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Mitochondrial medicine is an exciting and rapidly evolving field. While the mitochondrial

genome is small and differs from the nuclear genome in that it is circular and free

of histones, it has been implicated in neurodegenerative diseases, type 2 diabetes,

aging and cardiovascular disorders. Currently, there is a lack of efficient treatments

for mitochondrial diseases. This has promoted the need for developing an appropriate

platform to investigate and target the mitochondrial genome. However, developing

these therapeutics requires a model system that enables rapid and effective studying

of potential candidate therapeutics. In the past decade, induced pluripotent stem

cells (iPSCs) have become a promising technology for applications in basic science

and clinical trials, and have the potential to be transformative for mitochondrial drug

development. Engineered iPSC-derived cardiomyocytes (iPSC-CM) offer a unique tool to

model mitochondrial disorders. Additionally, these cellular models enable the discovery

and testing of novel therapeutics and their impact on pathogenic mtDNA variants and

dysfunctional mitochondria. Herein, we review recent advances in iPSC-CM models

focused on mitochondrial dysfunction often causing cardiovascular diseases. The

importance of mitochondrial disease systems biology coupled with genetically encoded

NAD+/NADH sensors is addressed toward developing an in vitro translational approach

to establish effective therapies.

Keywords: human induced pluripotent stem cells, cardiomyocytes, regenerative medicine, mitochondrial disease,

drug discovery, sonar sensor

INTRODUCTION

Mitochondria are fundamental structures in eukaryotes since they play a dynamic role in cellular
metabolism and are critical for ATP production. However, alterations in mitochondrial function
can result in the generation of reactive oxygen species (ROS) and have been implicated in the
pathogenesis of various diseases including cardiovascular disease, diabetes, cancer, and obesity
(1). Thus, restoring mitochondrial dysfunction could offer a promising therapeutic approach for
such prevalent diseases. This “mitochondrial medicine” requires a fundamental understanding of
mitochondrial genetics, oxidative phosphorylation (OXPHOS), ion channels, mechanisms of ROS
generation, and the role of mitochondria in the pathogenesis of disease.
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Unlike nuclear DNA (nDNA), mitochondrial DNA (mtDNA)
is present in multiple copies and is maternally inherited (2). The
humanmitochondrial genome is only 16.6 kb in size and contains
37 genes. 13 of the genes encode proteins of the OXPHOS
complex and the remaining 24 (2 ribosomal, 22 tRNA-encoding)
are used to translate proteins (2, 3). Since the discovery of
mtDNA in 1963 (4), the importance of themitochondrial genome
has been greatly reinforced by numerous reports highlighting
its involvement in several neuromuscular diseases (5–7). For
example, mitochondrial gene deletions have been linked to
myopathies and neuropathies (8) and certain mitochondrial
DNA variants have been implicated in aging and senescence
(8, 9).

The identification of pathogenic mtDNA variants has greatly
expanded with the development of cutting-edge cell biology
and next-generation sequencing techniques. Whole exome
sequencing has shown that certain mitochondrial disorders are
due to alterations in proteins involved in OXPHOS processes, or
others needed for the assembly of these protein complexes (2, 10).
While it is well documented that mitochondrial disease occurs
in at least 1 in 5000 individuals, the prevalence of pathogenic
mtDNA variants may be 1 in 200 as observed by umbilical cord
blood screening from newborns, including the ten most common
variants (11, 12). Phenotypically, mitochondrial diseases present
with multisystem disorders, such as sensory organ failure,
myopathies, cardiomyopathies, and neurodegeneration in the
adult (13). However, their inheritance can be complex given
mitochondrial variation.

Mitochondrial DNA varies in two distinct ways, which is
commonly referred to as mitochondrial heterogeneity (14).
There can be variation of mtDNA sequence within a single
cell, termed heteroplasmy, and variation of mitochondria in
different cells of the same organism. Importantly, mitochondrial
heterogeneity is regulated via genetic and non-genetic (e.g.,
metabolic) mechanisms (14). Genetic sources of mitochondrial
heterogeneity include changes in mtDNA copy number, mtDNA
variants, and loss of mtDNA content mostly due to ROS (14, 15),
which can impact the levels of mitochondrial RNA transcripts
necessary for the respiratory output of the mitochondrion. The
non-genetic mechanisms entail altered structure of electron
transport chain (ETC) proteins and the mitochondrial network,
disrupted composition of the mitochondrial membrane, and
compromised membrane potential. These two mechanisms are
inextricably linked. For example, altered transcription, a genetic
mechanism of heterogeneity can impact respiratory output, a
non-genetic mechanism of heterogeneity.

