∗,C∗
T ,T

∗
β , I

∗
γ ).

The interior steady state E∗ is difficult to study explicitly. By using baseline set of model parameters stated in 
the Table 1, the model system (1)–(5) has only one positive interior fixed point E∗ is approximately given by 
G∗ = 875419, M∗ = 943092, C∗

T = 303.397, T∗
β = 9134.33, and I∗γ = 0.303397.

In order to perform local stability analysis for the system (8), we evaluate the Jacobian matrix corresponding 
to each of the steady state E(G,M,CT ,Tβ , Iγ ) is given by

(4)∂Tβ
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(8)
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where

At the boundary steady state E1(0, 0, 0, s1
µ2
, 0) , the eigenvalues of the Jacobian matrix JE1 are �1 = r1, �2 = r2

, �3 = −µ1, �4 = −µ2 , and �5 = −µ3 . From the eigenvalues it is obvious that the boundary steady state E1 is 
hyperbolic saddle type with two dimensional unstable manifold and three dimensional stable manifold. From the 
biomedical view point, the boundary equilibrium point E1 has limited interest in the glioma-immune interactive 
dynamics as only the immuno-suppressive cytokine TGF-β present.

At the cancer free or glioma-free equilibrium point Ē(0,Mmax, 0,
s1
µ2
, 0) of the system (8) has the eigenvalues 

of JĒ are given by �1 = r1 −
α1Mmaxµ2
k1(s1+e1µ2)

 , �2 = −r2 , �3 = −µ1 , �4 = −µ2 and �5 = −µ3. If α1 < r1k1(s1+e1µ2)
µ2Mmax

, then 
Re(�1) < 0 hence, Ē is locally asymptotically stable. If α1 > r1k1(s1+e1µ2)

µ2Mmax
, then Re(�1) > 0 hence, Ē is saddle type. 

If α1 = r1k1(s1+e1µ2)
µ2Mmax

, then Re(�1) = 0 gives zero eigenvalue of JĒ and we cannot conclude about the stability of 
Ē . The preceding argument indicates that the proliferation rate of malignant gliomas r1 as a critical parameter, 
which characterizes the stability of the glioma-free equilibrium point E2 . From the biomedical view point the 
glioma-free singular point Ē has an impact as it gives an idea under what circumstances the patients’ will be free 
from malignant glioma cell population.

JE =
�
J(G,M,CT ,Tβ , Iγ )

�

E
=








m11 m12 m13 m14 0
m21 m22 0 m24 m25

m31 0 m33 m34 0
m41 0 0 m44 0
0 0 m53 0 m55







,

m11 = r1

(

1− 2G
Gmax

)

−
k1(α1M+α2CT )

(Tβ+e1)(G+k1)2
, m12 = −

α1G
(Tβ+e1)(G+k1)

, m13 = −
α2G

(Tβ+e1)(G+k1)
,

m22 = r2(1−
2M
Mmax

)− α3G
G+k2

, m14 =
G(α1M+α2CT )

(Tβ+e1)2(G+k1)
, m21 = −

α3k2M
(G+k2)2

,

m24 = −
a1Iγ

(k4+Iγ )(Tβ+e2)2
, m25 =

a1k4
(k4+Iγ )2(Tβ+e2)

, m31 =
a2

k5+Tβ
−

α4k3CT

(G+k3)2
,

m33 = −µ1 −
α4G
G+k3

, m34 = −
a2G

(k5+Tβ )2
, m41 = b1,

m44 = −µ2, m53 = b2, m55 = −µ3.

Table 1.  Description of the parameter values used for computer simulations.

