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Idiopathic pulmonary arterial hypertension (IPAH) is a rare vascular disease with a poor prognosis, and the mechanism of its
development remains unclear. Further molecular pathology studies may contribute to a comprehensive understanding of IPAH
and provide new insights into diagnostic markers and potential therapeutic targets. Iron deficiency has been reported in 43-
63% of patients with IPAH and is associated with reduced exercise capacity and higher mortality, suggesting that dysregulated
iron metabolism may play an unrecognized role in influencing the development of IPAH. In this study, we explored the
regulatory mechanisms of iron metabolism in IPAH by bioinformatic analysis. The molecular function of iron metabolism-
related genes (IMRGs) is mainly enriched in active transmembrane transporter activity, and they mainly affect the biological
process of response to oxidative stress. Ferroptosis and fluid shear stress and atherosclerosis pathways may be the critical
pathways regulating iron metabolism in IPAH. We further identified 7 key genes (BCL2, GCLM, MSMO1, SLC7A11, SRXN1,
TSPAN5, and TXNRD1) and 5 of the key genes (BCL2, MSMO1, SLC7A11, TSPAN5, and TXNRD1) as target genes may be
regulated by 6 dysregulated miRNAs (miR-483-5p, miR-27a-3p, miR-27b-3p, miR-26b-5p, miR-199a-5p, and miR-23b-3p) in
IPAH. In addition, we predicted potential IPAH drugs—celastrol and cinnamaldehyde—that target iron metabolism based on
our results. These results provide insights for further definition of the role of dysregulated iron metabolism in IPAH and
contribute to a deeper understanding of the molecular mechanisms and potential therapeutic targets of IPAH.

1. Introduction

Pulmonary arterial hypertension (PAH) is a rare vascular
disease with high morbidity and mortality, characterized
by pulmonary vascular remodeling and increased pulmo-
nary vascular resistance, ultimately resulting in right ventric-
ular failure and death [1, 2]. There are significant differences
in the progression and prognosis between patients with PAH
of different etiologies, ethnicities, and genetic mutations,
suggesting that targeted therapies are necessary to improve
the overall prognosis of patients [3–5].

Idiopathic PAH (IPAH) is a specific type of PAH
without any family history of PAH or known pathogenic
factors, and patients with IPAH tend to show worse sur-
vival compared to PAH associated with congenital heart
disease [4, 6]. Although the pulmonary hemodynamics,
exercise capacity, and life quality of IPAH patients have
improved considerably with advances in diagnosis and treat-
ment, there is still no satisfactory cure available [6–8]. An
essential understanding of the molecular and pathological
mechanism may provide new insights for the therapy for
IPAH.
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Iron is an essential element in basic biological processes,
which contributes to a multitude of crucial physiologic pro-
cesses [9]. Iron deficiency has been reported in 43-63% of
patients with IPAH and is associated with reduced exercise
capacity and higher mortality [10–12]. Studies have shown
that intracellular iron deficiency in pulmonary arterial
smooth muscle cells could alter pulmonary vascular function,
and rats on an iron-deficient diet exhibit significant pulmo-
nary vascular remodeling with prominent muscularization,
medial hypertrophy, and perivascular inflammatory cell infil-
tration, associated with elevated pulmonary artery pressure
and right ventricular hypertrophy [13, 14], which indicates
iron metabolism participating in the maintenance of pulmo-
nary vascular homeostasis, and dysregulated iron metabo-
lismmay play an important role in the development of IPAH.

Since current animal models provide little accurate
information on the pathobiology of human IPAH and the
value of developing and validating drug therapy is debatable,
the research on human specimens should be paid more
attention [6, 15]. The advancement of gene microarray
expression analysis has greatly contributed to the explora-
tion of crucial genes in the pathobiology of IPAH [16, 17],
and microarray datasets from lung tissue may provide a
more accurate and direct reflection of the pathobiology of
IPAH than peripheral blood. Here, to determine the role of
iron metabolism in IPAH, we identified iron metabolism-
related genes (IMRGs) based on relevant databases and ana-
lyzed the differential expression of IMRGs among IPAH and
normal samples in the microarray dataset GSE117261. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses of differentially expressed
IMRGs (DEIMRGs) were further performed, and protein-
protein interaction (PPI) network was constructed to iden-
tify key modules and hub genes. Studies have demonstrated
that microRNAs (miRNAs) exert an essential effect on IPAH
by negatively regulating target mRNA [15]; we constructed a
miRNA-mRNA network to explore the potential regulation
of IMRG by miRNAs in IPAH. The expression and diagnos-
tic value of hub genes and target DEIMRGs (tIMRG) were
further validated in the microarray dataset GSE15197 to
identify key genes and crucial miRNA-IMRG networks.
Finally, we predicted potential therapeutic drugs for IPAH
based on our findings.

2. Materials and Methods

2.1. Data Collection. The microarray datasets GSE117261
and GSE15197 were downloaded from the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/
geo/). The dataset GSE117261 contains whole transcriptome
expression data from 32 IPAH lung samples and 25 normal
lung samples, used to screen for DEIMRGs. The dataset
GSE15197 contains whole transcriptome expression data
from 18 IPAH lung samples and 13 normal lung samples,
used to verify the target DEIMRGs and hub genes. After
ID conversion, the average expression value was taken as
the gene expression value when multiple probes correspond
to one gene. The raw data were log2 transformed and quan-
tile normalized before analyses.

2.2. Identification of DEGs and DEIMRGs. DEGs were iden-
tified using the limma package (version 3.48.0) in R software
(version 4.1), p values were adjusted using the Benjamini
and Hochberg method [18]. The false discovery rate ðFDRÞ
< 0:05 and ∣log 2FC ∣ ≥0:25 were defined as the selection
thresholds for selecting the DEGs.

IMRGs were identified from related gene sets (GOBP_
IRON_ION_HOMEOSTASIS, GOBP_IRON_ION_TRANS-
PORT, GOBP_HEME_METABOLIC_PROCESS, GOBP_
RESPONSE_TO_IRON_ION, GOBP_IRON_SULFUR_
CLUSTER_ASSEMBLY, HALLMARK_HEME_METABO-
LISM, GOMF_IRON_ION_BINDING, REACTOME_
IRON_UPTAKE_AND_TRANSPORT, and HP_ABNOR-
MALITY_OF_IRON_HOMEOSTASIS) in the MSigDb data-
base [19] (https://www.gsea-msigdb.org/gsea/msigdb/index
.jsp) and ferroptosis-related genes in the FerrDb database
[20] (http://www.zhounan.org/ferrdb). After deduplication of
genes, the merged IMRG set contains 710 genes, listed in
Table S1. Finally, 88 overlapped DEIMRGs were selected
using the VennDiagram package (1.6.20) in R software.

2.3. GO and KEGG Enrichment Analyses. The DEIMRGs
identified were subjected to GO and KEGG enrichment
analysis. The clusterProfiler package (version 3.12.0) was
used in R software to perform the GO and KEGG enrich-
ment analyses. The results with FDR < 0:05 were considered
significantly enriched by DEIMRGs.