Interestingly, non-genetic mechanisms (e.g., metabolic state)
can also impact the genetic state of a mitochondrion (including
mtDNA content) when certain variants that alter mitochondrial
structural or functional integrity are selectively targeted. This is

Abbreviations: iPSCs, induced pluripotent stem cells; CMs, Cardiomyocytes;

iPSC-CM, induced pluripotent stem cell-derived cardiomyocyte; ESCs, embryonic

stem cells; mtDNA, mitochondrial DNA; nDNA, nuclear DNA; MELAS,

Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes;

OXPHOS, Oxidative phosphorylation; ETC, Electron transport chain; ATP,

Adenosine triphosphate; NADH, Nicotinamide adenine dinucleotide; SoNar,

Sensor of NAD (H) redox.

possible due to the dynamic nature of themitochondrial network,
with fusion and fission events contributing to the turnover of
mtDNA. Mitochondria may exhibit selective fusion and non-
selective mitophagy (i.e., mitochondria that are not fused are
more likely to undergo mitophagy). Reduced mitochondrial
proton gradients may decrease fusion of these mitochondria
and thus result in mitophagy. Therefore, if certain mtDNA
variants are more likely to alter this gradient, they will be
excluded by negative selection via reduced fusion and non-
selective mitophagy, thereby promoting retention of variants that
promote appropriate membrane potential integrity. Thus, the
dynamic nature of the mitochondrial network can impact the
mitochondrial genetic state (14, 16).

MITOCHONDRIAL DISEASES CAUSED BY
GENETIC DISRUPTION OF OXPHOS
PROCESSES

Pathogenic mtDNA variants have been implicated in disease,
as alterations in both mitochondrial and nuclear genes affect
OXPHOS process of the mitochondrial respiratory chain (17).
This is especially clear with variants that impact complex I
(also termed NADH:ubiquinone oxidoreductase), which is the
largest respiratory chain enzyme and a major contributor to
mitochondrial disorders when disrupted (17). Complex I defects
occur mainly due to variants in the 44 genes (both in nuclear
or mitochondrial genomes) encoding subunits of the complex or
proteins involved in its assembly (Figure 1). Examples of these
can be seen in Leber hereditary optic neuropathy (LHON), Leigh
syndrome and various other mitochondrial diseases. LHON is
the most common mtDNA disorder and occurs as a result of
homoplasmic variants in one of three genes encoding complex
I subunits, m.11778G>A in NADH dehydrogenase 4 (ND4),
m.3460G>A in ND1 and m.1448T>C in ND6. Leigh syndrome
has also been associated with variants in genes encoding subunits
of complex I (18, 19), (Figure 1). Secondary causes causing
complex I dysfunction include variants in genes that encode
proteins related to the complex’s function, such as iron-sulfur
cluster assembly and coenzyme Q10 synthesis (17).

Moreover, a great deal of phenotypic diversity is observed
between different variants in mtDNA. For instance, the MT-
ND4 variants m.11778G>A (p.Arg340His) and m.11777c>A
(p.Arg340Ser) have different substitutions for the same amino
acid, but are associated with LHON and Leigh syndrome,
respectively (17). While in some cases the reason for this
discrepancy is unclear (17), in others it may be linked with
tissue-specific heteroplasmy as seen with the m.11777c>A
(p.Arg340Ser) variant where heteroplasmy levels vary, with
reduced variant levels in the brain compared to the skeletal
muscle (20). Furthermore, similar phenotypic variation has been
observed with NDUFS6 variants, whereby different variants
result in a variety of phenotypes including lactic acidosis
(c.344G>A), Leigh syndrome (c.3095G>A), and mitochondrial
complex I deficiency (c.186+2T>A) (17, 21–23).

While over 250 distinct disease-causing variants have been
identified in mtDNA (24), the most common point mutation
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FIGURE 1 | Schematic drawing of the mitochondrial respiratory chain. Complex I, II, III, and IV are essential to generate a proton gradient that is utilized by the

F−0 F1-ATP synthase complex to generate ATP. Variants in mitochondrial genes involved in each of the complexes have been associated with neuromuscular disorders.

FILA, Fatal infantile lactic acidosis; LHON, Leber hereditary optic neuropathy; MELAS, Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes;

GRACILE, growth retardation, aminoaciduria, cholestasis, iron overload, lactic acidosis and early death; MILS, maternally inherited Leigh syndrome; MLASA,

mitochondrial myopathy, lactic acidosis, and sideroblastic anemia.