Parameter Description Value/range Units Source

r1 Growth rate of malignant gliomas 0.01–0.022 h−1 16

Gmax Carrying capacity of glioma cells 8.8265× 10
5 Cell 16

e1 Michaelis-menten constant 10
4 pg 18

α1 Loss of macrophages due to glioma cells 1.5 pg  h−1 52

α2 Loss of CD8+T cells due to glioma cells 0.12 pg  h−1 16

DG Diffusion rate of glioma cells 0.1 - 100 cm2  s−1 25,45

DM Diffusion rate macrophages 5 cm2  s−1 15

DC Diffusion rate of CD8+T cells 25 cm2  s−1 15

k1 Half-saturation constant 2.7× 10
4 Cell 52

r2 Proliferation rate of macrophages 0.3307 h−1 16

Mmax Carrying capacity of macrophages 10
6 Cell 16

a1 Maximum efficiency of IFN-γ 0.1163 Cell  h−1 16

k4 Half-saturation constant 1.05× 10
4 pg 16

e2 Michaelis-menten constant 10
4 pg 18

α3 Anti-proliferative effect of macrophages 0.0194 h−1 52

k2 Half saturation constant 2.7× 10
4 Cell 16

a2 Antigenicity of gliomas 0− 0.5 h−1 pg 16

k5 Inhibitory constant 2× 10
3 pg 17

µ1 Natural death rate of CD8+T cells 0.0074 h−1 11

α4 Anti-proliferative effect of CD8+T cells 0.1694 h−1 17

k3 Half-saturation constant 3.3445× 10
5 Cell 16

s1 Source of TGF-β in the CNS 6.3305× 10
4 pg  h−1 18

b1 Source rate of TGF-β 5.75× 10
−6 pg  cell−1  h−1 16

µ2 Degradation rate of TGF-β 6.931 h−1 56

b2 Release rate of CD8+T cells 1.02× 10
−4 pg  cell−1  h−1 16

µ3 Natural decay rate of IFN-γ 0.102 h−1 16
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Now, we shall investigate the asymptotic stability of an interior steady state E∗(G∗,M∗, C∗
T ,T

∗
β , I

∗
γ ) for the 

temporal system (8). Therefore, the characteristic equation of the Jacobian matrix JE∗ is given by

where

Due to the well-known Routh–Hurwitz criterion, the interior equilibrium point E∗ is asymptotically 
stable if the following conditions: ρj > 0 , (for j = 1 , 2, 3, 4, 5), ρ1ρ2 − ρ3 > 0 , ρ1ρ2ρ3 > ρ2

1ρ4 + ρ2
3 and 

(ρ3ρ4 − ρ2ρ5)(ρ1ρ2 − ρ3) > (ρ1ρ4 − ρ5)
2 are satisfied. For the parameter values defined in the Table 1, the 

system has a unique biologically relevant, nonnegative interior steady state E∗ , and the characteristics equation 
becomes

which satisfies all the conditions for the Routh–Hurwitz criteria ( ρ1ρ2 − ρ3 = 28.7465 > 0 , 
ρ1ρ2ρ3 − ρ2

1ρ4 − ρ2
3 = 16.3021 > 0 , (ρ3ρ4 − ρ2ρ5)(ρ1ρ2 − ρ3)− (ρ1ρ4 − ρ5)

2 = 0.5298 > 0 ) and the asso-
ciated eigenvalues are −6.931, −0.311883, −0.129568, −0.102002 and −0.00983845 . All the eigenvalues are nega-
tive and have negative real parts, therefore the temporal system (8) is locally asymptotically stable. From the 
medical point of view, the interior steady state E∗ has a great impact as it gives us an idea under what situation 
all the cell populations including glioma cell population persists. For the parameter set in the Table 1, our model 
system has a unique interior steady state and it is locally asymptotically stable. Whatever initial conditions may 
be the system will be locally asymptotically stable and goes to an interior singular point. Thus, we leave the 
global stability analysis.

Now, we shall explore the dynamics of diffusion-driven instability with respect to the interior steady state, 
that is, the spatially homogeneous steady-state solution E∗(G∗, M∗, C∗

T , T
∗
β , I

∗
γ ) for the reaction-diffusion system 

(1)–(5). Clearly, the interior steady state E∗ for the temporal model (8) is a spatially homogeneous steady-state 
for the reaction-diffusion system (1)–(5). In this section, we assume that the homogeneous interior steady state 
E∗ is asymptotically stable for the temporal system, which indicate that the spatially homogeneous steady state is 
locally stable with reference to spatially homogeneous perturbations. Diffusivity is often referred as a stabilizing 
process, yet it is well-known that, in a system of interacting populations, diffusion can make a spatially homo-
geneous equilibrium linearly unstable with respect to heterogeneous  perturbation14,35,58. The diffusion-induced 
instability happen when a temporally stable steady-state become destabilized due to the diffusive nature of the 
interactive  populations14.