2.4. Construction of DRmiRNA–DEIMRG Regulatory
Network. Dysregulated miRNAs (DRmiRNAs) in IPAH
were extracted from previous studies. We searched the liter-
ature related to miRNAs and IPAH in the PubMed database
(https://pubmed.ncbi.nlm.nih.gov/) [21] and excluding non-
human specimen studies and studies without validation; a
total of 23 DRmiRNAs were identified, 14 of which were
upregulated and 9 downregulated, and the source studies
and validation methods for each DRmiRNA are detailed in
Table S2. The mirDIP database (http://ophid.utoronto.ca/
mirDIP/), an integrative database of human microRNA
target predictions [22], was used to predict the target
mRNAs of DRmiRNAs; target mRNAs with very high
score class were selected. To visualize the relationship
between DRmiRNAs and predicted target mRNAs, we built
a miRNA-mRNA network using Cytoscape (version 3.8.2).
tIMRGs were identified using the VennDiagram package
(1.6.20) in R software.

2.5. PPI Network Construction and Identification of Key
Modules and Hub Genes. The STRING database (https://
string-db.org/) and Cytoscape software were used to con-
struct a PPI network; PPI network of DEIMRGs was con-
structed using the STRING database and visualized in
Cytoscape software. Three functional modules were identi-
fied by the Cytoscape plugin MCODE (the parameters were
set to default: degree cutoff = 2, node score cutoff = 0:2, K
− core = 3, and Max depth = 100). Another plugin, Cyto-
hubba, was used to identify hub genes. The built-in MCC
algorithm of Cytohubba assigned a value to each gene in
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the PPI network and ranked these genes by values; the top 10
genes were significant and regarded as hub genes.

2.6. Validation of Hub Genes and tIMRGs in GSE15197. The
microarray dataset GSE15197 was used for validation. After
data preprocessing as described previously, the expression
data of hub genes and tIMRGs were extracted and groups
were compared using the t-test; the results with p < 0:05
were considered statistically significant. Receiver operating
characteristic (ROC) curve analyses were performed using
the HiPlot software (version 0.1.0) to determine sensitivity
and specificity of hub genes and tIMRGs; the multiple gene
ROC analysis was performed based on the predictive proba-
bility of multiple genes for the outcome in each sample cal-
culated by binary logistic regression using SPSS version 22.0.
Results were quantified by the area under the ROC curve
(AUC); genes with AUC > 0:6 were considered to have diag-
nostic value.

2.7. Immune Infiltration Analyses. To estimate the propor-
tion of infiltrating immune cells, normalized gene expression
data of GSE117261 and GSE15197 were submitted to HiPlot
software (version 0.1.0). The proportion of infiltrating
immune cells was calculated with the CIBERSORT algo-
rithm, t-test was used for comparison between groups, and

linear regression analysis was used to analyze the correlation
between gene expression and the proportion of immune
cells. The results with p < 0:05 were defined as a statistically
significant difference.

2.8. Potential Therapeutic Drug Prediction.We used protein-
drug interaction data from the DSigDB database [23] (http://
tanlab.ucdenver.edu/DSigDB) to predict potential therapeu-
tic drugs for IPAH, FDR < 0:05 and combined score > 5000
was used as the cutoff.

3. Results

3.1. Overall Protocol of the Study. The overall flowchart of
the study is summarized in Figure 1. All the raw data were
log-transformed and quantized before analysis, as shown in
Figure S1.

3.2. Identification of DEGs and DEIMRGs. A total of 1526
DEGs were identified from GSE117261, of which 777 were
upregulated and 749 were downregulated (Figure 2(a)).
The clustered heat map of DEGs revealed that gene expres-
sion between the IPAH and control lung samples was dis-
tinct (Figure 2(b)).

Collect expression data of
GSE117261

Log2 transformation and
normalization of data

Dysregulated
miRNAs

Identify DEGs

Identify DEIMRGs

MSigDB

IMRGs

FerrDB

Gene function
and pathway

crosstalk
analyses

GO and KEGG
enrichment

analyses

Construct PPI network

Identify hub
genes

GSE15197

Validation of hub genes and tIMRGs expression and diagnostic value

Identify key genes and
miRNA-IMRG network

Predict potential
therapeutic drugs

Identify key
modules

Predict target
mRNA

Overlapped
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Evaluation of
infiltrating

immune cells

Figure 1: The overall protocol of this study. DEG: differentially expressed genes; IMRG: iron metabolism-related gene; DEIMRG:
differentially expressed IMRG; tIMRG: target differentially expressed IMRG; DRmiRNA: differentially expressed microRNA; PPI:
protein-protein interaction.
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DEGs heatmap plot of GSE117261
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Figure 2: Identification of differentially expressed genes in GSE117261: (a) volcano plot of DEGs in GSE117261 (FDR < 0:05 and ∣log 2
FC ∣ ≥0:25); (b) clustered heat map of DEGs in GSE117261 (FDR < 0:05 and ∣log 2FC ∣ ≥0:25). DEG: differentially expressed genes;
IMRG: iron metabolism-related gene; Non-IMRG: noniron metabolism-related gene.
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After deduplication of genes, a total of 710 IMRGs were
identified from MSigDb and FerrDb. We overlapped IMRGs
with the DEGs in GSE117261 and selected 88 overlapped

DEIMRGs for further analyses (Figure 3(a)), as listed in
Table S3. The clustered heat map and correlation heat map
were based on Ward.D2 algorithm showing the expression

DEIMRGs heatmap plot of GSE117261
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Figure 3: Identification of differentially expressed iron metabolism-related genes: (a) Venn diagram showing the overlap of genes between
DEGs and IMRGs; (b) clustered heat map of DEIMRGs. DEG: differentially expressed genes; IMRG: iron metabolism-related gene;
DEIMRG: differentially expressed IMRG.
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differences of 88 DEIMRGs between IPAH and control lung
samples, as well as the correlation between DEIMRGs
(Figure 3(b), S2).

3.3. GO and KEGG Enrichment Analyses. We conducted GO
and KEGG enrichment analyses to understand the functions
and related pathways of the DEIMRGs. In the GO enrich-
ment analysis, DEIMRGs were mainly enriched in response
to oxidative stress and iron ion homeostasis in the biological
process category (BP) (Figure 4(a)); vacuolar membrane and

apical part of cell in the cellular component category (CC)
(Figure 4(b)); and active transmembrane transporter activity
and heme binding in the molecular function category (MF)
(Figure 4(c)).In the KEGG enrichment analysis, most of
the DEIMRPs participated in ferroptosis and fluid shear
stress and atherosclerosis pathway (Figure 4(d)). We further
analyzed the crosstalk between gene functions and pathways;
the results suggesting that the role of IMRGs in the regula-
tion of IPAH may be the result of the crosstalk of multiple
gene functions and pathways, as shown in Figures 4(e)–4(h).
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Figure 4: GO and KEGG enrichment analyses of DEIMRGs. GO enrichment analysis of DEIMRGs in (a) the biological process category
(BP); (b) the cellular component category (CC); (c) the molecular function category (MF). (d) KEGG enrichment analysis of DEIMRGs.
Crosstalk analysis between DEIMRGs and (e) gene functions in BP; (f) gene functions in CC; (g) gene functions in MF; (h) KEGG
pathways. IMRG: iron metabolism-related gene; DEIMRG: differentially expressed IMRG.