results in an A to G transition at nucleotide 3243 in the
tRNA Leu (UUR) gene with the recurrence of 16 in 100,000
people in northern Finland to a prevalence of 6.2 in 100,000 in
Australia (18, 25). This variant typically exhibits high levels of
heteroplasmy and causes mitochondrial encephalopathy, lactic
acidosis, cardiomyopathy, and stroke-like episodes (MELAS), a
multisystem disorder that primarily involves the brain, muscles
and endocrine system (12, 26–28). It has also been associated
with maternally inherited diabetes and deafness (MIDD) (28,
29). Other examples of common point mutations in mtDNA
include A to G transition at nucleotide 8344 in tRNA Lys,
which causes myoclonus epilepsy and ragged red fibers (MERRF)
syndrome, along with the aforementioned T to G transversion
at position 8993 in ATP6, resulting in neuropathy, ataxia,
retinitis pigmentosa (NARP) and maternally inherited Leigh
syndrome (MILS). All these three pathogenic variants are
considered hallmarks of mitochondrial disorders that cover the

range of morphological, biochemical, and clinical presentations
associated with mitochondrial biology dysfunction (18).

In addition to neuromuscular disorders, mitochondrial
dysfunction is associated with more common and complex
pathologic conditions, including cardiac disease (30, 31), cancer
(32), diabetes (33), Parkinson’s disease (34), Alzheimer’s disease
(35), epilepsy (36), Huntington disease (37), and obesity (38,
39) (Figure 2). In particular, mtDNA variants and reduction
in content have been widely involved in cardiac disorders
(31, 40), as cardiomyocytes (CMs) have higher mtDNA
copy number per diploid nuclear genome (41), given their
dependence on OXPHOS to meet high energetic demands. It
is therefore unsurprising that a deficiency of OXPHOS leads
to mitochondrial dysfunction which can trigger cardiovascular
disease (42).

Functional mitochondria are important for cardiomyocyte
energy regulation, Ca2+ homeostasis, and physiological
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FIGURE 2 | Diseases and organs affected by mtDNA mutations. Several neuromuscular and cardiac disorders have been associated to mtDNA mutations, with some

syndromes showing multisystemic incidence that affect mostly the brain, eye, and muscle. LHON, Leber hereditary optic neuropathy; CPEO, chronic progressive

external ophthalmoplegia; HCM, hypertrophic cardiomyopathy; DCM, dilated cardiomyopathy; LVNC, left ventricular non-compaction; MELAS, mitochondrial

encephalopathy, lactic acidosis, cardiomyopathy and stroke-like episodes ; MERFF, myoclonus epilepsy and ragged red fibers syndrome ; NARP, neuropathy, ataxia,

retinitis pigmentosa.

inflammatory homeostasis. The role of cytosolic [Ca2+] to
activate cardiac muscle contraction and ATP production
via mitochondria is well-established (43), as mitochondria
maintain intracellular calcium homeostasis and match energetic
demand through the mitochondrial calcium uniporter (MCU)
channel. Importantly, Mcu knockout mice display no overt
baseline phenotype and are protected against mitochondria
Ca2+ overload in an in vivo myocardial ischemia-reperfusion
injury model, by preventing the activation of the mitochondrial

permeability transition pore, decreasing infarct size, and

preserving cardiac function (44). Additionally,Mcu/ mice exhibit

reduced contractile responsiveness to acute β-adrenergic receptor
stimulation and in parallel are unable to activate mitochondrial

dehydrogenases, displaying delayed matching of energy output

to adrenergic or functional demand. These results support the
hypothesis thatMCUmay be dispensable for homeostatic cardiac

function but required to modulate Ca2+- dependent metabolism

during acute stress (44). Moreover, the deletion of Mcu greatly
decreases susceptibility to mitochondrial permeability transition
pore (MPTP) activation and thereby provides protection against
necrotic cell death. Additional studies have revealed the relation
between mitochondrial calcium content and cardiac dysfunction,
suggesting a potential role for mitochondrial dysfunction
in the pathophysiology of cardiac disorders, as reviewed
in (45).

DISEASE MODELING AND DRUG
SCREENING OF MITOCHONDRIAL
DISORDERS IMPACTING THE
CARDIOVASCULAR SYSTEM

Common barriers and limitations in current drug discovery
and development include the cost and low sensitivity of non-
human animal models for the study of off-target toxicities
(e.g., QT prolongation), and limited availability of human
CMs (46). Due to genetic and physiological similarities to
humans regarding the effect of mitochondrial dysfunction
on post-mitotic tissues, mouse models have been extensively
used to model mitochondrial disorders, being advantageous
over cell lines and/or organoid cultures (47). In 1995 there
were almost 50 mice strains expressing transgenes encoding
mitochondrial proteins, with almost half of these being associated
with mitochondrial diseases (47, 48). However, using mice
as a model for mitochondrial dysfunction has considerable
disadvantages as they require a high level of maintenance and
do not always recapitulate human phenotypes, as shown by
striking differences in muscle fiber excursion during walking,
critical to model neuromuscular diseases such as Duchenne
muscular dystrophy (49). Moreover, species-differences relative
to human cardiac physiology include beating rate (typically
slower in humans), energetics, myofilament configuration,
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myosin heavy chain isoform expression, presence of ion channels
and electrophysiology, and Ca2+ cycling (50). Thus, mice models
may not be adequate for the early screening of a large number
candidate compounds (47) to treat mitochondrial disorders.