To study the conditions for diffusion-driven destabilization of the temporal system, one should investigate 
how small inhomogeneous perturbations of the homogeneous equilibrium point acts in the large-time limit. 
To notice the scenario, we choose the following two dimensional Fourier modes as the perturbation function as

where ξ , σ , ǫ , η and ρ are very small and nonnegative constants, �l is the activation rate of perturbation at time t, 
and l =

(
lx , ly

)
 is the wave number of the solutions. In the spatiotemporal system, the magnitude of �l depends 

on the sum of the square of the wave numbers l2 = l2x + l2y
58. As a result, the eigenvalues are influenced by wave 

numbers. It makes more clear that some of the Fourier modes will disappear in the large-time limit whereas 
others will amplify. For notational clarity, we consider �l as a rotational symmetric function on lx ly−plane and 
substituting l2 = l2x + l2y , we obtain the two-dimensional case from one-dimensional derivation. On substitution 
of (9) into the model system (1)–(5), we linearize the system around interior singular point E∗ , we get

�
5
+ ρ1�

4
+ ρ2�

3
+ ρ3�

2
+ ρ4�+ ρ5 = 0,

ρ1 = −m11 −m22 −m33 −m44 −m55,

ρ2 = −m12m21 +m11m22 −m13m31 +m11m33 +m22m33 −m14m41 +m11m44 +m22m44

+m33m44 +m11m55 +m22m55 +m33m55 +m44m55,

ρ3 =m13m22m31 +m12m21m33 −m11m22m33 +m14m22m41 −m12m24m41 +m14m33m41

−m13m34m41 +m12m21m44 −m11m22m44 +m13m31m44 −m11m33m44 −m22m33m44

+m12m21m55 −m11m22m55 +m13m31m55 −m11m33m55 −m22m33m55 +m14m41m55

−m11m44m55 −m22m44m55 −m33m44m55,

ρ4 = −m14m22m33m41 +m12m24m33m41 +m13m22m34m41 −m13m22m31m44 −m12m21m33m44

+m11m22m33m44 −m12m25m31m53 −m13m22m31m55 −m12m21m33m55 +m11m22m33m55

−m14m22m41m55 +m12m24m41m55 −m14m33m41m55 +m13m34m41m55 −m12m21m44m55

+m11m22m44m55 −m13m31m44m55 +m11m33m44m55 +m22m33m44m55,

ρ5 = −m12m25m34m41m53 +m12m25m31m44m53 +m14m22m33m41m55 −m12m24m33m41m55

−m13m22m34m41m55 +m13m22m31m44m55 +m12m21m33m44m55 −m11m22m33m44m55.

�
5
+ 7.48429�4 + 3.92565�3 + 0.634199�2 + 0.0344357�+ 0.000281075 = 0,

(9)

G(x, y, t) =G∗
+ ξ exp((lxx + ly(y))i + �l t),

M(x, y, t) =M∗
+ σ exp((lxx + ly(y))i + �l t),

CT (x, y, t) =C∗
T + ǫ exp((lxx + ly(y))i + �l t),

Tβ(x, y, t) =T∗
β + η exp((lxx + ly(y))i + �l t),

Iγ (x, y, t) = I∗γ + ρ exp((lxx + ly(y))i + �l t),
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where w = (G,M,CT ,Tβ , Iγ )
T , JE is the variational matrix of the spatially homogeneous model system (1)–(5) 

and M is the corresponding matrix for diffusion coefficients;

After the substitution of (9) into the system of equations (1)–(5), the solutions of the linearized system are 
proportional to w = exp((lxx + ly(y))i + �l t) and using standard linear stability  analysis35 the system of partial 
differential equations (10) leads to the following version of the spatial model system as

where l is spatial wave number defined as before.
The eigenvalues (�) of the linearized model system (11) are found by the solutions of the following charac-

teristics equation as follows

Explicitly, we can write that

with

which is a fifth degree polynomial in � and l. For the parameters value defined in the Table 1, we solve the charac-
teristic equation in the numerical section. For that, we plot the dispersion curves for the characteristic polynomial 
to investigate how the value of the real part of the eigenvalues (Re(�)) varies with respect to l.

Sensitivity analysis
The model for glioma-immune interplays given in equations (1)–(5) is investigated so that the system parameters 
are taken from different sources including existing literatures, experimental works and in vivo data due to their 
wide variability. Thus, a sensitivity analysis is conducted by using Partial Rank Correlation Coefficient (PRCC) 
technique to determine how the glioma-immune model output is affected by changes in a specific parameter 
irrespective the uncertainty over the rest of the parameters. In our model, we have 23 parameters for which we 
varied all the model parameters simultaneously. PRCC quantifies the relationship between a state equation of 
interest and each model parameter. As a result PRCC help to find the important parameters, which contribute 
most to the system variability. For our model simulation, we consider the PRCC values between − 1 and + 1.

