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Streptococcus agalactiae is a pathogen-associated to bovine mastitis, a health disorder
responsible for significant economic losses in the dairy industry. Antimicrobial therapy
remains the main strategy for the control of this bacterium in dairy herds and human In
order to get insight on molecular characteristics of S. agalactiae strains circulating among
Argentinean cattle with mastitis, we received 1500 samples from 56 dairy farms between
2016 and 2019. We recovered 56 S. agalactiae isolates and characterized them in relation
to serotypes, virulence genes, and antimicrobial susceptibility. Serotypes III and II were the
most prevalent ones (46% and 41%, respectively), followed by Ia (7%). In relation to the 13
virulence genes screened in this study, the genes spb1, hylB, cylE, and PI-2b were
present in all the isolates, meanwhile, bca, cpsA, and rib were detected in different
frequencies, 36%, 96%, and 59%, respectively. On the other hand, bac, hvgA, lmb, PI-1,
PI-2a, and scpB genes could not be detected in any of the isolates. Disk diffusion method
against a panel of eight antimicrobial agents showed an important number of strains
resistant simultaneously to five antibiotics. We also detected several resistance-encoding
genes, tet(M), tet(O), ermB, aphA3, and lnu(B) (9%, 50%, 32%, 32%, and 5%,
respectively). The results here presented are the first molecular data on S. agalactiae
isolates causing bovine mastitis in Argentina and provide a foundation for the development
of diagnostic, prophylactic, and therapeutic methods, including the perspective of
a vaccine.

Keywords: Streptococcus agalactiae, virulence, dairy cattle mastitis, multidrug resistance, serotypes
INTRODUCTION

Streptococcus agalactiae, or group B Streptococcus (GBS), was first described from bovines (Nocard
and Mollereau, 1887) and for seven decades was exclusively associated with mastitis in dairy herds.
Later emerged as a leading cause of human neonatal infections (Manning, 2014), and nowadays S.
agalactiae is increasingly recognized as an adult invasive pathogen worldwide (Skoff et al., 2009).
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Also, S. agalactiae infections have been reported in many fish
species, particularly is an emerging pathogen in Nile tilapia
(Oreochromis niloticus) worldwide (Mian et al., 2009). Recent
studies debate if this zoonotic potential remains nowadays and
suggest that although S. agalactiae is well adapted to various
hosts, interspecies transmission is possible and occurs (Morach
et al., 2018). Further, they hypothesize about possible routes
through which this bacterium could be transmitted between
cattle and humans (Botelho et al., 2018).

According to their epidemiology, mastitis pathogens can be
classified as contagious or environmental. Contagious pathogens
are those for which the udders of infected cattle act as the main
reservoir (Cervinkova et al., 2013). S. agalactiae has been
recognized as a highly contagious obligate parasite of the
bovine mammary gland, which generally does not survive for
long periods outside of the mammary gland (Keefe, 1997).
However, at present, it was demonstrated that the bacteria can
survive in extramammary sources (Cobo-Ángel et al., 2018). In
cattle, intramammary infections are usually chronic and
subclinical, with intermittent episodes of clinical mastitis.
Bovine mastitis is the dominant health disorder leading to
diminished milk quality and production and is responsible for
significant economic losses in the dairy industry (Zadoks et al.,
2004; Hogeveen et al., 2011).

Despite numerous eradication programs in cattle, S.
agalactiae remains a common cause of infections, with high
levels of prevalence and contagion in dairy herds in different
geographical areas, particularly, in South America countries
(Keefe, 2012). In studies conducted in dairy herds of
Colombia, the prevalence of S. agalactiae varied from 28 to
35% (Ramıŕez et al., 2014; Reyes et al., 2015); in Brazil, a research
group reported this pathogen as the third most prevalent bacteria
causing bovine mastitis (Tomazi et al., 2018).

In Argentina, there is no updated data at the national level,
but only for some particular regions, such as Córdoba province
(Dieser et al., 2014), or other collected between 1999 and 2007, in
a larger region that report an S. agalactiae prevalence of 29%
among cows with mastitis from Buenos Aires, Santa Fe and
Córdoba (Calvinho, 2017). A bacteriological study of dairy farms
located in the Cuenca Mar y Sierras (Buenos Aires province), one
of the main dairy regions of the country, showed S. agalactiae to
be a frequent etiological pathogen causing subclinical mastitis
(Amand De Mendieta et al., 2001). Furthermore, 10% of the
sampled dairy farms in this area were positive to this species
(Bottini, personal communication).