13BioMed Research International



3.4. Prediction of Target Genes and Construction of
DRmiRNA-DEIMRG Regulatory Network. After obtaining
the DRmiRNAs as mentioned above, the corresponding tar-
get genes were predicted using the mirDIP database; the
miRNA-mRNA regulatory network was constructed and
presented (Figures S3 and S4); all DRmiRNAs are shown
in Figure 5(a). We overlapped the 1337 and 1720 target
genes predicted by 14 upregulated DRmiRNAs and 9
downregulated DRmiRNAs with 58 downregulated and 30
upregulated DEIMRGs, respectively (Figures 5(b) and 5(c)).
The results showed that 8 downregulated DEIMRGs (SCD,
ATP6V1A, G6PD, GCLC, SLC7A11, MSMO1, SLC25A37,
and TXNRD1) were negatively regulated by 8 upregulated
DRmiRNAs (let-7a-5p, miR-199a-3p, miR-1-3p, miR-27a-
3p, miR-27b-3p, miR-26b-5p, miR-222-3p, and miR-23b-
3p), and 4 upregulated DEIMRGs (BTG2, FBXW7, BCL2,
and TSPAN5) were the target genes of 4 downregulated
DRmiRNAs (miR-124-3p, miR-204-5p, miR-483-5p, and
miR-199a-5p), as shown in Figure 5(d).

3.5. Construction of PPI Network and Identification of Key
Modules and Hub Genes. To explore the interactions of these
identified DEIMRGs, we constructed a PPI network
(Figure 6(a)) of DEIMRGs using the STRING database. Fur-
ther, we used Cytoscape software to analyze the data and iden-
tify key modules and hub genes. Finally, 3 key modules
(Figure S5) were identified, and TXNRD1, NQO1, G6PD,
PRDX1, HMOX1, SRXN1, GCLM, SLC7A11, GPX2, and
GCLC were selected as hub genes; the rank values of all
DEIMRGs are listed in Table S4. The differential expression
of hub genes in IPAH lung samples is shown in Figure 6(b),
while the multiple associations between hub genes and with
other DEIMRGs are shown in Figures 6(c) and 6(d).
Interestingly, module 1 overlaps exactly with the hub genes
we identified, which further demonstrates that these hub
genes are the major functional clusters in DEIMRGs.

3.6. Validation of the Expression and Diagnostic Value of
Hub Genes and tIMRGs in GSE15197. After normalization
of the data from GSE15197, the expression data of 10
selected hub genes and 12 tIMRGs were extracted and statis-
tically analyzed. Seven genes (BCL2, GCLM, MSMO1,
SLC7A11, SRXN1, TSPAN5, and TXNRD1) showed the
same trend of differential expression in IPAH samples as
in GSE117261 (Figure 7(a)). Analysis of ROC curves showed
that these 7 genes are of significant value for the diagnosis of
IPAH, and the ROC curves of the multigene combinations
including these 7 genes showed excellent predictive capabil-
ity for IPAH (AUC = 97%), as shown in Figure 7(b). There-
fore, we identified BCL2, GCLM, MSMO1, SLC7A11,
SRXN1, TSPAN5, and TXNRD1 as key genes and con-
structed a miRNA-tIMRG regulatory network consisting of
6 miRNAs (miR-483-5p, miR-27a-3p, miR-27b-3p, miR-
26b-5p, miR-199a-5p, and miR-23b-3p) with 5 IMRGs
(BCL2, MSMO1, SLC7A11, TSPAN5, and TXNRD1).

3.7. Immune Infiltration Analyses. We performed an
immune infiltration analysis in an attempt to explore the
crosstalk between iron metabolism and immune responses

in IPAH. The proportion of infiltrating immune cells of the
samples from the GSE117261 andGSE15197 datasets was esti-
mated by the CIBERSORT algorithm (Tables S5 and S6) and
then visualized (Figures 8(a) and 8(b)). The clustering heat
map showed the difference between IPAH and control lung
samples of infiltrating immune cells in the two datasets
(Figures 8(c) and 8(d)), and correlation heat maps showed
correlations between different infiltrating immune cells
(Figure S6). In both datasets, the proportion of CD8+ T cells
increased significantly in the IPAH samples and the
proportion of neutrophils decreased significantly in the
IPAH samples, while the other immune cells did not exhibit
significant differences with a consistent trend (Figures 8(e)
and 8(f)). The results of linear regression analysis showed
that the expression of all key genes in both datasets did not
show a significant correlation with the proportion of
immune cells in the control samples (p > 0:05). As for IPAH
samples, in the GSE117261 dataset, the expression of
MSMO1 showed a significant positive correlation with the
proportion of neutrophils, and the expression of TSPAN5
showed a significant positive correlation with the proportion
of CD8+ T cells; in the GSE15197 dataset, the expression of
GCLM, MSMO1, and TXNRD1 showed a significant
negative correlation with the proportion of CD8+ T cells.
Interestingly, none of the key genes we identified showed
significant correlation with CD8+ T cells or neutrophils in
both datasets. (Figure S7).

3.8. Targeted Drug Prediction. We used the DSigDB database
to predict potential target drugs which are related to key genes,
which may potentially treat IPAH by modulating iron
metabolism. Finally, 34 target drugs were predicted; com-
bined score and corresponding target genes are listed in
Table S7. Figure S8 shows the top 10 predicted target drugs
ranked according to FDR; the top two drugs—celastrol
(combined score = 12028) and cinnamaldehyde (combined
score = 6513) have a strong drug-target correlation
(FDR < 0:0001).

4. Discussion

For IPAH, as a poor prognosis type of PAH, none of the
current therapies are actually curative [4, 6, 7]. However, tar-
geted therapies for specific genes, such as BMPR2, in
patients with IPAH have shown some encouraging results
[24, 25], indicating that further exploration of the molecular
and pathological mechanisms of IPAH may provide promis-
ing therapeutic targets for patients. Dysregulated iron
metabolism is closely associated with the development and
progression of various cardiovascular diseases, including
coronary artery disease, heart failure, and pulmonary hyper-
tension [26]. A large proportion of patients with IPAH are
characterized by iron deficiency, even without anemia, and
associated with reduced exercise capacity and survival
[10–12], suggesting that dysregulation of iron homeostasis
may be a potential mechanism for the development and pro-
gression of IPAH. However, whether iron deficiency con-
tributes to or is merely a consequence of IPAH remains
debated; the mechanisms by which dysregulated iron
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miRNA ID Regulation in IPAH samples
hsa-let-7a-5p Upregulation

hsa-miR-138-5p Upregulation
hsa-miR-1-3p Upregulation

hsa-miR-145-5p Upregulation
hsa-miR-191-5p Upregulation
hsa-miR-199a-3p Upregulation
hsa-miR-20a-5p Upregulation
hsa-miR-222-3p Upregulation
hsa-miR-23a-3p Upregulation
hsa-miR-23b-3p Upregulation
hsa-miR-26b-5p Upregulation
hsa-miR-27a-3p Upregulation
hsa-miR-27b-3p Upregulation
hsa-miR-29b-3p Upregulation
hsa-miR-124-3p Downregulation
hsa-miR-150-5p Downregulation

hsa-miR-199a-5P Downregulation
hsa-miR-204-5p Downregulation

hsa-miR-30c-2-3p Downregulation
hsa-miR-330-3P Downregulation
hsa-miR-483-3p Downregulation
hsa-miR-483-5p Downregulation
hsa-miR-99a-5p Downregulation