Following the method developed by Marino et al.59, we performed Latin hypercube sampling and generated 
2500 samples to compute the PRCC and p-values with reference to the glioma cells for five different time points 
in order to determine which parameters consistently influence the model output. The indexes are computed at the 
following time points 40, 60, 80, 100 and 120 days prior to equilibrium state. Figure 2 represents the PRCC results, 
which indicates that the parameters for glioma proliferation rate, r1 ; glioma cells carrying capacity, Gmax ; deacti-
vation rate of glioma cells due to macrophages, α1 and the carrying capacity of macrophages, Mmax account for 
most uncertainty of the malignant glioma cell population. Figure 2 exhibits the PRCC results, which indicate that 
the malignant gliomas over time is mainly influenced due to variation of the parameters r1 , Gmax , α1 and Mmax.

From the PRCC Fig. 2 it can be observed that the proliferation rate of glioma cells r1 and the carrying capac-
ity of glioma cell population Gmax are highly positively correlated with respect to glioma cells. It is interesting 
to observe that the rate α1 , by which the glioma cell population reduces due to interaction with macrophages 
population, is highly negatively correlated, that is, when the blockade of the macrophages is increased, the con-
centration of glioma cells is decreased. It can also be observed that the carrying capacity of macrophages Mmax 
is highly negatively correlated.

(10)wt = JE +M∇
2w,

M =








DG 0 0 0 0
0 DM 0 0 0
0 0 DC 0 0
0 0 0 DT 0
0 0 0 0 DI







.

(11)�w = JEw −Ml2w,

�
�
�
JE −Ml2

�
− �I

�
� =

��
JE −Ml2

�
− �I

�
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M
CT

Tβ

Iγ







= 0.
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2
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Spatiotemporal dynamics
In this section, extensive numerical simulations are carried out for the glioma-immune interaction model (1)–(5) 
in both one and two-dimensional domains. In order to compute the numerical simulations of our model, we use 
finite difference approximations to perform a spatial discretization of the model equations. Now, we shall discuss 
the numerical scheme that has been used in our numerical solutions.

Numerical algorithm. The nonlinear reaction-diffusion system (1)-(5) was solved numerically by using 
MATLAB. Numerical integrations of (1)–(5) are performed by transforming the infinite dimensional continu-
ous system to a finite dimensional form using discritization with respect to time and space. The forward Euler 
method is utilized for non-diffusive part and standard five-point finite difference method is utilized for diffusion 
part. We performed computer illustrations over a 1000× 1000 lattice sites with spacing between two neighbor-
ing lattice points are considered as �x = �y = 1 with �t = 0.002 . To avoid numerical stiffness, we performed 
the simulations qualitatively for smaller values of the step sizes. It is important to note that the patterns studied 
in this manuscript are not dependent on the time-step �t . For the one-dimensional case, the wave number l is 
scalar and the corresponding single pattern appears, but for the case of two-dimensional system, the correspond-
ing wave number (lx , ly) is two-dimensional, where l =

√

l2x + l2y  and complex patterns appear. The detailed 
numerical scheme and algorithm are given in the Supplementary Material.

Zero-flux boundary conditions has been used at the boundary of square domain to perform the numerical 
simulations. We have taken same initial conditions for each numerical simulation and the initial density of 
glioma cell population, macrophages, CD8+ T cells, TGF-β and IFN-γ are chosen in such a way that they are 
located inside the domain. The choice of initial condition indicates small inhomogeneous spatial perturbation 
from homogeneous equilibrium state. In case of one-dimensional system, the initial distribution of the cell 
populations are taken as

and for the case of two-dimensional system, the initial distribution of the cell populations are taken as

Results. We have plotted the dispersion curve in the Fig.  3, which clearly shows that after inhomogene-
ous perturbation the spatiotemporal dynamics remain stable, that is, Re(�) < 0 . Thus, there is no possibility of 
occurring the Turing pattern which is biologically relevant in glioma-immune interactive dynamics. We com-
puted the eigenvalues of the corresponding characteristic equation for the range of l ∈ [0, 106],

It is important to note that for a larger interval of l, the largest real part of the eigenvalue is always negative 
which indicates that the model system (1)–(5) is always stable.