As mtDNA variants impact preferentially in the heart,
an abundant and physiologically-relevant platform to model
cardiovascular diseases is needed. The clinical investigation
and application of primary human CMs are further limited
by donor cell availability and problematic isolation procedures
(51). Given the lack of immortalized cardiomyocyte cell lines
and the difficulty of obtaining appropriate animal models of
advanced cardiac disease, development of new heart disease-
specific therapeutics would benefit tremendously from advances
in human induced pluripotent stem cell (hiPSC)-derived
cardiomyocyte (CM) technologies. Importantly, these cells have
overcome some of the limitations of animal models by providing
a virtually infinite and physiologically-relevant source of CMs
that have been extensively characterized in vitro in terms of
molecular and functional features (52).

Molecular profiling of hiPSC differentiation into a CM lineage
involves the serial activation of distinct genes that constitute the
hallmark of normal cardiac development. In vitro differentiation
initially is characterized by expression of (i) BRY and MIXL1
to form the mesoderm, (ii) MESP1, ISL1, and KDR to design
cardiogenic mesoderm and (iii) NKX2.5, GATA4, TBX5,MEF2C,
and HAND1/2 expressed in cardiac-specific progenitors stage
(50). Finally, structural genes encoding for sarcomeric-related
proteins such asMYL2,MYL7,MYH6, and TNNT2 are expressed
in terminally differentiated CMs (50, 53–55). Altogether, the
key goal for recapitulating cardiovascular development to boost
differentiation efficiency is based on modulating signaling
pathways such as Wnt, BMP, and Activin/Nodal/TGF-β (56–59).
Therefore, the hiPSC-derived cardiac progenitor cells (CPCs),
and CMs offer possible ways to address new drugs to market.

Moreover, a key feature of hiPSCs involves their patient-
specific nature, thus providing a model system supporting
personalized medicine approaches. The “patient-in-a-dish” from
iPSCs approach has exhibited great potential to contribute to a
better understanding of the exact pathological mechanisms of
rare diseases (60). Further advances in hiPSC-CM technology
have facilitated the study of pathophysiology and drug efficacy
in 3D organoid environments with an expandable supply of cells
from donor patients (61). This confers the benefits of using
hiPSC-CMs but provides additional physiologically-relevant
conditions experienced at the organ level. After screening
candidate compounds using hiPSC-CM cells, in vivo testing can
be pursued (61) on a more reduced number of drugs, thus
limiting the risk and cost. This approach can address the limited
applicability of mouse models for drug discovery by providing a
translational system that enables screening of a large number of
candidate compounds to treat mitochondrial diseases.

Overall, all of these desirable propertiesmake pluripotent stem
cell-based models a promising platform for drug testing and
toxicology screening (46, 62–65). Additionally, hiPSC-CMs serve
as a valuable model for pre-clinical screening of candidate anti-
arrhythmic and anti-heart failure pharmacological agents, as well
as studying the off–target cardiac toxicities of chemotherapeutic

agents (66–68). However, there is still room for improvement
of this cellular model as iPSC-derived lineages are typically
immature relative to adult counterparts, and they fail to
recapitulate multi-cellular organs with neurohormonal control
(69). Nevertheless, there has been considerable progress in
refining hiPSC-CM maturation (70), which have contributed
significantly to cardiovascular research and has been applied
to model several disorders. For example, hiPSC-CM have
successfully modeled familial dilated cardiomyopathy (DCM)
(71), catecholaminergic polymorphic ventricular tachycardia
(CPVT) (72), and familial hypertrophic cardiomyopathy (HCM)
(73). Thus, iPSC-CM technology greatly facilitates the study of
genetic cardiovascular diseases, development of cardiovascular
system, toxicological screening, drug discovery, and personalized
cell-based therapy (50).

While these cardiomyopathy hiPSC-CM models focused
mostly on mutations in sarcomeric genes that regulate
cardiomyocyte contraction and calcium handling, a few have
also showed energy depletion phenotypes due to mitochondrial
dysfunction (74, 75). Importantly, hiPSC-CMs have also been
harnessed to specifically model mitochondrial cardiomyopathies
as these constitute phenocopies of HCM (40). Wang et al.
derived a number of hiPSC lines from Barth syndrome patients
showing frameshift or missense mutations in the Tafazzin (TAZ)
gene (76). Human iPSC-CMs differentiated from these lines
have demonstrated several disease phenotypes in comparison
to healthy isogenic controls, such as reduced mitochondrial
respiration activity, impaired sarcomere organization and
decreased contractile stress generation in a tissue construct.
These phenotypes were mechanistically linked with increased
formation of ROS and immature cardiolipin.