(a)

1712 508

Predicted target genes Downregulated DEIMRGS

(b)

1333 264

Predicted target genes Upregulated DEIMRGS

(c)
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Upregulated tIMRGs

SCD ATP6V1A G6PD GCLC SLC7A11 MSMO1 SLC25A37 TXNRD1
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Figure 5: Prediction of target genes and construction of DRmiRNA-DEIMRG regulatory network: (a) list of DRmiRNAs; (b) Venn diagram
showing the overlap of genes between upregulated DRmiRNAs and downregulated DEIMRGs; (c) Venn diagram showing the overlap of
genes between downregulated DRmiRNAs and upregulated DEIMRGs; (d) DRmiRNA-tIMRG regulatory network in IPAH. DRmiRNAs:
differentially expressed microRNAs; tIMRG: target differentially expressed IMRG.
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(a)

Gene symbol logFC FDR
TXNRD1 –0.8388 <0.0001

NQO1 –1.2330 <0.0001
G6PD –0.5166 <0.0001

PRDX1 –0.2536 <0.0001
HMOX1 –1.4493 <0.0001
SRXN1 –0.5248 0.0002
GCLM –0.4822 0.0010
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GPX2 –0.4471 0.0104
GCLC –0.4505 0.0112

(b)

G6PD

TXNRD1

SLC7A11

GPX2

GCLM NQO1

HMOX1

SRXN1

GCLC

PRDX1

(c)

Figure 6: Continued.
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metabolism participates in the development of IPAH are still
unclear. Thus, we performed a bioinformatic analysis based
on IPAH-related datasets to explore the role of iron metab-
olism on the development of IPAH.

The results of differential expression analysis showed
that a significant proportion of IMRGs were differentially
expressed in IPAH and normal lung samples. Further, GO
enrichment analysis revealed that the molecular function of
IMRGs is mainly enriched in active transmembrane trans-
porter activity and mainly affects the biological process of
response to oxidative stress. Several studies have indicated

that there is an abnormal elevation of hepcidin in IPAH
patients due to various factors such as BMPR2 mutation
and inflammatory response, which can inhibit intestinal iron
uptake and intracellular iron export, leading to circulating
iron deficiency and intracellular iron overload [12, 27–29].
Intracellular iron overload is associated with mitochondrial
dysfunction and production of reactive oxygen species and
causes lipid peroxidation, DNA oxidation, and protein oxi-
dation such as carbonylation, via the Fenton reaction and
the Haber-Weiss pathway, and hence affects the cellular
response to oxidative stress [27, 30–32], which has been
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Figure 6: PPI network construction and identification of key modules and hub genes: (a) PPI network of DEIMRGs constructed by the
STRING database; (b) the differential expression of hub genes in IPAH lung samples; (c) crosstalk between 10 hub genes; the deeper
colour of the dot means that the rank order of the hub gene is more advanced; (d) crosstalk between 10 hub genes and other DEIMRGs.
DEIMRG: differentially expressed IMRG.

17BioMed Research International



demonstrated to be an important biological process involved
in the progression of IPAH by affecting pulmonary vascular
function and remodeling [33–36]. KEGG enrichment analy-
sis identified pathways that may be involved in the regula-
tion of DEIMRGs—ferroptosis and fluid shear stress and
atherosclerosis pathway. Theoretically, the activation of fer-
roptosis pathway may be associated with iron-dependent
lipid peroxidation induced by intracellular iron overload
and lead to pulmonary vascular remodeling by affecting pro-
tein carbonylation [30, 37, 38], while fluid shear stress may

cause vascular remodeling through iron-mediated genera-
tion of atherogenic mediators [39]. However, the role of
these pathways involved in mediating iron metabolism dys-
regulation on the pathogenesis of IPAH needs to be further
explored, as there are few relevant studies.

miRNAs play an important regulatory role in the devel-
opment of IPAH and have been demonstrated to be involved
in the progression of IPAH by regulating the expression of
target genes affecting metabolism and proliferation, DNA
damage, vasoconstriction, and angiogenesis [40–42]. Iron
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Figure 7: Validation of hub genes and target DEIMRG expression and diagnostic value in GSE15197. (a) Expression levels of hub genes and
tIMRGs in IPAH and normal lung samples in GSE15197. (b) Receiver operating characteristic (ROC) analysis showed the predictive
performance of hub genes for IPAH in GSE15197. AUC: area under the ROC curve; DEIMRG: differentially expressed IMRG. ∗p < 0:05,
∗∗p < 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001; ns: not significant.
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metabolism has been reported to be regulated by miRNAs,
which have been demonstrated to posttranscriptionally
regulate the expression of genes associated with iron acquisi-
tion, iron export, iron storage, iron utilization, and coordi-

nation of systemic iron homeostasis [43–45]. We found
that some dysregulated miRNAs in IPAH patients regulate
iron metabolism in other biological circumstances [44,
46–48]; given that both iron metabolism disorders and
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Figure 8: Immune infiltration analyses: (a) the proportion of infiltrating immune cells of the samples from GSE117261 by the CIBERSORT
algorithm; (b) the proportion of infiltrating immune cells of the samples from GSE15197 by the CIBERSORT algorithm; (c) the clustering
heat map of infiltrating immune cells in GSE117261; (d) the clustering heat map of infiltrating immune cells in GSE15197; (e) comparison of
infiltrating immune cells between normal and IPAH lung tissues in GSE117261; (f) comparison of infiltrating immune cells between normal
and IPAH lung tissues in GSE15197. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001; ns: not significant.
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miRNA dysregulation are important regulators of IPAH
development, we hypothesized that there is crosstalk
between them in IPAH patients and then constructed a
DRmiRNA-DEIMRG regulatory network and identified 12
tIMRGs. In addition, we identified 10 hub genes in
DEIMRGs that are highly associated with other proteins
through the construction of PPI networks. After validation
of tIMRGs and hub genes in another independent dataset,
we identified 7 key genes associated with iron metabolism.
Intracellular iron overload leads to reduced expression of
GCLM and SLC7A11, which consequently affects glutathi-
one synthesis or intracellular unstable iron metabolism,
resulting in cellular ferroptosis [49, 50]. The NRF2 signaling
pathway plays a critical role in mitigating lipid peroxidation
and ferroptosis, whereas the downregulation of TXNRD1
and SRXN1, important signaling molecules in the NRF2 sig-
naling pathway, may render cells more susceptible to ferrop-
tosis. Although studies have reported increased expression
of TXNRD1 and SRXN1 in protective iron overload heart
and kidney tissues due to activation of the NRF2 signaling
pathway, their expression was decreased in IPAH lung sam-
ples we analyzed, which may be due to much higher levels of
iron overload and the presence of oxidative stress activated
by other factors [51–55]. The increased expression of
TSPAN5 may be related to the activation of the NOTCH sig-
naling pathway by increased cellular uptake of iron, while
the downregulation of MSMO1 expression may be mecha-
nistically related to heme metabolism, but relevant studies
are lacking [56–59]. In addition, intracellular iron overload
usually leads to downregulation of BCL2 and induces apo-
ptosis; interestingly, the expression of BCL2 was upregulated
in the IPAH lung samples we analyzed, which may result in
abnormal antiapoptotic phenotypic changes in pulmonary
vascular endothelial cells and pulmonary vascular smooth
muscle cells due to factors other than iron metabolism
[60–62]. Five of the key genes (BCL2, MSMO1, SLC7A11,
TSPAN5, and TXNRD1) as target genes may be regulated
by 6 DRmiRNAs (miR-483-5p, miR-27a-3p, miR-27b-3p,
miR-26b-5p, miR-199a-5p, and miR-23b-3p), which could
be a potential crosstalk between iron metabolism and
miRNA regulation in IPAH. Several key genes have been
reported to be involved in the development of IPAH, but
their iron metabolism-related regulatory mechanisms in
IPAH patients remain unclear, as well as their regulation
by miRNAs, which needs to be further explored [57].

