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Mycoparasitic Trichoderma spp. act as potent biocontrol agents against a number of plant pathogenic fungi, whereupon the
mycoparasitic attack includes host recognition followed by infection structure formation and secretion of lytic enzymes and
antifungal metabolites leading to the host’s death. Host-derived signals are suggested to be recognized by receptors located on the
mycoparasite’s cell surface eliciting an internal signal transduction cascade which results in the transcription of mycoparasitism-
relevant genes. Heterotrimeric G proteins of fungi transmit signals originating from G-protein-coupled receptors mainly to the
cAMP and the MAP kinase pathways resulting in regulation of downstream effectors. Components of the G-protein signaling
machinery such as Ga subunits and G-protein-coupled receptors were recently shown to play crucial roles in Trichoderma
mycoparasitism as they govern processes such as the production of extracellular cell wall lytic enzymes, the secretion of antifungal

metabolites, and the formation of infection structures.

1. Introduction

All living organisms are confronted with a plethora of differ-
ent stimuli due to exposure to the environment. Recognition
of these stimuli and appropriate cellular responses like induc-
tion of gene transcription and protein phosphorylation are
crucial for survival. Sensed at the cells surface these signals
are mediated to intracellular elicitors by transmembrane
signaling pathways. Fungi in particular emit sex-specific
pheromones to attract potential mating partners of the oppo-
site mating type. Surviving of pathogenic and mycoparasitic
fungi depends on host-derived signals allowing them to
recognize their hosts [1, 2].

For more than 70 years, species of the filamentous fungus
Trichoderma have been known to be able to attack and
metabolize plant pathogenic fungi, and therefore they are
used as biocontrol agents [3]. Currently Trichoderma-based
biological pesticides (e.g., SoilGard, Trichodex) are applied
against a variety of plant pathogenic fungi like Rhizoctonia

solani, Botrytis cinerea, Sclerotium rolfsii, Sclerotinia sclerotio-
rum, and Fusarium spp. [4-6].

Biocontrol is defined as a number of different mech-
anisms working synergistically to achieve disease control
revealing complex interactions between biological control
agents, plant pathogen, and plant [7]. These mechanisms
could be either indirect like competition for nutrients and
space, antibiosis and stimulation of plant-defense mecha-
nisms, or direct like mycoparasitism [2].

Trichoderma spp. exhibit the ability to survive under
unfavorable conditions predominating in ecological niches
like salt marshes. Strains used in biological control should
stand a wide range of temperatures, salinity, low moisture
and show resistance to fungicides and chemicals used in
soil treatment. These characteristics, together with their
ability to produce highly efficient siderophores which chelate
iron resulting in growth inhibition of other fungi make
Trichoderma potent competitors [8—10]. For stimulation of
plant-defense mechanisms Trichoderma produces proteins
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and low-molecular-weight compounds which prevent the
plant from further infections [11]. Furthermore, Tricho-
derma secretes diverse secondary metabolites like pyrones,
peptaibols, and terpenes, which can inhibit growth of plant
pathogenic fungi [6].

Fungal mycoparasitism, the direct attack of one fungus
on another, implies different processes occurring consec-
utively. These processes include recognition of the host,
formation of morphological changes such as coiling around
the host’s hyphae and development of appressorium-like
structures and subsequent penetration and killing of the host
[2, 12, 13]. For penetration of the host’s cell wall Trichoderma
produces hydrolytic enzymes like chitinases, glucanases, and
proteases [14]. To some extent production of these enzymes
is already induced prior to physical contact with the host
due to inducing diffusible host-derived factors [15, 16]. In
addition, complementary molecules present at the surface
of both the host and the mycoparasite can mediate physical
contact [17]. The plant pathogen R. solani was shown to
possess glycoproteins (lectins) on its surface which are able
to agglutinate carbohydrate moieties present on Trichoderma
hyphae [12] and thus trigger coiling of the mycoparasite
around the host hyphae [4, 18].

For the activation of the mycoparasitic response, a model
of different signaling pathways responding to multiple signals
from the host can be assumed. This is based on findings
that on the one hand lectins induce morphological changes
like coiling around the host hyphae and appressorium
development in Trichoderma even though they are ineffective
inducers of the chitinolytic enzyme system. On the other
hand cell wall degradation products are powerful inducers
of chitinase production whereas they do not efficiently
induce coiling. Furthermore lectins induce coiling only upon
physical contact while parts of the chitinolytic enzyme
system are already induced before direct contact between
Trichoderma and its host.