Currently, most studies relating mutations in mtDNA
to cardiovascular disorders rely on large-scale mitochondrial
genetics to associate specific variants with patient cohorts
exhibiting different cardiac phenotypes (31). While this approach
is statistically robust, it lacks functional characterization of
pathological phenotypes exhibited by cardiomyocytes in vitro,
required to better understand disease progression and treatment.
To the best of our knowledge, only one study characterized the
impact of a mtDNA mutation that associated with HCM (77) in
hiPSC-CMs. Li and colleagues have generated hiPSCs fromHCM
patients bearing the m.2336T>C mutation in the mitochondrial
rRNA gene (MT-RNR2). When compared to unrelated healthy
controls, diseased hiPSC-CM exhibited markedly lower levels of
several mitochondrial proteins (MT-ND5, MT-CYB, MT-COX2,
MT-ATP8), resulting in unstable 16S rRNA and ultrastructure
defects in the mitochondria. Strikingly, these alterations led
to several phenotypes characteristic of HCM, such as reduced
ATP/ADP ratio and mitochondrial membrane potential as well
as abnormal calcium handling (e.g., increased intracellular Ca2+

levels). This study not only strongly supported causation of
HCM by mtDNA mutations, but also overcame limitations
associated with clinical studies showing varying tissue-specific
heteroplasmy and susceptibilities to specific mtDNA mutations
(78). Furthermore, our own studies related different in vitro
phenotypic severities between hiPSC-CM lines bearing either
the R453C-βMHC or the E99K-ACTC1 sarcomeric mutations
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with specific variants in mtDNA (79). This approach focused
on coupling phenotypes of hiPSC-CMs with mtDNA sequencing
is promising to unveil novel variants with potentially HCM-
protective or aggravator function.

Remarkably, it is possible to generate iPSC-CMs clones
representing a range of both healthy and diseased mtDNA
for the study of mitochondrial disease. Moreover, producing
independent subclones that have distinctive heteroplasmic
mtDNA patterns in the context of native nuclear DNA enables
deconvolution of authentic disease specific processes. For
example, it has been previously demonstrated that MELAS-
iPSC clones show a similar range of mtDNA heteroplasmy
of the disease-causing variants as the original patient derived
fibroblasts. Producing MELAS-iPSC clones with high and low
levels of heteroplasmy and differentiating them along a cardiac
lineage enabled direct comparison of genotype/phenotype
relationships to investigate the impact of mutant mtDNA
on MELAS patients (80). Additionally, our group has shown
that iPSCs are capable of modeling intra- and inter-person
variability stemming from different levels of heteroplasmy in
mutant mtDNA between iPSC clones, including the functional
consequences for mitochondrial respiration in iPSC-CMs (81).
Overall, this results in a platform that be used to investigate
pharmacological approaches for reducing the burden of
mutant mtDNA. In addition, hiPSC-CM may also overcome
the limitations of clinical mitochondrial genetic studies,
where patient-derived samples are mostly collected from
peripheral blood and therefore do not reflect the tissue-specific
heteroplasmy showed by CMs [requiring clinically invasive
procedures to harvest (78)].

Notwithstanding, hiPSC-CM technology is very recent and
still needs to be further developed to become an ideal platform
for the study of pharmacology, toxicology, pathogenesis, and
cell-based therapy (60), although a number of methodological
improvements have been published (82, 83). In particular, the
investigation of mitochondrial diseases and recapitulation of
mitochondrial dysfunction phenotypes will greatly benefit from
metabolic maturation strategies. In fact, while the adult heart
preferentially relies on fatty acid oxidation to sustain high
energetic demands (84), hiPSC-CMs more closely resemble fetal
heart metabolism by primarily depending on glycolysis (85). In
order to bridge this gap, several hiPSC-CM maturation media
were developed, consisting of supplementation with several
fatty acids including palmitate, oleate and linoleic acid (86–88).
Additionally, the inclusion in the media of fatty acid transporters
into the mitochondria such as L-carnitine, or inhibition of lactate
dehydrogenase A has further enhanced the switch from glycolysis
to OXPHOS. Importantly, these different media formulations
have consistently resulted in increased mitochondrial respiration
capacities, mitochondrial content and cellular ATP levels, as well
as functional improvement of cardiomyocyte calcium handling,
ultrastructural features and contractility. Alternatively, transition
from 2D monolayers to 3D aggregate cultures under agitation
demonstrated changes in the transcriptome of hiPSC-CMs,
leading to upregulation of genes involved in OXPHOS at the
expense of glycolytic genes. These changes were reflected by
lower glycolytic fluxes in 3D, accompanied by an increased TCA
cycle activity, as measured by 13C-based metabolic flux analysis

(89). Altogether, metabolic maturation strategies have effectively
surpassed initial limitations associated with fetal-like metabolism
of hiPSC-CMs.