It is well known that immune and inflammatory
responses play a crucial role in the pathogenesis of IPAH
[63, 64], while genetic and metabolic abnormalities are inex-
tricably linked to dysregulated immunity and adverse
remodeling in the pulmonary arteries [65]. Recent studies
have shown that iron homeostasis plays an important role
in the regulation of immune responses, and imbalance of
iron homeostasis may affect the development, function,
and death of immune cells [66]. The immune infiltration
analysis in our study showed a significantly increased pro-
portion of CD8+ T cells and a significantly decreased pro-
portion of neutrophils in IPAH lung samples, which is
consistent with previous reports [64, 67, 68]. Although there
was a linear correlation between some key genes and CD8+ T

cells and neutrophils, this correlation did not show consis-
tency in both datasets, which may be due to the limitation
or individual differences of the regulation of immune infil-
tration in IPAH by IMRGs, and the regulation of iron
metabolism in IPAH on immune infiltration requires fur-
ther research.

The exploration of effective target therapeutics based on
genes that play a key role in pathology has always been the
focus of researchers [25, 69]. According to the key genes
we identified, we predicted several potential targeting drugs,
especially celastrol and cinnamaldehyde, which showed high
drug-targeting correlations. Cinnamaldehyde treatment can
inhibit MCT-induced elevation in right ventricle systolic
pressure, RV/LV + S, and right ventricular collagen accumu-
lation. Celastrol treatment can ameliorate right ventricular
systolic pressure, hypertrophy, fibrosis, and dysfunction in
hypoxia-induced PAH in mice and SU5416/hypoxia-
induced PAH in rats. Although both drugs were identified
to be protective against PAH, modulation of iron metabo-
lism as its potential functional mechanism has not been
explored; further experimental clarification is needed.

To define the role of dysregulated iron metabolism in
IPAH, further validation of our results in an appropriate
animal model is necessary but difficult. Most current animal
models of PAH have been constructed by chemical induc-
tion, chronic hypoxia, or surgery. Due to the considerable
pathological differences between different species of PAH,
although these animal models morphologically reproduce
the features of human PAH, there are currently no available
animal models that well reproduce the histological features
and natural history of IPAH, which makes the validation
potentially inaccurate and even contradictory conclusions.
Morphological research and validation of protein expression
levels on large human samples are urgently needed for fur-
ther studies.

5. Conclusion

We identified DEIMRGs in normal and IPAH lung samples
and analyzed their potential regulatory mechanisms and fur-
ther identified key genes. In addition, we found that IMRGs
may be regulated by miRNAs and then identified crucial
miRNA-IMRG regulatory networks. These findings contrib-
ute to a deeper understanding of the unique role of dysregu-
lated iron metabolism in IPAH, and in-depth studies of
IMRG may provide potential therapeutic targets and bio-
markers for IPAH patients, yet further studies are needed
to analyze the complex regulatory mechanisms.

Data Availability

The microarray datasets GSE113439 and GSE117261 were
downloaded from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/). IMRGs were
identified from related gene sets (GOBP_IRON_ION_
HOMEOSTASIS, GOBP_IRON_ION_TRANSPORT, GOBP
_HEME_METABOLIC_PROCESS, GOBP_RESPONSE_TO_
IRON_ION, GOBP_IRON_SULFUR_CLUSTER_ASSEM-
BLY, HALLMARK_HEME_METABOLISM, GOMF_IRON_
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ION_BINDING, REACTOME_IRON_UPTAKE_AND_
TRANSPORT, and HP_ABNORMALITY_OF_IRON_
HOMEOSTASIS) in the MSigDb database (https://www
.gsea-msigdb.org/gsea/msigdb/index.jsp) and ferroptosis-
related genes in the FerrDb database (http://www.zhounan
.org/ferrdb). The mirDIP database (http://ophid.utoronto.ca/
mirDIP/) was used to predict the target genes of DE-
miRNAs. The STRING database (https://string-db.org/) was
used to construct a PPI network. The DSigDB database was
used to predict potential therapeutic drugs, and the drug struc-
tures were obtained from the DrugBank database (https://
www.drugbank.ca/).

Conflicts of Interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Authors’ Contributions

H H and JC L were responsible for the conception and
design. SQ L and XL Z were responsible for the administra-
tive support. LJ W, AD H, and MM Y were responsible for
the collection and assembly of data. HX Z, BQ Q, and CW
G were responsible for the data analysis and interpretation.
All authors were responsible for manuscript writing. All
authors were responsible for the final approval of the manu-
script. All authors have read and agreed to the published
version of the manuscript. Hua-Xi Zou and Bai-Quan Qiu
contributed equally to this work.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (grant nos. 81860054, 81960059, and
82070303); the Natural Science Foundation of Jiangxi
Province, China (grant nos. 20192BAB215003 and 20202
BAB206007); and the Academic and Technical Leader
Plan of Jiangxi Provincial Main Disciplines (grant no.
20204BCJL23056).

Supplementary Materials

Supplementary materials are available online at DOI:
10.6084/m9.figshare.14877513. Figure S1: gene expression
vioplot of GSE117261 and GSE15197 after normalization.
Figure S2: correlation heat map of differentially expressed
iron metabolism-related genes in GSE117261. Figure S3:
predicted target genes of downregulated miRNA. Figure S4:
predicted target genes of upregulated miRNA. Figure S5: key
modules identified by the Cytoscape plugin MCODE. Table
S1: the merged iron metabolism-related gene set. Figure S6:
correlation heat map of immune cells in GSE117261 and
GSE15197. Figure S7: linear regression analysis between
expression of key genes and the proportion of immune cells
in GSE117261 and GSE15197. Figure S8: top 10 targeted
drugs predicted in the DSigDB database ranked by FDR.
Table S1: the merged iron metabolism related gene set. Table
S2: dysregulated miRNAs in IPAH samples. Table S3: differ-

entially expressed iron metabolism-related gene set. Table
S4: rank values of differentially expressed iron metabolism-
related genes by MCC algorithm. Table S5: the proportion
of infiltrating immune cells estimated by the CIBERSORT
algorithm in GSE117261. Table S6: the proportion of infil-
trating immune cells estimated by the CIBERSORT algo-
rithm in GSE15197. Table S7: predicted target drug using
the DSigDB database. (Supplementary Materials)

References

[1] M. Humbert, C. Guignabert, S. Bonnet et al., “Pathology and
pathobiology of pulmonary hypertension: state of the art and
research perspectives,” The European Respiratory Journal,
vol. 53, no. 1, p. 1801887, 2019.