Receptor molecules, located within the mycoparasite’s
cell membrane, are supposed to be the linkage between these
host-derived signals and intracellular signalling pathways
of Trichoderma resulting in, for example, the activation
of mycoparasitism-relevant genes. Recently, examination of
these intracellular signaling pathways of Trichoderma began
and revealed that G-protein signaling plays an important role
in mycoparasitism [19-23].

2. G-Protein Signaling

2.1. Components of G-Protein Signaling in Fungi. Classical
G-proteins are heterotrimers composed of three subunits
termed Ga, Gf3, and Gy, which are highly conserved from
fungi to humans. In fungi, heterotrimeric G proteins play
essential roles in sexual and pathogenic development, in
secondary metabolism, in pheromone signaling cascades and
processes determining fungal virulence [1, 24].

Fungal Ga subunits can be divided into three major
subgroups according to a phylogenetic tree generated by
multiple alignment of fungal G-protein sequences. Subgroup
I Ga proteins are homologs of the mammalian Ga; subunit
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as both contain a consensus sequence for myristoylation
(MGXXXS) at the N-terminus [25] and a site for ADP-
ribosylation by pertussis toxin (CAAX) at the C-terminus
[26]. Ga proteins of subgroup I lower the intracellular cAMP
level by inhibiting adenylyl cyclase [27]. Among subgroup
II members, protein sequences are not as well conserved as
of members of groups I or III [28]. Their functions are less
obvious, and their direct effectors still remain to be identified
[24]. Members of subgroup III posses a myristoylation site
at the N-terminus and positively influence the intracellular
cAMP level. In analogy to the mammalian Ga, family,
members of subgroup III have been designated as adenylyl
cyclase stimulating fungal Gas subunits [1].

Most fungal species possess one representative of each
Ga subgroup. However, screening the whole genome of
Saccharomyces cerevisiae revealed that GPAI and GPA2 are
the only two Ga subunit-encoding genes in this organism
and they cannot be placed unambiguously into one of the
three subgroups described above. GPAl shows sequence
relationship to subgroup I but lacks the consensus site for
pertussis toxin-dependent ribosylation [1, 29].

By screening the genomes of Ustilago maydis and
Aspergillus oryzae, a fourth Ga subunit has been identified in
these fungi. Both, Gpa4 of U. maydis and GaoC of A. oryzae,
exhibit some unusual features and therefore do not belong
to one of the three subgroups described above. Phylogenetic
analysis indicated that Gpa4 and GaoC are distinct thus
excluding the presence of a conserved fourth class of Ga
subunits in fungi [30, 31].

Fungal Gf-encoding genes were shown to affect the
sexual and asexual life cycle of these organisms [32]. In
addition, examination of Gf in the model filamentous
fungus Neurospora crassa suggested that this subunit is also
essential for the complex formation and stability of Ga and
Gy [33]. Gy subunits form a large family of small proteins
from which the majority of filamentous fungi possess only
a single conserved member [32]. Gy deletion in N. crassa
for instance led to the same phenotype as deletion of the
GJ subunit such as increased conidiation, female-sterility,
and decreased intracellular cAMP levels, and in addition an
altered concentration of the three Ga proteins [33].

In fungi, G-protein signaling pathways elicit cellular
responses like mating, cell division, growth, morphogenesis,
and pathogenic development [34] but up to now only little
information is available on the characteristics and functions
of fungal G-protein-coupled receptors (GPCRs). Numerous
fungal genomes are sequenced nowadays and comparative
genomics resulted in the classification of fungal GPCRs
intofor example, nine classes [31]: classes I and II include
pheromone receptors related to S. cerevisiae Ste2p and Ste3p
receptors; classes Il and V consist of putative carbon source
and cAMP sensors; class IV contains Schizosaccharomyces
pombe Stmlp-like nitrogen sensors; class VI comprises a
unique class in filamentous fungi representing GPCRs with
an RGS domain in the cytoplasmatic moiety of the protein;
members of classes VII and VIII share similarities with the rat
growth hormone releasing factor (class VII) and the steroid
receptor mPR (class VIII); and class IX contains fungal
opsins similar to the bacterial retinal-binding rhodopsin with
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the well-characterized representatives NOP-1 and ORP-2 of
N. crassa [35]. Subsequent to the release of the genome of
the rice blast fungus Magnaporthe grisea, a large novel class
of fungal GPCRs related to PTH11, a receptor required for
the development of the appressorium, was defined [36, 37]
and recently Zheng et al. [38] reported on the identification
of three novel classes, each of which comprises one member
in the plant pathogen Verticillium spp. with high sequence
similarity to GPCRs of higher eukaryotes.