The biological motivation of this study is to investigate the heterogeneous nature of glioma cell population and 
immune components namely, macrophages and activated CD8+T cells. The two-dimensional system provides 

{
G(x, 0) = CT (x, 0) = Tβ(x, 0) = Iγ (x, 0) = ǫ(x − 300)2 < 900, x ∈ �, ǫ > 0
M(x, 0) = η(x + 300)2 < 900, x ∈ �, η > 0,







G(x, y, 0) = CT (x, y, 0) = ǫ((x − 300)2 + (y − 300)2) < 900, (x, y) ∈ �, ǫ > 0,
Tβ(x, y, 0) = Iγ (x, y, 0) = ǫ((x − 300)2 + (y − 300)2) < 900, (x, y) ∈ �, ǫ > 0,
M(x, y, 0) = η((x + 300)2 + (y + 300)2) < 900, (x, y) ∈ �, η > 0.

�
5
+ �

4
[73.5l2 + 7.48429] + �

3
[1447.75l4 + 269.311l2 + 3.92565]

+ �
2
[4393.13l6 + 1379.99l4 + 109.013l2 + 0.634199] + �[3343.75l8 + 1931.52l6

+ 292.795l4 + 10.4906l2 + 0.034457] + (750l10 + 653.957l8 + 126.786l6 + 6.82954l4

+ 0.104449l2 + 0.000281075) = 0.

Figure 2.  PRCC results indicating sensitivity indices for the system parameters in absence of diffusion with 
glioma cell population chosen as a baseline PRCC variable at five different time points with p < 0.0001.
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more realistic phenomenon with much complexity than one-dimensional system which is the main aim to 
investigate the solutions of the two-dimensional system.

Figure 4 represents the result of numerical simulations of the density of malignant gliomas in one-dimensional 
domain whereas the corresponding two-dimensional scenarios are represented in the Fig. 5. Figure 4 shows that 
the one-dimensional heterogeneous spatial distribution of glioma density within brain tissue corresponding 
to times 75, 150, 200, 250, 350 and 400 h respectively. Initially, the glioma cells migrate a very small distance 

Figure 3.  Numerically simulated dispersion curves for the model system (1)–(5) of wavenumber(l) (x-axis) 
against the real part of � (y-aixs) with DG = 55, DM = 5, DT = 400, DC = DI = 25 and rest of the parameters 
are defined in Table 1. Five different curves are designate for different eigenvalues. The dispersion curve is 
computed by obtaining the real part of eigenvalues for the linearized system by varying the wavenumber(l) from 
zero in increments of 0.001.

Figure 4.  The one-dimensional numerical simulations describe the dynamics of glioma cells density G(t, x, y) 
at times corresponding to 75, 150, 200, 250, 350 and 400 h respectively. The simulation shows the migration of 
glioma cells density through the domain for an increasing value of time. Parameter values: DG = 55 , DM = 5 , 
DT = 400 , DC = DI = 25 and the other parameter values and initial conditions are presented in the Table 1.
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into the domain and as time evolves by T = 400 h ( ∼ 17 days) glioma cells migrate almost all over the domain. 
Figure 5 highlights different spread or migration pattern of gliomas at different times. In Fig. 5, initially at T = 
75 h ( ∼ 3 days) the gliomas spread in a small mass into the domain. At, T = 200 h ( ∼ 8 days) glioma cells are 
spread or migrated almost one-fifth of the domain due to its aggressive nature. By the time T = 350 h ( ∼ 15 
days) the initial cluster of glioma cells reaches almost in the left-hand boundary. At, T = 400 h ( ∼ 17 days) the 
initial cluster of glioma cell population reaches the left-hand boundary. In this connection, we assume that the 
left-hand boundary domain represents a zone of solid/rigid tissue or bone that the glioma cell populations are 
unable to infiltrate/penetrate/overcome (due to zero-flux boundary conditions) and hence they begin to move in 
the opposite direction, driven mainly by the macrophages and other immune components like activated cytotoxic 
T-lymphocytes, IFN-γ and extracellular matrix components gradient.