The pathogenesis of S. agalactiae infection and the severity of
the disease have been related to the presence of a series of
virulence factors mainly involved in colonization of the host, in
the dissemination of the bacteria, the evasion of the immune
response and internalization in the mammary gland cells. One of
the most important factors involved in virulence is the capsular
polysaccharide (Cps) (Slotved et al., 2007). S. agalactiae can be
classified into 10 serotypes according to the type of Cps (Ia, Ib,
and II to IX).

Antimicrobial therapy remains the main strategy for the
control of this bacterium in dairy herds and human infections.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
Antimicrobial resistance is an area of concern in both human
and veterinary medicine (Schwarz et al., 2010). Currently, there
is little official information on the use of different antibiotics in
veterinary medicine and, therefore, on the resistance models of
animal pathogens circulating in the world. Strain characterization
and surveillance are important to obtain information that allows
evaluating the level and evolution of antimicrobial resistance
(OIE - World Organization for Animal Health, 2018). For this
reason, and in particular, studies on the antimicrobial activity of
mastitis pathogens are necessary for controlling induced
resistance and obtaining useful information for therapeutic
decisions (Denamiel et al., 2005).

In this study, we present the first molecular data on
S. agalactiae isolates causing bovine mastitis in Argentina and
provide information in relation to serotypes, virulence, and
antimicrobial susceptibility.
MATERIALS AND METHODS

Isolation of S. agalactiae
A total of 1500 samples recovered from different cows presenting
clinical or subclinical mastitis, except one obtained from a milk
tank (B3), between December 2016 and August 2019, were
received at the lab. Samples came from 56 dairy farms (herds)
located in one of the largest milk-producing regions of
Argentina, the Cuenca Mar y Sierras, and S. agalactiae isolates
could be obtained from seven dairy farms (A, B, C, D, E, G,
and H).

Milk samples were collected under aseptic conditions from
cows affected by clinical or subclinical mastitis, immediately
refrigerated at 4°C and subjected to bacteriological analysis
within 24 h of collection. A loopful of milk sample was
streaked on trypticase soy agar (TSA) enriched with 5% bovine
blood and plates were incubated at 37°C in atmosphere with 5%
CO2. Subsequently, the plates were examined for colony
morphology, pigmentation and hemolytic characteristics after
24–48 h. Presumptive colonies of Streptococcus species were
selected and streaked into a slant agar for 24 h for biochemical
tests, and Gram staining. Catalase, NaCl, bile-esculin, Christie-
Atkins-Munch-Peterson (CAMP), hippurate hydrolysis, and
sorbitol tests were carried out as described by the National
Mastitis Council (2017). Sixty-eight isolates were identified as
S. agalactiae, being Gram-positive cocci, CAMP reaction-
positive, and catalase and esculin activity-negative, and stored
at −20°C.

Molecular Characterization
The DNA template was obtained by boiling bacterial colonies
suspended in sterile water for 10 min. To confirm the species
identification, a region of the monocopy regulatory gene dltR,
specific to S. agalactiae, was amplified (Lamy et al., 2006). The
capsular type identification, Ia, Ib, II-IX, was determined by PCR
according to Imperi et al. (2010). Additionally, a total of ten
virulence genes, bac, bca cpsA, cylE, hvgA, hylB, lmb, rib, scpB,
spb1, plus three pili genes designated as pilus island 1, PI-1, PI-
April 2021 | Volume 11 | Article 647324
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2a, and PI-2b, were detected according to previous studies. The
examined virulence genes have been associated with adhesion
and colonization, invasion, tissue damage, and/or immune
evasion (Table 1). The PCR products were visualized in 2%
agarose gel stained by ethidium bromide.

Data Analysis
Taking into account the combinations of the genes detected in
the present study, the virulence profiles were defined. A cluster
analysis was carried out using the UPGMA clustering method.
The dendrogram was generated using the BioNumerics
v.6.6 software.