2.2. Regulation of G-Protein Signaling in Fungi. Activa-
tion/deactivation and the intensity of G-protein signaling are
regulated by interactions of the Ga subunit with GPCRs, Gfy
subunits, GTPase-activating, and multiple other proteins
(39, 40].

GTPase-activating proteins, such as RGS (regulator of
G-protein signaling) proteins, act to accelerate hydrolysis
of GTP to GDP on Ga subunits and thereby terminate
the transduced signal [39, 41]. While in S. cerevisiae the
RGS protein Sst2 was found to control mating responses
by promoting the hydrolysis of GTP on the Ga subunit
Gpal via binding to the Ste2 pheromone receptor [42], Rgs2,
the second RGS protein of yeast, negatively regulates the
Gpa2 Ga subunit and glucose signaling via the Gprl GPCR
[43]. The filamentous model fungus Aspergillus nidulans
contains four RGS proteins (in addition to the RGS domain-
containing GPCR GprK; [31]) among which FIbA and
RgsA were shown to negatively regulate the subgroup I and
III Ga subunits FadA and GanB, respectively [44, 45]. In
pathogenic fungi such as Cryphonectria parasitica, M. grisea,
Cryptococcus neoformans, and Metarhizium anisopliae, RGS
proteins were described to regulate Ga-mediated signaling of
fungal virulence [46-50].

Modulation of the activity of Gfy subunits can be
achieved by proteins belonging to the family of phosducins
or phosducin-like proteins. Reports on the function of these
proteins in filamentous fungi are rare. In A. nidulans and
the chestnut blight fungus C. parasitica, the phosducin-like
proteins PhnA and BDM-1, respectively, were shown to be
necessary for Gf3 function [51, 52]. In addition, BDM-1 was
recently reported to be a phosphoprotein and it was shown
to play a positive role in regulation of virulence [53].

In addition to regulatory proteins influencing G-protein
activity, mechanisms directly regulating the activation and
stability of GPCRs exist. Although, there are not yet any
reports on their mode of action in filamentous fungi,
regulation of the Ste2 and Ste3 pheromone receptors has
been studied in detail in the model organism S. cerevisiae.
GPCR signaling was shown to be regulated by ligand-
triggered Ste2 receptor oligomerization and phosphorylation
resulting in receptor desentization, endocytosis, and inter-
nalization [54-56]. Like Ste2, Ste3 can be recycled via ligand
dependent manner [57]. In addition, the Afrl protein was
found to prevent G-protein activation via the Ste2 receptor
independent of receptor phosphorylation and endocytosis
[58] whereas the Asg7 protein inhibits signaling by Gpfy
via a concerted action with the Ste3 pheromone receptor
[59].

3. The Role of G-Protein Signaling in
Trichoderma Mycoparasitism

Comparable to fungal pathogens which attack plant, ani-
mal or human hosts, mycoparasites are pathogenic to
other fungi. The mycoparasitic attack involves similar
processes as those described for other pathogenic fungi
such as infection-related morphogenesis, the production of
hydrolytic enzymes involved in host invasion, and mycotoxin
synthesis.

In plant pathogenic fungi, subgroup I and III Ga
proteins and the cAMP pathway were repeatedly shown
to play an essential role in regulating virulence-associated
processes such as filamentation and appressorium formation.
Similarly, G-protein signaling also governs pathogenesis and
the production of virulence factors in various fungal human
pathogens such as C. neoformans and Aspergillus fumigatus
(reviewed in [24]).