Overall, this new technology will greatly complement current
cell and animal models, and holds great promise in providing
insight into the drug discovery, with new tools including
biosensor photoproteins (90) and a strong predictive advantage
for moving compounds into clinical practice (91).

MITOCHONDRIAL MAINTENANCE AND
NICOTINAMIDE ADENINE DINUCLEOTIDE
(NAD+) LEVELS

NADH, along with its oxidized form NAD+, are fundamental
cofactors in energy metabolism. NAD+ in eukaryotic and
prokaryotic cells is primarily synthesized from tryptophan
or through the salvage pathway, which uses nicotinic acid
and nicotinamide as precursors (92, 93). Since mitochondrial
membranes have shown impermeability to NAD+ and NADP,
two major pools of NAD+ and NADP in cells have been found,
in the cytoplasm and mitochondria (94, 95). The cytosolic
NAD+/NADH redox cycling and homeostasis are maintained by
transporting the cytosolic NADH into the mitochondria through
the malate aspartate shuttle or the glycerol phosphate shuttle
(96). Previous studies have reported that the total intracellular
NAD+: NADH ratio is about 3–104. However, the ratio of the
free NAD+/NADH form is a more reliable indicator of cellular
redox potential compared to the ratio of total NAD+/NADH
(97). Under the physiological conditions in typical eukaryotes,
the cytosolic free NAD+/NADH ratio is about 60–700 (98–
100), while the ratio of mitochondrial NAD+/NADH is between
4 and 10 (97, 98, 101). For example, in a mouse model of
transverse aortic constriction (a model of pressure overload)
the NAD+/NADH ratio is around 2.75 (102). Investigation of
cellular metabolism associated with NAD+/NADH redox state is
essential in both healthy and disease circumstances.

It has been well-established that increased levels of NAD+

and sirtuin activation play a critical role in regulating
mitochondrial homeostasis and lifespan (103). Sirtuins are
a family of deacetylases that use NAD+ as a cofactor and
mediate mitochondrial homeostasis. For example, activation
of SIRT1 and subsequent deacetylation and activation of
peroxisome proliferator-activated receptor gamma coactivator-
1alpha (PGC-1α), a coactivator of mitochondrial biogenesis,
promotes increased ATP production. SIRT1 also activates
forkhead box protein O1 (FOXO1) which increases fatty acid
oxidation. Additionally, activation of SIRT3, a mitochondrial
sirtuin, promotes fatty acid oxidation and is protective
against reactive oxygen species. Given the role of NADH in
oxidoreductive reactions of glycolysis, the Krebs cycle, fatty
acid oxidation, and oxidative phosphorylation, alterations in
NADH/NAD+ can have broad metabolic effects (104, 105).
In fact, a decreased NAD+/NADH ratio is strongly associated
with mitochondrial and age-related disorders including
cancer, obesity, neurodegeneration, and diabetes (106–109).
The level of NAD+ decreases with age in multiple models
including worms and rodents as well as human tissue
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(107, 110–112). Research demonstrated that increasing the
level of NAD+ leads to NAD+/sirtuin pathway activation
and subsequent effects on multiple metabolic pathways. For
example, treating the cytochrome c oxidase (COX) deficiency
indicative of mitochondrial disorder with the AMPK agonist
5-aminoimidazole-4-carboxamide ribonucleotide (AICAR)
partially rescued mitochondrial dysfunction and improved
motor outcomes (113). Thus, regulation of mitochondrial
metabolism via evolutionarily conserved NAD+/sirtuin
pathways presents a novel target for clinical trials.

Recent evidence suggests that NAD+ and PARP inhibitors
could be used to boost NAD+ levels in cell culture and animal
models (107). Moreover, additional work has shown that, in
Caenorhabditis elegans and mice, α-amino-β-carboxymuconate-
ε-semialdehyde decarboxylase (ACMSD) controls cellular
NAD+ levels. ACMSD is an enzyme that plays a role in de
novo NAD+ synthesis pathways by limiting spontaneous
cyclization of α-amino-β-carboxymuconate-ε-semialdehyde.
Interestingly, not only genetic inhibition of ACMSD but also the
pharmacological inhibition of ACMSD increases de novo NAD+

synthesis and sirtuin 1 activity (103), resulting in enhancement
of mitochondrial function (103). Moreover, in addition to
aging, an altered NAD+/NADH ratio is observed in cardiac
disease. Specifically, a decreased utilization of NADH may
result in a reduced NAD+/NADH ratio observed in failing
hearts suggesting an inability to maintain NADH production
due to mitochondrial dysfunction (12, 13, 114, 115). Both
pharmacological and genetic attempts to increase NAD+ levels
and subsequently the NAD+/NADH ratio have resulted in
improved cardiac function in mouse models of heart failure
(13, 115–117).