Antimicrobial Susceptibility
Antimicrobial Susceptibility Testing
The isolates were tested for susceptibility to eight antibiotics
using a disc diffusion method according to the CLSI - Clinical
and Laboratory Standards Institute (2019) instructions. The
antimicrobial agents were selected taking into account their use
for mastitis treatment in cattle (penicillin, oxacillin, kanamycin,
pirlimycin, and tetracycline) or/and in human medicine
(penicillin, erythromycin, clindamycin, levofloxacin). A
bacterial suspension in sterile saline solution from an overnight
pure culture, adjusted to a turbidity of 0.5 on the McFarland
scale, was inoculated on a Muller-Hinton agar (Britania) plate,
supplemented with 5% sheep blood. Antibiotic discs (Britania)
were placed on the agar surface and plates were incubated
overnight (16–18 h) at 37°C in atmosphere with 5% CO2. The
diameters of the zones of inhibition were then measured and data
were interpreted by using human breakpoints values for all the
antimicrobial agents except for pirlimycin, for which veterinary
interpretive criteria for cattle were available (CLSI - Clinical and
Laboratory Standards Institute, 2018; CLSI - Clinical and
Laboratory Standards Institute, 2019) (Table S1). In relation to
the aminoglycoside kanamycin, we used high load antibiotic
discs in order to predict lack of synergy when associated with
Beta-lactams. Since not kanamycin standards are available, only
isolates presenting no zones of inhibition were considered as
resistant. The following discs were used: clindamycin (2 mg),
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
pirlimycin (2 mg), erythromycin (15 mg), levofloxacin (5 mg),
penicillin (10 units), oxacillin (1 mg), tetracycline (30 mg), and
kanamycin (120 mg). Isolates showing resistance against three or
more different classes of antibiotics were defined as multi-drug
resistant (MDR) (Sweeney et al., 2018).

Detection of Antimicrobial Resistance
Genes
The macrolide resistance gene ermB was amplified by PCR
according to Zhou et al. (2011), mefA, and tetracycline
resistance genes tet(M), tet(O), tet(T), and tet(K), according to
Lopardo et al. (2003), lincosamide resistance gene lnu(B) (before
named linB), according to Bozdogan et al. (1999) and,
aminoglycosides resistance genes aphA3 and aad6, according
to Poyart et al. (2003). The correlation between phenotype of
resistance and resistance genes was analyzed as well as was done
by Liu et al. (2017) and Tian et al. (2019).
RESULTS

Out of 1500 samples received during 33 months from 56 dairy
farms located in the Cuenca Mar y Sierras, Buenos Aires
Province, Argentina, 68 Streptococcus agalactiae strains were
identified biochemically. Then, among the original 68 isolates,
species-specific PCR (dltR gene amplification) confirmed 56
Streptococcus agalactiae strains arising from seven dairy farms.

The bovine isolates studied here belonged to capsular
genotypes Ia, II, III, and three ones were designed as non-
typeable (NT), according to the multiplex PCR. Overall, type
III and II were the most prevalent accounting for 26 isolates
(46%) and 23 isolates (41%), respectively and, type Ia by 4
isolates (7%) (Table 2).

The virulence genes bac, scpB and lmb could not be detected
in any of the isolates. Gene hvgA, marker of ST-17, was also
absent in all isolates belonging to serotype III and the remaining
ones. Isolates harbored from four to seven of the assayed
virulence genes. The genes spb1, hylB and cylE were present in
all the isolates meanwhile, bca, cpsA, and rib were detected in
different frequencies, 36% (20), 96% (54), and 59% (33),
respectively (Table 2). Pilus typing using three PCR assays,
showed that PI-1 and PI-2a genes were absent in all the
investigated bovine strains. On the other hand, all isolates
harbored the PI-2b gene (Table 2).

The cluster analysis taking into account the combinations of
the genes detected in the present study showed five virulence
profiles shared by isolates from different dairy farm, except one
(spB1-hylB-cylE-PI-2b) which was presented only by two isolates
from dairy farm A. No one of the profiles could be associated
with a particular serotype (Figure 1).

Regarding antimicrobial resistance, 48 S. agalactiae isolates
(86%) could be tested using a disc diffusion method. We did not
have data on the remaining eight isolates due to problems with
contamination during susceptibility testing. In relation to the
aminoglycoside kanamycin, since not reference breakpoints
values were available, only isolates presenting no inhibition
TABLE 1 | Streptococcus agalactiae virulence genes assessed by PCR in the
present study.