[2] A. A. R. Thompson and A. Lawrie, “Targeting vascular remod-
eling to treat pulmonary arterial hypertension,” Trends in
Molecular Medicine, vol. 23, no. 1, pp. 31–45, 2017.

[3] M. Foshat and N. Boroumand, “The evolving classification of
pulmonary hypertension,” Archives of Pathology & Laboratory
Medicine, vol. 141, no. 5, pp. 696–703, 2017.

[4] N. Galiè, M. Humbert, J. L. Vachiery et al., “2015 ESC/ERS
guidelines for the diagnosis and treatment of pulmonary
hypertension: the Joint Task Force for the Diagnosis and
Treatment of Pulmonary Hypertension of the European Soci-
ety of Cardiology (ESC) and the European Respiratory Society
(ERS): Endorsed by: Association for European Paediatric and
Congenital Cardiology (AEPC), International Society for
Heart and Lung Transplantation (ISHLT),” European Heart
Journal, vol. 37, no. 1, pp. 67–119, 2016.

[5] B. Hasan, G. Hansmann, W. Budts et al., “Challenges and Spe-
cial Aspects of Pulmonary Hypertension in Middle- to Low-
Income Regions:,” Journal of the American College of Cardiol-
ogy, vol. 75, no. 19, pp. 2463–2477, 2020.

[6] M. Kanwar, A. Raina, M. Passineau, and R. Benza, “Idiopathic
pulmonary arterial hypertension: evolving therapeutic strate-
gies,” Seminars in Respiratory and Critical Care Medicine,
vol. 38, no. 5, pp. 606–618, 2017.

[7] R. Zolty, “Pulmonary arterial hypertension specific therapy:
the old and the new,” Pharmacology & Therapeutics, vol. 214,
p. 107576, 2020.

[8] E. M. T. Lau, E. Giannoulatou, D. S. Celermajer, and
M. Humbert, “Epidemiology and treatment of pulmonary
arterial hypertension,” Nature Reviews Cardiology, vol. 14,
no. 10, pp. 603–614, 2017.

[9] A. R. Bogdan, M.Miyazawa, K. Hashimoto, and Y. Tsuji, “Reg-
ulators of iron homeostasis: new players in metabolism, cell
death, and disease,” Trends in Biochemical Sciences, vol. 41,
no. 3, pp. 274–286, 2016.

[10] E. Soon, C. M. Treacy, M. R. Toshner et al., “Unexplained iron
deficiency in idiopathic and heritable pulmonary arterial
hypertension,” Thorax, vol. 66, no. 4, pp. 326–332, 2011.

[11] G. Ruiter, S. Lankhorst, A. Boonstra et al., “Iron deficiency is
common in idiopathic pulmonary arterial hypertension,”
European Respiratory Journal, vol. 37, no. 6, pp. 1386–1391,
2011.

[12] C. J. Rhodes, L. S. Howard, M. Busbridge et al., “Iron deficiency
and raised hepcidin in idiopathic pulmonary arterial hyperten-
sion: clinical prevalence, outcomes, and mechanistic insights,”
Journal of the American College of Cardiology, vol. 58, no. 3,
pp. 300–309, 2011.

25BioMed Research International

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://www.zhounan.org/ferrdb
http://www.zhounan.org/ferrdb
http://ophid.utoronto.ca/mirDIP/
http://ophid.utoronto.ca/mirDIP/
https://string-db.org/
https://www.drugbank.ca/
https://www.drugbank.ca/
https://downloads.hindawi.com/journals/bmri/2021/5669412.f1.zip


[13] E. Cotroneo, A. Ashek, L. Wang et al., “Iron homeostasis and
pulmonary hypertension: iron deficiency leads to pulmonary
vascular remodeling in the rat,” Circulation Research,
vol. 116, no. 10, pp. 1680–1690, 2015.

[14] S. Lakhal-Littleton, A. Crosby, M. C. Frise et al., “Intracellular
iron deficiency in pulmonary arterial smooth muscle cells
induces pulmonary arterial hypertension in mice,” Proceedings
of the National Academy of Sciences of the United States of
America, vol. 116, no. 26, pp. 13122–13130, 2019.

[15] S. Hao, P. Jiang, L. Xie et al., “Essential genes and MiRNA-
mRNA network contributing to the pathogenesis of idiopathic
pulmonary arterial hypertension,” Frontiers in Cardiovascular
Medicine, vol. 8, p. 627873, 2021.

[16] C. J. Rhodes, P. Ghataorhe, J. Wharton et al., “Plasma metabo-
lomics implicates modified transfer RNAs and altered bioener-
getics in the outcomes of pulmonary arterial hypertension,”
Circulation, vol. 135, no. 5, pp. 460–475, 2017.

[17] J. M. Elinoff, A. J. Mazer, R. Cai et al., “Meta-analysis of blood
genome-wide expression profiling studies in pulmonary arte-
rial hypertension,” American Journal of Physiology. Lung Cel-
lular and Molecular Physiology, vol. 318, no. 1, pp. L98–l111,
2020.

[18] Y. Benjamini and Y. Hochberg, “Controlling the false discov-
ery rate: a practical and powerful approach to multiple test-
ing,” Journal of the Royal Statistical Society: Series B:
Methodological, vol. 57, no. 1, pp. 289–300, 1995.

[19] A. Subramanian, P. Tamayo, V. K. Mootha et al., “Gene set
enrichment analysis: a knowledge-based approach for inter-
preting genome-wide expression profiles,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 102, no. 43, pp. 15545–15550, 2005.

[20] N. Zhou and J. Bao, “FerrDb: a manually curated resource for
regulators and markers of ferroptosis and ferroptosis-disease
associations,” Database, vol. 2020, 2020.

[21] NCBI Resource Coordinators, R. Agarwala, T. Barrett et al.,
“Database resources of the National Center for Biotechnology
Information,” Nucleic Acids Research, vol. 46, no. D1, pp. D8–
D13, 2018.

[22] T. Tokar, C. Pastrello, A. E. M. Rossos et al., “mirDIP 4.1-
integrative database of human microRNA target predic-
tions,” Nucleic Acids Research, vol. 46, no. D1, pp. D360–
D370, 2018.

[23] M. Yoo, J. Shin, J. Kim et al., “DSigDB: drug signatures data-
base for gene set analysis,” Bioinformatics (Oxford, England),
vol. 31, no. 18, pp. 3069–3071, 2015.