In 1924, Otto Warburg proposed that the energy in cancer
cells is produced by a shift from oxidative phosphorylation to
aerobic glycolysis (118), dramatically increasing the biosynthesis
of macromolecules for rapid cell proliferation (32, 119, 120).
Classical biochemical techniques including chromatography,
mass spectrometry, enzymatic cycling assays, and nuclear
magnetic response spectroscopy are not applicable methods for
performing quantitative, high-throughput screening in real-time.
As the NAD+/NADH ratio plays a central role in all aspects of
cellular metabolism, real time tracking of this metabolic state

in living cells needs to be developed. Previous techniques relied
upon the weak endogenous fluorescence of NADH, examined by
single-proton or multiphoton excitation for measuring metabolic
states of mitochondria (96, 97, 121, 122). However, these
methods are plagued by innate disadvantages, including limited
sensitivity and resultant cellular injury associated with ultraviolet
irradiation (123). Because most of the NADPH fluorescence
derives from the mitochondria, it is often challenging to
identify and separate the bright mitochondrial signals from those
emanating from the cytosol. Moreover, it is difficult to distinguish
NADPH from NADH, as they are spectrally identical. Recently
developed technology employing fluorescence lifetime imaging
can quantitatively differentiate between the two cofactors based
on the fact that bound NADH and bound NADPH acquires
different fluorescence lifetimes inside the cell (123). Nevertheless,
usage of fluorescence lifetime imaging is neither technically
simple nor broadly applicable as it requires the separation of
NADH and NADPH redox signaling without disrupting the
samples on the addition of external probes.

Enzymatic cycling assays, chromatography and mass
spectrometry are a few of the conventional methods that
are often used to measure the intracellular NAD+/NADH
redox state (97). Additional limitations of these techniques
involve the time required to conduct the assays, and their
incompatibility with the study of spatiotemporal dynamics
in single, intact cells, thereby making them unsuitable for
quantitative, real-time high-throughput screening in living cells
(97, 124, 125). To overcome the challenges of NAD+/NADH
dynamics analysis with subcellular resolution in vivo, we propose
a new technology using a genetically encoded fluorescent sensor
based on fluorescent proteins (FPs) with the ability to analyze
NAD+/NADH dynamics with subcellular resolution.

LIVE MONITORING OF NAD+/NADH
REDOX STATE IN REAL TIME BY
GENETICALLY ENCODED SENSOR
TECHNOLOGY

Due to the limitations of conventional methods explored
above, genetically encoded fluorescent sensors may present

TABLE 1 | SoNar has some key advantages for live cell monitoring of NAD+/NADH compared to Frex and Peredox-mCherry.

Highlights Limitations Detected Signal

Peredox-mCherry Modest brightness in cells

Aggregates in cytosol

Low dynamic range

Large gene

Not validated in vivo

NAD+/NADH ratio*

Frex Does not aggregate in cells

Moderate dynamic range Minimal brightness in cells

Large gene

NADH

SoNar High brightness in cells

High dynamic range

Small gene

Does not aggregate in cells

Validated in vivo

pH sensitive at 485 nm NAD+/NADH ratio

*However, it is impacted by absolute NAD(H) levels.
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an adequate alternative for live monitoring of NAD+/NADH
redox state, supporting rapid and efficient metabolic chemical
screening. Developing these sensors involves single-cell, real-
time monitoring of multiple metabolic parameters (120).
Recently, two independent groups have developed genetically
encoded NADH sensors: Peredox and Frex (126, 127). In
2016, the Yang group described a second-generation genetically
encoded biosensor for NAD+/NADH, named Sensor of NAD
(H) redox (SoNar) (128). All three sensors quantify NADH
cellular levels or the NAD+/NADH ratio through specific, non-
covalent binding resulting in a conformational change that alters

the fluorescent properties of the sensor. Since these proteins
are genetically encoded and have intrinsic fluorescence without
extraneous compounds, they can be easily introduced into live
cells via DNA transfection and targeted to specific organelles.
However, these proteins vary in their fluorescent properties.
Notably, Frex and SoNar have two excitation peaks (97), enabling
determination of ratiometric fluorescence. Thus, these can be
used for detecting the NAD+/NADH ratio given the differential
effect of NAD+ or NADH on the two excitation wavelengths.
On the other hand, Frex can be used to detect NADH levels
independent of sensor expression levels (97, 129). In contrast,

FIGURE 3 | Schematic drawing of how iPSC-derived cardiomyocytes can be applied as a drug screening platform for mitochondrial disorders.
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Peredox must be made ratiometric by using fusing it with
mCherry (97).