Gene Encoded protein/
function

Reference for primers and PCR
conditions

bac surface protein ß-C Smith et al. (2007)
bca surface protein ą-C Smith et al. (2007)
cpsA capsular

polysaccharide
Bidet et al. (2003)

cylE b-hemolysin Otaguiri et al. (2013)
hvgA hypervirulent GBS

adhesin
Lamy et al. (2006)

hylB hyaluronidase Otaguiri et al. (2013)
lmb laminin-binding protein Duarte et al. (2005)
rib surface protein Smith et al. (2007)
scpB C5a peptidase Bidet et al. (2003)
spb1 surface protein Smith et al. (2007)
PI-1, PI-2a
PI-2b

pilus structures Martins et al. (2010)
April 2021 | Volume 11 | Article 647324
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area were considered as resistant. The isolates without inhibition
area were 40, representing 83% of the tested isolates. Twelve
isolates, eleven of them obtained from the dairy farm B and one
from the farm A, were resistance to five antimicrobials,
kanamycin, clindamycin, pirlimycin, erythromycin and,
tetracycline (Figure 1).

To investigate genetic antimicrobial resistance, PCR assays
for genes accounting for resistance to several antibiotics were
carried out. In relation to tetracycline resistance, the efflux genes
tet(K) and tet(L) and the ribosomal protection genes tet(M) and
tet(O) were amplified. The gene tet(O) was recovered in all
tetracycline-resistant strains, and, also, in 16 strains which did
not present phenotypic susceptibility for tetracycline; the gene tet
(M), in 5 isolates (B41, B57, B58, B59 and B57).

In relation to erythromycin resistance, all resistant isolates
exhibited resistance associated to ermB gene indicating the
presence of a target-site modification by a ribosomal
methylase. Six susceptible strains, also carried that gene. Genes
aphA3 and aad6, related to aminoglycosides resistance, were also
amplified. The gene aad6 was not detected meanwhile aphA3,
related to kanamycin resistance, was detected in 18 isolates. The
detection of lnuB in clindamycin and pirlimycin-resistant
isolates would explain the resistance observed to lincosamides.
The positive-isolates were B4, B39, and B49. The average
correlation rate between resistant phenotypes and genotypes
was 65.62% (Table 3). The calculations were made taking into
account only those resistant isolates that were studied by both
analyses (phenotypic and genetic resistance). Given each of the
antimicrobial classes individually, tetracyclines and macrolides
showed the highest correlation (100%), while aminoglycosides
and lincosamides presented lower correlations (37.5% and 25%
respectively). On the other hand, the 50% of strains that
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
presented phenotypic susceptibility for all antimicrobial classes
carried some resistance genes.
DISCUSSION

Streptococcus agalactiae is considered one of the major mastitis
pathogens and, for our knowledge, this is the first molecular
study that characterizes S. agalactiae isolates circulating among
cattle with mastitis in Argentina. Of the 68 original strains
identified as S. agalactiae by biochemical tests, only 56 ones
were confirmed genetically.

Capsular serotyping is a classical method used for
epidemiological studies in S. agalactiae and ten serotypes are
identified based on Cps types. Serotypes III and II were the
predominant ones among S. agalactiae Argentinean bovine
strains (87%), followed by a low frequency of strains classified
as Ia and non-typeable. Serotype III, and especially lineage ST-
17, is particularly important in human infections because it
causes the majority of infections in neonates (Manning, 2014).
In this study, we did not detect hvgA, a gene encoding an ST-17–
specific surface-anchored protein, critical virulence trait of
neonatal disease associated-S agalactiae (Tazi et al., 2010). The
distribution of S. agalactiae serotypes involved in bovine mastitis
is variable worldwide and certain types appear to predominate
within geographical regions. Serotype II was the most prevalent
in Canada (Zhao et al., 2006), Eastern-China, USA (together with
Ia) (Dogan et al., 2005; Yang et al., 2013) and Germany (together
with non-typeable) (Merl et al., 2003). On the other hand,
serotypes V and IV were the most prevalent in Norway
(Radtke et al., 2012). The dominant serotypes in Poland were
Ia and II although also serotypes Ib, III, IV, and V were detected
TABLE 2 | Distribution of virulence and antimicrobial resistance genes detected among Streptococcus agalactiae isolates recovered from dairy cattle with mastitis in
Argentina.