Figure 6 describes the results of one-dimensional numerical simulations of macrophages whereas the analo-
gous two-dimensional shaded plots are shown in the Figure 7 under different scenarios of time in hours. Figure 6 
shows that the spatiotemporal dynamics of macrophages population within the brain tissue corresponding to 
times 75, 150, 200, 250, 350 and 400 h respectively. Initially, at T = 75 h ( ∼ 3 days) the macrophages are small in 
size and it migrates little distance into the domain. By T = 250 h ( ∼ 11 days) macrophages have moved almost half 
of the domain maybe due to pseudopodia-mediated movement. From Figs. 6 and 7 it is clear that the migration 
rate of macrophages is faster than malignant glioma cells which has been observed in the Figs. 4 and 5, respec-
tively. Hence, as the time increased at T = 400 h ( ∼ 17 days) macrophages population continue to move towards 
the entire domain. In the Fig. 7, we described the behavior of macrophages in two-dimensional shaded plot to see 
the more clear scenarios of how the macrophages migrate so quickly throughout the entire square domain than 
malignant gliomas. To illustrate the migration of macrophages or the wave of macrophages, we generated the 
snapshots of two-dimensional domains with times 75, 150, 200, 250, 350 and 400 h respectively. The distribution 
of macrophages at T = 75 h ( ∼ 3 days), in Fig. 7, describes that a small cluster of macrophages is built up but, that 
is spread in a large amount for T = 150 h ( ∼ 6 days) and T = 200 h ( ∼ 8 days) and so on, maybe due to increased 
haptotactic migration. In Fig. 7, at T = 250 h ( ∼ 11 days) the macrophages spread almost half of the domain and 
it is spread more faster than glioma cell population compared to Fig. 5 at T = 250 h ( ∼ 11 days). At, T = 400 h 
( ∼ 17 days) the macrophages spread almost the entire rectangular domain (see the Fig. 7) and reaches the right-
hand boundary of the domain, which may be explained as the right-hand boundary described as a zone of rigid 
tissue or bone that the macrophages are unable to overcome and they begin to move in the opposite direction to 
their initial direction, mainly by  chemotaxis53 and pseudopodia-mediated migration.

Figure 8 represents the results of numerical illustrations for the system (1)–(5) in one-dimensional spatiotem-
poral dynamics of activated cytotoxic T-lymphocytes whereas the comparable two-dimensional spatiotemporal 
shaded plot has been shown in the Fig. 9 under different time scenarios. Figure 8 exhibits the one-dimensional 
spatiotemporal kinetics of cytotoxic T-lymphocytes within the brain domain corresponding to generation times 
75, 150, 200, 250, 350 and 400 h respectively. The migration of malignant gliomas has been shown in the Figs. 4 

Figure 5.  The two-dimensional numerical simulations describe the dynamics of glioma cells density G(t, x, y) 
at times corresponding to 75, 150, 200, 250, 350 and 400 h respectively. The simulation demonstrates the 
spatial distribution of glioma cells density through the domain for an increasing value of time. Parameter 
values: DG = 55 , DM = 5 , DT = 400 , DC = DI = 25 and the other parameter values and initial conditions are 
presented in the Table 1.
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and 5, which shows similar type of patterns in the Figs. 8 and 9 respectively for cytotoxic T-lymphocytes. From 
the figures it is clear that the spread of migration for malignant gliomas (Figs. 4, 5) is faster than the migration 
of cytotoxic T-lymphocytes (Figs. 8, 9) as the recruitment of cytotoxic T-lymphocytes depends on the direct 
presence of malignant gliomas, where the parameter a2 models the antigenicity of the brain tissue. Antigenicity 
can be considered as a measure of how different the malignant gliomas is from ‘self ’.

Figure 6.  The one-dimensional numerical simulations describe the dynamics of macrophages density M(t, x, y) 
at times corresponding to 75, 150, 200, 250, 350 and 400 h respectively. The simulation shows the migration of 
macrophages density through the domain for an increasing value of time. Parameter values: DG = 55 , DM = 5 , 
DT = 400 , DC = DI = 25 and the other parameter values and initial conditions are presented in the Table 1.