[24] S. Dannewitz Prosseda, M. K. Ali, and E. Spiekerkoetter,
“Novel advances in modifying BMPR2 signaling in PAH,”
Genes (Basel), vol. 12, no. 1, p. 8, 2021.

[25] R. L. Harper, A. M. Reynolds, C. S. Bonder, and P. N. Reyn-
olds, “BMPR2 gene therapy for PAH acts via Smad and non-
Smad signalling,” Respirology, vol. 21, no. 4, pp. 727–733, 2016.

[26] S. von Haehling, E. A. Jankowska, D. J. van Veldhuisen,
P. Ponikowski, and S. D. Anker, “Iron deficiency and cardio-
vascular disease,” Nature Reviews Cardiology, vol. 12, no. 11,
pp. 659–669, 2015.

[27] L. Ramakrishnan, S. L. Pedersen, Q. K. Toe, G. J. Quinlan, and
S. J. Wort, “Pulmonary arterial hypertension: iron matters,”
Frontiers in Physiology, vol. 9, p. 641, 2018.

[28] C. J. Rhodes, J. Wharton, L. Howard, J. S. Gibbs, A. Vonk-
Noordegraaf, and M. R. Wilkins, “Iron deficiency in pulmo-
nary arterial hypertension: a potential therapeutic target,”

The European Respiratory Journal, vol. 38, no. 6, pp. 1453–
1460, 2011.

[29] F. Wunderer, L. Traeger, H. H. Sigurslid, P. Meybohm, D. B.
Bloch, and R. Malhotra, “The role of hepcidin and iron
homeostasis in atherosclerosis,” Pharmacological Research,
vol. 153, p. 104664, 2020.

[30] C. M. Wong, I. R. Preston, N. S. Hill, and Y. J. Suzuki, “Iron
chelation inhibits the development of pulmonary vascular
remodeling,” Free Radical Biology & Medicine, vol. 53, no. 9,
pp. 1738–1747, 2012.

[31] H. J. Lee, J. S. Choi, H. J. Lee, W. H. Kim, S. I. Park, and J. Song,
“Effect of excess iron on oxidative stress and gluconeogenesis
through hepcidin during mitochondrial dysfunction,” The
Journal of Nutritional Biochemistry, vol. 26, no. 12, pp. 1414–
1423, 2015.

[32] H. Wang, C. Liu, Y. Zhao, and G. Gao, “Mitochondria regula-
tion in ferroptosis,” European Journal of Cell Biology, vol. 99,
no. 1, p. 151058, 2020.

[33] A. Bello-Klein, D. Mancardi, A. S. Araujo, P. C. Schenkel,
P. Turck, and B. G. de Lima Seolin, “Role of redox homeostasis
and inflammation in the pathogenesis of pulmonary arterial
hypertension,” Current Medicinal Chemistry, vol. 25, no. 11,
pp. 1340–1351, 2018.

[34] T. Hansen, K. K. Galougahi, D. Celermajer et al., “Oxidative
and nitrosative signalling in pulmonary arterial hypertension
– Implications for development of novel therapies,” Pharma-
cology & Therapeutics, vol. 165, pp. 50–62, 2016.

[35] B. Van Houten, “Pulmonary arterial hypertension is associated
with oxidative stress-induced genome instability,” American
Journal of Respiratory and Critical Care Medicine, vol. 192,
no. 2, pp. 129-130, 2015.

[36] W. Xu, S. A. A. Comhair, R. Chen et al., “Integrative proteo-
mics and phosphoproteomics in pulmonary arterial hyperten-
sion,” Scientific Reports, vol. 9, no. 1, p. 18623, 2019.

[37] Y. Wang and M. Tang, “PM2.5 induces ferroptosis in
human endothelial cells through iron overload and redox
imbalance,” Environmental Pollution, vol. 254, no. Part A,
p. 112937, 2019.

[38] G. O. Latunde-Dada, “Ferroptosis: role of lipid peroxidation,
iron and ferritinophagy,” Biochimica et Biophysica Acta, Gen-
eral Subjects, vol. 1861, no. 8, pp. 1893–1900, 2017.

[39] N. A. Rashdan, B. Zhai, and P. C. Lovern, “Fluid shear stress
regulates placental growth factor expression via heme oxygen-
ase 1 and iron,” Scientific Reports, vol. 11, no. 1, p. 14912, 2021.

[40] H. J. Chun, S. Bonnet, and S. Y. Chan, “Translational advances
in the field of pulmonary hypertension. Translating micro-
RNA biology in pulmonary hypertension. It will take more
than "miR" words,” American Journal of Respiratory and Crit-
ical Care Medicine, vol. 195, no. 2, pp. 167–178, 2017.

[41] G. Zhou, T. Chen, and J. U. Raj, “MicroRNAs in pulmonary
arterial hypertension,” American Journal of Respiratory Cell
and Molecular Biology, vol. 52, no. 2, pp. 139–151, 2015.

[42] H. Zhang, D. Wang, M. Li et al., “Metabolic and proliferative
state of vascular adventitial fibroblasts in pulmonary hyperten-
sion is regulated through a microRNA-124/PTBP1 (polypyri-
midine tract binding protein 1)/pyruvate kinase muscle axis,”
Circulation, vol. 136, no. 25, pp. 2468–2485, 2017.

[43] L. Zhang, Y. Ye, H. Tu et al., “MicroRNA-related genetic var-
iants in iron regulatory genes, dietary iron intake, microRNAs
and lung cancer risk,” Annals of Oncology, vol. 28, no. 5,
pp. 1124–1129, 2017.

26 BioMed Research International



[44] Y. M. Tsai, K. L. Wu, Y. Y. Chang et al., “Loss of miR-145-5p
causes ceruloplasmin interference with PHD-iron axis and
HIF-2α stabilization in lung adenocarcinoma-mediated angio-
genesis,” International Journal of Molecular Sciences, vol. 21,
no. 14, p. 5081, 2020.

[45] H. Zhang, T. Deng, R. Liu et al., “CAF secreted miR-522 sup-
presses ferroptosis and promotes acquired chemo-resistance
in gastric cancer,”Molecular Cancer, vol. 19, no. 1, p. 43, 2020.

[46] R. Chhabra, S. Rockfield, J. Guergues et al., “Global miRNA/-
proteomic analyses identify miRNAs at 14q32 and 3p21,
which contribute to features of chronic iron-exposed fallopian
tube epithelial cells,” Scientific Reports, vol. 11, no. 1, p. 6270,
2021.

[47] L. Li, H. Wang, J. Zhang, X. Chen, Z. Zhang, and Q. Li, “Effect
of endothelial progenitor cell-derived extracellular vesicles on
endothelial cell ferroptosis and atherosclerotic vascular endo-
thelial injury,” Cell Death Discovery, vol. 7, no. 1, p. 235, 2021.

[48] Y. Song, B. Wang, X. Zhu et al., “Human umbilical cord blood-
derivedMSCs exosome attenuate myocardial injury by inhibit-
ing ferroptosis in acute myocardial infarction mice,” Cell Biol-
ogy and Toxicology, vol. 37, no. 1, pp. 51–64, 2021.