Virulence genes Antimicrobial resistance genes

Source Serotype Number of
isolates

bca cpsA cylE hylB PI-2b rib spb1 tet(M) tet(O) ermB aphA3 lnu(B)

A Ia 1 – – 1 (2%) 1 (2%) 1 (2%) – 1 (2%) – 1 (2%) 1 (2%) – –

II 5 1 (2%) 5 (9%) 5 (9%) 5 (9%) 5 (9%) 4 (7%) 5 (9%) – 4 (7%) 4 (7%) 1 (2%) 1
(2%)

III 20 – 20
(36%)

20 (36%) 20 (36%) 20 (36%) 20
(36%)

20 (36%) – 7 (13%) – 6 (11%) –

NT 1 – – 1 (2%) 1 (2%) 1 (2%) – 1 (2%) – 1 (2%) 1 (2%) – –

B Ia 1 – 1 (2%) 1 (2%) 1 (2%) 1 (2%) – 1 (2%) – 1 (2%) 1 (2%) – –

II 9 1 (2%) 9 (16%) 9 (16%) 9 (16%) 9 (16%) 3 (5%) 9 (16%) – 9 (16%) 9 (16%) 2 (4%) 2
(4%)

III 1 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) – 1 (2%) 1 (2%) 1 (2%) –

NT 1 – 1 (2%) 1 (2%) 1 (2%) 1 (2%) – 1 (2%) – 1 (2%) 1 (2%) 1 (2%) –

C Ia 1 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) – 1 (2%) 1 (2%) 1 (2%) – 1 (2%)
D II 7 7 (13%) 7 (13%) 7 (13%) 7 (13%) 7 (13%) – 7 (13%) 1 (2%) 1 (2%) – 1 (2%) –

E II 2 2 (4%) 2 (4%) 2 (4%) 2 (4%) 2 (4%) – 2 (4%) – – – – –

NT 1 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) – 1 (2%) – – – – –

G III 5 5 (9%) 5 (9%) 5 (9%) 5 (9%) 5 (9%) 5 (9%) 5 (9%) 3 (5%) – – 5 (9%) –

H Ia 1 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) – 1 (2%) – – – – –

Total 56 20
(36%)

54
(96%)

56
(100%)

56
(100%)

56
(100%)

33
(59%)

56
(100%)

5
(9%)

27
(48%)

18
(32%)

18
(32%)

3
(6%)
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(Kaczorek et al., 2017) while in strains originating from dairy
herds in France, non-typeable strains were detected at the highest
frequency, followed by serotypes III and IV (Brochet et al., 2006).
In Brazil, five capsular types were identified (Ia, Ib, II, III, and IV)
(Duarte et al., 2005; Pinto et al., 2014; Carvalho-Castro et al.,
2017), being III and II the most prevalent ones, just like our
results and, in Iran, only were detected these last two serotypes
(Emaneini et al., 2016).

In relation to the virulence genes screened in this study, five
virulence profiles were detected, which included spb1, hylB, cylE,
and PI-2b. The product of the spb1 gene has been proposed as a
factor implicated in adhesion to epithelial cells (Adderson et al.,
2003). The gene hylB, encodes an important marker of virulence
that degrades hyaluronic acid, facilitating bacterial dissemination
(Baker and Pritchard, 2000). Other authors also detected hylB in
all the studied samples (Carvalho-Castro et al., 2017; Pang et al.,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
2017). CylE is a pore-forming toxin, involved in tissue injury and
the systemic spread of bacteria (Doran et al., 2002; Doran et al.,
2003; Reiß et al., 2011). The expression of this b-hemolysin has
proapoptotic, pro-inflammatory, and cytotoxic effects (Randis
et al., 2014). Previous studies reported the presence of this gene
in 78% of Poland strains (Kaczorek et al., 2017) and in 100% of
Chinese ones (Pang et al., 2017).