Compared to the first-generation sensors, SoNar provides
a significant improvement for live cell NAD+/NADH
measurement (97) (Table 1). Given its shorter coding sequence,
SoNar has a more intense fluorescence enabling its use for in vivo
applications compared to Frex (128). SoNar has a wide dynamic
range and high intensity fluorescence. It is rapidly responsive
and thus suitable for tracking subtle changes of cellular metabolic
and redox states in vivo. This sensor represents an improved
reporter system for studying cell metabolism (130, 131) and
compounds for drug discovery. In contrast to other available
assays, which target a single protein or enzyme, SoNar is
even capable of reporting several pathways affecting energy
metabolism providing a more detailed insight into glycolysis
and mitochondrial respiration (128). Previously, it was difficult
to rigorously measure NAD+/NADH levels in certain cancer
lines. However, using SoNar, MDA-MB-468, U87, and H1299
cells, were shown to have a significantly reduced NAD+/NADH
cytosolic ratio (132).

However, the use of the SoNar sensor still poses a number
of challenges. SoNar fluorescence may be impacted by changes
in pH. While the chromophore responsible for fluorescence
absorption at 420 nm is protonated and not sensitive to pH
changes, the chromophore operating at 485 nm is normally
deprotonated and responsive to changes in pH, which can
trigger protonation and block fluorescence emission. This can
be compensated by using absorption only at 420 nm, although
this will impact the dynamic range of SoNar (97). Additionally,
this sensor does not allow for the absolute quantification of
NADH or NAD+ but provides a measure of the NAD+/NADH
ratio, which is the key value that changes in disease state.
Furthermore, the genetic construct encoding the sensor needs
to be integrated into the host cell’s genome, preventing its
use for staining active live clinical samples (97). Nonetheless,
this strategy can be harnessed to generate stable hiPSC
reporter lines tracking NAD+/NADH ratios that can then be
differentiated into CMs to investigate metabolic cardiovascular
disorders such as mitochondrial cardiomyopathies (133). This
can be achieved by knocking-in the genetic construct into
safe loci such as AAVS1, as previously demonstrated with
genetically encoded calcium sensors (75). The properties of
SoNar sensors, displaying high fluorescence intensity and
dynamic range, are compatible with live imaging, enabling
their application for high-content imaging, and/or for the
measurement of overall signal intensity in a standard plate
reader. Additionally, treatment with modulators of redox state
in hiPSC-CMs such as hydrogen peroxide and DTT can be
done to establish extremes of oxidation and reduction states
of cellular NAD+/NADH, respectively (134), leading to a
more accurate quantification of the signal in the context of
mitochondrial diseases where this ratio is disrupted (132).
Moreover, these approaches can be multiplexed with existing
platforms for evaluating mitochondrial respiration profiles in
hiPSC-CMs such as the Seahorse assay (82), which is performed

in 96-well plate format thereby facilitating high-throughput
screening studies, in response to various energy sources or
metabolic modulators such as perhexiline (51). This approach
may also be incorporated in isogenic sets of patient-derived
hiPSC lines with known mitochondrial diseases affected by
mtDNA variants (79).

CONCLUSIONS

Disruption of mitochondrial function is not only commonly
observed in cardiovascular disorders but has also been proposed
to underlie the pathology of disease progression (135), due
to the high energetic demand of the heart and its cellular
constituents. In turn, mitochondrial DNA variants have shown
to cause phenocopies of cardiomyopathies (31), highlighting
the close relationship between mitochondrial dysfunction and
cardiovascular disease. Herein, we propose that human iPSC-
derived cardiomyocytes provide a unique translational model
system to advance understanding of mitochondrial pathogenic
variants. These cellular models have the potential for not
only investigating mitochondrial dysfunction caused by mtDNA
variants (such as m.3243A>G involved in MELAS), but also
as a drug screening platform for both mitochondrial and
cardiovascular disorders. The genetically encoded fluorescent
SoNar sensor that tracks NAD+/NADH ratio provides a
robust tool for quantifying the intracellular redox state
and screening for small compounds that restore normal
metabolic activity. Altogether, the combination of iPSC-
CMs with the SoNar sensor is expected to transform the
future treatment of metabolic and cardiovascular diseases by
supporting the discovery of drugs treating these inextricably
linked conditions (Figure 3). Finally, these cellular models can
provide a platform for optimization of recently discovered
tools to edit the mitochondrial genome (136), by offering
a disease-relevant pathophysiology setting in the cardiac
cell type of interest, more accurately recapitulating heart-
specific heteroplasmy.
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