[49] J. K. Meier, M. Schnetz, S. Beck et al., “Iron-bound lipocalin-2
protects renal cell carcinoma from ferroptosis,” Metabolites,
vol. 11, no. 5, p. 329, 2021.

[50] H. Nishizawa, M. Matsumoto, T. Shindo et al., “Ferroptosis is
controlled by the coordinated transcriptional regulation of
glutathione and labile iron metabolism by the transcription
factor BACH1,” The Journal of Biological Chemistry, vol. 295,
no. 1, pp. 69–82, 2020.

[51] M. Dodson, R. Castro-Portuguez, and D. D. Zhang, “NRF2
plays a critical role in mitigating lipid peroxidation and ferrop-
tosis,” Redox Biology, vol. 23, p. 101107, 2019.

[52] A. C. M. Johnson and R. A. Zager, “Mechanisms and conse-
quences of oxidant-induced renal preconditioning: an Nrf2-
dependent, P21-independent, anti-senescence pathway,”
Nephrology, Dialysis, Transplantation, vol. 33, no. 11,
pp. 1927–1941, 2018.

[53] S. Altun and H. Budak, “The protective effect of the cardiac
thioredoxin system on the heart in the case of iron overload
in mice,” Journal of Trace Elements in Medicine and Biology,
vol. 64, p. 126704, 2021.

[54] Q. Gao, G. Zhang, Y. Zheng et al., “SLC27A5 deficiency acti-
vates NRF2/TXNRD1 pathway by increased lipid peroxidation
in HCC,” Cell Death and Differentiation, vol. 27, no. 3,
pp. 1086–1104, 2020.

[55] J. M. Hartikainen, M. Tengström, V. M. Kosma, V. L. Kinnula,
A. Mannermaa, and Y. Soini, “Genetic polymorphisms and
protein expression of NRF2 and sulfiredoxin predict survival
outcomes in breast cancer,” Cancer Research, vol. 72, no. 21,
pp. 5537–5546, 2012.

[56] Q. Xie, H. Guo, P. He et al., “Tspan5 promotes epithelial-
mesenchymal transition and tumour metastasis of hepatocel-
lular carcinoma by activating Notch signalling,” Molecular
Oncology, 2021.

[57] S. Dabral, X. Tian, B. Kojonazarov et al., “Notch1 signalling
regulates endothelial proliferation and apoptosis in pulmonary
arterial hypertension,” The European Respiratory Journal,
vol. 48, no. 4, pp. 1137–1149, 2016.

[58] S. S. Khwaja, H. Liu, C. Tong et al., “HIV-1 Rev-binding pro-
tein accelerates cellular uptake of iron to drive Notch-

induced T cell leukemogenesis in mice,” The Journal of Clinical
Investigation, vol. 120, no. 7, pp. 2537–2548, 2010.

[59] R. A. Anderson, K. T. Schwalbach, S. R. Mui, E. E. LeClair,
J. M. Topczewska, and J. Topczewski, “Zebrafish models of
skeletal dysplasia induced by cholesterol biosynthesis defi-
ciency,” Disease Models & Mechanisms, vol. 13, no. 6, 2020.

[60] G. Xu, X. Li, Z. Zhu, H. Wang, and X. Bai, “Iron overload
induces apoptosis and cytoprotective autophagy regulated by
ROS generation in Mc3t3-E1 cells,” Biological Trace Element
Research, vol. 199, no. 10, pp. 3781–3792, 2021.

[61] S. M. He, Y. H. Lei, J. M. Wang et al., “The protective effect of
nitronyl nitroxide radical on peroxidation of A549 cell dam-
aged by iron overload,” Materials Science & Engineering, C:
Materials for Biological Applications, vol. 108, p. 110189, 2020.

[62] T. Thenappan, M. L. Ormiston, J. J. Ryan, and S. L. Archer,
“Pulmonary arterial hypertension: pathogenesis and clinical
management,” BMJ (Clinical Research ed), vol. 360, article
j5492, 2018.

[63] P. Heukels, O. B. J. Corneth, D. van Uden et al., “Loss of
immune homeostasis in patients with idiopathic pulmonary
arterial hypertension,” Thorax, p. thoraxjnl-2020-215460,
2021.

[64] R. Savai, S. S. Pullamsetti, J. Kolbe et al., “Immune and inflam-
matory cell involvement in the pathology of idiopathic pulmo-
nary arterial hypertension,” American Journal of Respiratory
and Critical Care Medicine, vol. 186, no. 9, pp. 897–908, 2012.

[65] M. Rabinovitch, C. Guignabert, M. Humbert, and M. R.
Nicolls, “Inflammation and immunity in the pathogenesis of
pulmonary arterial hypertension,” Circulation Research,
vol. 115, no. 1, pp. 165–175, 2014.

[66] Q. Mu, L. Chen, X. Gao et al., “The role of iron homeostasis in
remodeling immune function and regulating inflammatory
disease,” Science Bulletin, vol. 66, no. 17, pp. 1806–1816, 2021.

[67] L. M. Marsh, K. Jandl, G. Grünig et al., “The inflammatory cell
landscape in the lungs of patients with idiopathic pulmonary
arterial hypertension,” The European Respiratory Journal,
vol. 51, no. 1, p. 1701214, 2018.

[68] G. Mansueto, M. Di Napoli, C. P. Campobasso, and M. Slevin,
“Pulmonary arterial hypertension (PAH) from autopsy study:
T-cells, B-cells and mastocytes detection as morphological evi-
dence of immunologically mediated pathogenesis,” Pathology,
Research and Practice, vol. 225, p. 153552, 2021.

[69] E. Spiekerkoetter, S. M. Kawut, and V. A. de Jesus Perez, “New
and emerging therapies for pulmonary arterial hypertension,”
Annual Review of Medicine, vol. 70, no. 1, pp. 45–59, 2019.

27BioMed Research International


	Iron Metabolism and Idiopathic Pulmonary Arterial Hypertension: New Insights from Bioinformatic Analysis
	1. Introduction
	2. Materials and Methods
	2.1. Data Collection
	2.2. Identification of DEGs and DEIMRGs
	2.3. GO and KEGG Enrichment Analyses
	2.4. Construction of DRmiRNA–DEIMRG Regulatory Network
	2.5. PPI Network Construction and Identification of Key Modules and Hub Genes
	2.6. Validation of Hub Genes and tIMRGs in GSE15197
	2.7. Immune Infiltration Analyses
	2.8. Potential Therapeutic Drug Prediction

	3. Results
	3.1. Overall Protocol of the Study
	3.2. Identification of DEGs and DEIMRGs
	3.3. GO and KEGG Enrichment Analyses
	3.4. Prediction of Target Genes and Construction of DRmiRNA-DEIMRG Regulatory Network
	3.5. Construction of PPI Network and Identification of Key Modules and Hub Genes
	3.6. Validation of the Expression and Diagnostic Value of Hub Genes and tIMRGs in GSE15197
	3.7. Immune Infiltration Analyses
	3.8. Targeted Drug Prediction

	4. Discussion
	5. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