Pilus structures in S. agalactiae facilitate colonization and
invasion of host tissues and participate in biofilm formation.
These structures are encoded in islands (PI) and three of them,
PI-1, PI-2a, and PI-2b, have been identified in highly virulent
strains (Margarit et al., 2009). S. agalactiae strains carry at least
one of the three PI and, some studies highlight that strains of
different origins usually harbor different pilus variants; while
type 2a (PI-2a) is more common in human strains, type 2b (PI-
2b) is more frequent in bovine isolates (Martins et al., 2013;
FIGURE 1 | Cluster analysis of Streptococcus agalactiae isolated from dairy cattle with mastitis in Argentina based on virulence-associated genes profiles. The
presence (black) or absence (white) of genes, the isolate name, dairy farm, origin, isolation date, and serotype of the isolates are shown. The antimicrobial resistance
profiles are indicated on the right. NT, non-typeable. Genes not found in any of the studied isolates: bac, lmb, hvgA, PI, PI-2a, and scpB. S: susceptible to all tested
antimicrobial agents.
April 2021 | Volume 11 | Article 647324

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Hernandez et al. Streptococcus agalactiae From Bovine Mastitis
Otaguiri et al., 2013; Carvalho-Castro et al., 2017; Pang et al.,
2017). Our results agree with previous studies in which all the
bovine S. agalactiae strains from China carried only PI-2b (Yang
et al., 2013; Pang et al., 2017).

The studied isolates differed mainly by the presence of bca
and rib. Someone harbored one of the two genes (bca: 20 isolates,
36%; rib: 33 isolates, 59%) others both (8 isolates, 14%), and
some, neither of them (9 isolates, 16%). These genes belong to
the alpha-like surface protein family and are important in the
pathogenicity. It was not possible associate the presence/absence
of these genes with serotype. The protein ą-C, encoded by the bca
gene mediates the internalization of the bacteria to host cells
(Baron et al., 2004) and Rib is only present in invasive strains
(Lindahl et al., 2005). Studies carried out in Poland reported the
presence of bca in 37% (Kaczorek et al., 2017) and in Brazil it
varied between 3% and 79%, depending on the geographical
location (Duarte et al., 2004; Carvalho-Castro et al., 2017). For
rib, previous studies reported the presence in bovine strains of
33% in Poland (Kaczorek et al., 2017) and 89% in Iran (Emaneini
et al., 2016).

The isolates were negative for the virulence genes bac, lmb,
and scpB. Earlier molecular reports showed that most bovine
isolates lack surface proteins-encoding genes scpB and lmb, in
contrast to human isolates (Franken et al., 2001), but that
however they can be detected in some S. agalactiae bovine
strains (Rato et al., 2013).

In order to have a global view of antimicrobial susceptibility
occurrence, isolates were tested against eight antimicrobial
agents selected taking into account their use for mastitis
treatment in cattle (penicillin, oxacillin, kanamycin, pirlimycin,
and tetracycline) or/and in human medicine (penicillin,
erythromycin, clindamycin, levofloxacin). We evaluated their
antimicrobial resistance profiles using also antibiotics of
human use considering that this information can assist in
critical decision making as part of the concept “One health”.
The most commonly used antimicrobial classes for the treatment
of streptococcal mastitis are b-lactams and macrolides
(Denamiel et al., 2005). On the one hand, we did detect
resistance to macrolides (erythromycin and clindamycin), and
on the other, besides, resistance to the kanamycin. The practice
shows the intensive use in Argentinean dairy farms of a product
containing this aminoglycoside in association with a b-lactam
drug. The absence of resistance to penicillin and oxacillin
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
observed in this study, and in other ones worldwide (Haenni
et al., 2018), indicates that b-lactam antibiotics should remain
the drugs of choice in the treatment of streptococcal mastitis.
However, the high level of resistance to kanamycin detected
predicts lack of synergy when associated with b-lactams leading
to therapy failure (Chow, 2000).

According to the World Organization for Animal Health (OIE,
2016), between 2010 and 2015, tetracyclines and macrolides were
the two classes of antibiotics most commonly used in animals
worldwide. We detected resistance to tetracycline and
erythromycin, agreeing with previous reports on bovine strains
recovered in Brazil, Poland and, Portugal (Rato et al., 2013;
Kaczorek et al., 2017; Tomazi et al., 2018). On the other hand,
a previous study carried on milk from infected udders reported
erythromycin and clindamycin-resistant Argentinean Streptococcus
isolates (Denamiel et al., 2005). In addition to resistance to
tetracycline, erythromycin, clindamycin, and kanamycin, the
multi-drug resistant (MDR) isolates were resistant to pirlimycin, a
lincosamide approved only for veterinary use. This antimicrobial
agent is available for intramammary administration to treat mastitis
caused by gram-positive cocci and pirlimycin resistance among
streptococci has been reported previously (Pol and Ruegg, 2007;
Tomazi et al., 2018).