Figure 7.  The two-dimensional numerical simulations describe the dynamics of macrophages density M(t, x, y) 
at times corresponding to 75, 150, 200, 250, 350 and 400 h respectively. The simulation demonstrates the 
spatial distribution of macrophages density through the domain for an increasing value of time. Parameter 
values: DG = 55 , DM = 5 , DT = 400 , DC = DI = 25 and the other parameter values and initial conditions are 
presented in the Table 1.
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Figure 8.  The one-dimensional numerical simulations describe the dynamics of cytotoxic T-lymphocytes 
density CT (t, x, y) at times corresponding to 75, 150, 200, 250, 350 and 400 h respectively. The simulation shows 
the migration of cytotoxic T-lymphocytes density through the domain for an increasing value of time. Parameter 
values: DG = 55 , DM = 5 , DT = 400 , DC = DI = 25 and the other parameter values and initial conditions are 
presented in the Table 1.

Figure 9.  The two-dimensional numerical simulations describe the dynamics of cytotoxic T-lymphocytes 
cells density CT (t, x, y) at times corresponding to 75, 150, 200, 250, 350 and 400 h respectively. The simulation 
demonstrates the spatial distribution of cytotoxic T-lymphocytes density through the domain for an increasing 
value of time. Parameter values: DG = 55 , DM = 5 , DT = 400 , DC = DI = 25 and the other parameter values 
and initial conditions are presented in the Table 1.
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In case of two-dimensional domain, the patterns of malignant gliomas has been demonstrated in the Fig. 5 
under different values of time and the patterns of activated cytotoxic T-lymphocytes has been demonstrated in 
the Fig. 9 with the same values of time. After careful observation, it can be observed that the malignant gliomas 
spread almost half of the brain domain at time T = 350 h ( ∼ 14 days) but for the same time [at T = 350 h, ( ∼ 14 
days)] the migration of cytotoxic T-lymphocytes is moderate. However, the observed patterns are not uniform 
in shape (alter temporally) and therefore, their behavior is reported as quasi-stationary. The sixth sub-figure 
(see the Figs. 5 and 9) highlights the kinetics of the malignant glioma cells and cytotoxic T-lymphocytes, spread 
almost the major portion of the domain (time T = 400 h; ∼ 17 days). The most fascinating characteristic is that 
the spatiotemporal pattern or the spread of cells is non-monotone and their pattern changes over time.

Now, we shall investigate how different random motility rate DM of macrophages influence the dynamics of 
macrophages population at the generation time T = 100 h ( ∼ 4 days). The two-dimensional Fig. 10 represents the 
spatiotemporal patterns of macrophages at time T = 100 h with different diffusion rates. Figure 10 demonstrates 
the sensitivity of diffusion coefficient of macrophages due to pseudopodia-mediated migration; the other cells 
are not so sensitive with the rate of random motility which has not been shown in this figure. From the Fig. 10, 
it can be observed that at T = 100 h ( ∼ 4 days) the macrophages are small in size with DM = 30 but for the 
increased value of random motility rate DM = 100 the macrophages are spread quickly throughout the domain. 
At DM = 250 , the macrophages are spread almost half of the domain and at DM = 350 the macrophages are 
spread in the left-hand of the domain. In this regard we may assume that the left-hand boundary constitutes a 
zone of hard bone or tissue that the macrophages are impotent to overcome (due to zero-flux boundary condi-
tions) and hence they begin to move in the opposite direction, driven mainly by  chemotaxis53 and pseudopodia-
mediated migration.

Discussion
In the present paper we studied a spatiotemporal model which depicts the growth and invasion of glioma cell 
population and immune system responses based on our previous  work16. The present work focused on the 
interaction of glioma cell population, macrophages and activated cytotoxic T-lymphocytes through a system 
of reaction-diffusion equations. The numerical simulation of the model shows that for an increasing value of 
time, the glioma cell population, macrophages and cytotoxic T-lymphocytes spread throughout the domain. The 
reaction-diffusion system has been recognized as an important tool for replying questions relating to prolifera-
tions, invasions, migrations and the spatiotemporal pattern formation. Our primary goal was to appraise the 
viable impacts for glioma invasion in a multi-species community and to investigate the existence of inhomogene-
ous pattern formation during the interaction with other immune components as well as cytokines. Basically, the 
existence of spatiotemporal heterogeneity demonstrates that dispersive glioma-immune interactions will exhibit 
the spatial variation, which has been reported in the existing  literatures15,22,23,55. Our proposed model underscores 
the broad range of kinetics which appear from the interaction of spatial random motility and heterogeneous 
dynamics in a glioma-immune system interactions.