In streptococci, resistance to tetracycline is encoded by
ribosome protection genes including tet(M) and tet(O) or by
efflux pump genes, tet(K), and tet(L) (Rubio-López et al., 2012).
Resistance to macrolide are due to two common mechanisms, a
ribosome methylase, encoded by the erm gene and an active
efflux pump by a membrane-bound protein, encoded by the mef
gene. The former concurrently confers high-level resistance to
macrolides, as well as to lincosamide and streptogramin B
antibiotics (Ko et al., 2004). All studied macrolide-resistant
isolates were also resistant to clindamycin and all of them
harbored the ermB gene.

Resistance to tetracycline was attributed to the presence of tet
(O), erythromycin resistance to target site modification encoded
by the erythromycin ribosome methylase gene ermB, pirlimycin/
clindamycin resistance to lnu(B), a gene encoding a lincosamide
inactivating nucleotidyl transferase and, kanamycin resistance to
aphA3, a gene encoding an aminoglycoside phosphotransferase.
The average correlation between resistance phenotypes and
resistance genes of S. agalactiae was 65.62%. Particularly, the
correlation for tetracycline was 100%. Similar findings were
reported by da Silva et al. (2017), in S. agalactiae strains
isolated from Brazilian mastitic cows and by Liu et al. (2017),
in Staphylococcus aureus strains isolated from raw milk.
Although mastitis therapy is commonly initiated before the
results of antimicrobial susceptibility tests of the pathogen are
known (Guérin-Faublée et al., 2002), the emergence of resistant
pathogens (such as the detected in this study) makes essential
performing susceptibility tests for the selection of the appropriate
chemotherapeutic agents (Minst et al., 2012).

Farm animal disease control often share active substances
with human medicines and, excessive use of antibiotics is
associated with the risk of the creation of MDR foodborne
pathogens (van Duin and Paterson, 2016). Another point to
TABLE 3 | The correlations between resistance phenotypes and resistance
genes of S. agalactiae isolates.

Antimicrobial
classes

No. of phenotypes
of resistance

No. of strains with
phenotype of

resistance carrying
resistance genes

Correlation
rate (%)1

Macrolides 12 12 100
Aminoglycosides 40 15 37.5
Tetracyclines 12 12 100
Lincosamides 12 3 25
Average 65.62
1For this calculation, only those resistant isolates studied by both analyses (phenotypic
and genetic resistance) were taken into account.
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keep in mind when considering antimicrobial resistance of
mastitis pathogens is that the interpretive criteria used for
categorizing isolates are based on human data for the majority
of compounds tested. They may not accurately reflect the efficacy
of the drugs in the treatment of bovine mastitis (Rajala-Schultz
et al., 2004) and therefore, veterinary-specific breakpoints are
necessary (Thomas et al., 2015).

On the other hand, vaccination is one of the strategies most
likely to be implemented to prevent GBS infections. Several GBS
vaccine candidates are in development, especially for humans
(Bianchi-Jassir et al., 2020). Cps and pilus proteins are some of
the main targets proposed for the vaccine. In order to guide
vaccine development or before of regulating the use of it, it is
essential to answer the question about which serotypes are the
most implicated in cases of disease in the country and, if possible,
identify alternative targets. In this study, we reported that
serotypes III and II were the most prevalent ones (87%) and
the presence of spb1, hylB, cylE, and PI-2b in all the isolates.
These data could be of interest in the perspective of a future vaccine.
CONCLUSIONS

The results of this study are the first molecular data on
S. agalactiae isolates causing bovine mastitis in Argentina. We
detected several virulence and antimicrobial susceptibility
profiles associated with S. agalactiae intramammary infections.
On the one hand, we found the all the isolates harbored the genes
spb1, hylB, cylE, and PI-2b, and the predominance of serotype III
and II. On the other hand, we detected strains MDR to clinical
and veterinary relevant antimicrobials, and, several resistance-
encoding genes. These data present us with the future challenge
of closely monitoring the spread of MDR strains, to explore the
molecular mechanisms responsible for the antimicrobial
resistance, and provide a foundation for the development of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
diagnostic, prophylactic, and therapeutic methods, including the
perspective of a vaccine.
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