Figure 10.  The two-dimensional sequence of profiles designates the evolution of the macrophages density 
M(t, x, y) at time T = 100 hrs(∼ 4 days) and for different rate of diffusion of macrophages corresponding to 
30, 50, 100, 150, 250 and 350 respectively. The simulations shows the spread of macrophages density for an 
increasing value of the rate of random motility. Parameter values: DG = 55 , DT = 400 , DC = DI = 25 and the 
other parameter values and initial conditions are presented in the Table 1.
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Gliomas are difficult to treat due to its infiltrative behavior, heterogeneity, isolated position beyond the blood-
brain-barrier and their migration. Thus, it is very essential to investigate the proliferation/migration pattern of 
glioma cell population; such investigations arise in Kim et al.22, Swanson et al.5,20, Harpold et al.25. In our study, we 
investigated the invasion of malignant gliomas and the reasons by which the immune components are spreading 
with respect to the time and space. The investigated heterogeneous dynamics appear due to coupling of random 
 motility14,35,58. There is a corroboration for the occurrence of dense cluster of macrophages, whose orientation 
is thought to be interconnected to glioma-cytotoxic T-lymphocytes effect of macrophages. This confirms our 
observation that the interaction among macrophages and malignant glioma cell population is a developing 
procedure for producing spatial heterogeneity.

The migration of glioma cell population from the primary brain tumor depends both on the glioma cell line 
and on the glioma micro-environment22. In our study, we derive the reaction-diffusion equations to model the 
spread of glioma-immune system interaction within the brain tissue which is considered as spatially homo-
geneous medium. Due to the migration of glioma micro-environment, we have tried to comprehend by using 
reaction-diffusion modeling how glioma cell population and immune components spread over the domain and 
how this migration evolves in response with various crucial parameters. The first parameter, the macrophages 
diffusion coefficient DM , is highly related to the migration of cells. In the “Qualitative study the model”, we 
performed the local stability analysis in both the temporal and spatiotemporal system. We employed dispersion 
relation in the same section and it becomes clear that after the inhomogeneous perturbations, the model system 
is stable forever. We observed that the spread of macrophages (or macrophage cell distribution) are more sensi-
tive to the rate of random motility of macrophages population. It is to be noted that the irregular spatiotemporal 
pattern formation of immune system response has been studied by Owen and  Sherratt15 by considering mac-
rophage interactions with mutant/tumor cells. Our results for macrophages interaction with malignant glioma 
cell population has much in common with Owen and Sherratt’s15 observations. It is worth mentioning that the 
gliomas, macrophages and cytotoxic T-lymphocytes are more sensitive to the time which has been shown in 
the numerical simulations. Our spatial aspects in glioma-immune system dynamics provide a fine resemblance 
between our prognosis at the temporal and spatiotemporal scales.

The numerical illustrations of the proposed model make it easier to understand the biological frameworks 
associated in the existence of spatiotemporal irregularities observed in the growth of malignant gliomas, mac-
rophages and activated CD8+T cells, which has been reported in various immunomorphological  explorations55. 
Meanwhile, in this paper we observed some of the important heterogeneous features interconnected with the 
mathematical theory of interplays among malignant gliomas, macrophages and cytotoxic T-lymphocytes. We 
also observed that for an increasing value of time, the glioma cell population, macrophages and cytotoxic T-lym-
phocytes spread throughout the domain.

The results appear in this article indicating the additional observation of glioma-immune system interac-
tions through a coupled system of reaction-diffusion equations. Basically, an explicit two-dimensional (space) 
model can be considered, facilitating us to explore the role of asymmetry. Webb et al.60 developed a mathematical 
population model for tumor cell encounter against cytotoxic T-cells to study the effect of asymmetrical behavior. 
There are significant number of unanswered questions regarding multi-cellular glioma-immune system interac-
tions in a spatiotemporal setting. Closer surveillance has to be paid for parametrization to form the mathematical 
model and to better understand the dynamics. The model studied in this manuscript, we have considered the 
medium is homogeneous. Our selection of square domains could also prevent us from predicting more diverse 
patterns. Diverse migration patterns might appear if the domain for different cells is not square. We hope that 
these situations would be addressed in our future work. We believe that the investigations presented in this paper 
will provide a better concept for the clinicians and oncologists to understand the complex dynamics of glioma-
immune interactions and to design more efficacious treatment strategies to control and eradicate the glioma 
cell population. In the present study we have not considered the treatment strategies to control the spread of 
malignant glioma cell population. Thus, the treatment strategy will be part of our future research.
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