Investigating different Trichoderma spp. for G-protein
signaling compounds revealed that they have members
of fungal Ga subgroups I, II, and III (Figure 1). Rocha-
Ramirez et al. [19] silenced and overexpressed tgal, encoding
the subgroup I Ga subunit in T. atroviride strain IMI
206040. Silencing of tgal led to intense sporulation and
slowly growing colonies whereas overexpression had the
opposite effect by promoting vegetative proliferation and
increased coiling, a morphological change associated with
the mycoparasitic host attack. In direct plate confrontation
assays with R. solani as the host fungus, the transformed
lines overexpressing fgal showed an impressive increase in
the capacity of the fungus to overgrow and parasitize the host
compared to the parental strain. On the other hand, lines
blocked in the production of Tgal were unable to overgrow
the host [19].

A more profound functional characterization of Tgal
was performed by Reithner et al. [21], who extended the
involvement of this G-protein a subunit to the production
of antifungal metabolites and the formation of extracel-
lular chitinases both processes relevant for the mycopara-
sitic host attack. rgal knockout mutants showed strongly
reduced extracellular chitinase activities and a decreased
transcription of the chitinase-encoding genes nagl (N-
acetyl-glucosaminidase-encoding) and ech42 (endochitinase
42-encoding). Investigation of the antifungal activity of
the Atgal mutant revealed reduced amounts of the major
antifungal metabolite of T. atroviride, 6-pentyl-a-pyrone
[21], while elevated amounts of peptaibols, peptides with
antibiotic activity, could be detected [60]. These results
indicate contrasting functions of Tgal in regulating the
biosynthesis of different antifungal metabolites. An elevated
internal steady-state cAMP level in the Atgal mutants com-
pared to the parental strain confirmed that Tgal represents
a member of the adenylyl cylcase inhibiting subgroup I of
fungal Ga subunits [21].

Contrary to T. atroviride Tgal, its homologue TgaA does
not influence growth or conidiation in T. virens, another
mycoparasitic Trichoderma species. In antagonistic assays,
when Trichoderma is confronted with a host fungus in
a dual plate culture, T. virens AtgaA mutants showed a
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host-specific behavior as they could hardly colonise sclerotia
of the plant pathogenic fungus S. rolfsii whereas they were
fully pathogenic against another plant pathogen, R. solani.
T. virens AtgaB mutants missing the subgroup II Ga protein
revealed unaltered growth, sporulation, and mycoparasitism
of R. solani and sclerotia of S. sclerotiorum [20].

Functional characterization of the subgroup III Ga
protein Tga3 of T. atroviride revealed its involvement in reg-
ulating vegetative growth and conidiation. Atga3 knockout
mutants exhibited significantly reduced intracellular cAMP
levels compared to the parental strain [22]. Accordingly,
examination of a gna3QL mutant of the only weakly
mycoparasitic species T. reesei, carrying a constitutively
activated allele of the subgroup III Ga protein-encoding tga3
homologue gna3, revealed a severe increase in intracellular
cAMP levels [23, 61]. This confirmed the stimulatory role of
the subgroup III Ga proteins Tga3 and Gna3 on the activity
of adenylyl cyclase.

Analysis of the mycoparasitic activity of T. atroviride
Atga3 mutants in antagonistic plate assays revealed that
they were completely avirulent, that is, they lost the ability
to attack and lyse host fungi [22]. Microscopic charac-
terization showed that the mutants were unable to form

mycoparasitism-related infection structures, like attachment
to and coiling around the host hyphae. Interestingly, addition
of 5mM exogenous cAMP to the confrontation assays led
to a restoration of infection structure formation. When
analyzing the production of cell wall lytic enzymes in
Atga3 knockout mutants, it turned out that Tga3 is also
involved in regulating this mycoparasitism-relevant process.
The mutants exhibited reduced levels of extracellularly
secreted chitinases compared to the parental strain although
they showed elevated transcription of the chitinase-encoding
genes nagl and ech42. Further experiments revealed that
chitinolytic enzymes are retained inside the cell suggesting an
influence of Tga3 on chitinase gene transcription and secre-
tion [22]. In gna3QL mutants of T. reesei elevated levels of
different extracellular enzymes like endochitinase, N-acetyl-
glucosaminidase, f3-1,3-glucanase, lipase, and phosphatase
were found [23]. In addition, the gna3QL mutants exhibited
a significantly increased transcript abundance of the major
cellulase-encoding gene cbh1 compared to the parental strain
when the fungus was cultivated in the presence of light
[61]. The authors attribute this raise in enzyme production
to the elevated intracellular cAMP levels caused by the
constitutively activated Gna3 protein.
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In addition to regulating infection structure formation
and the production of cell-wall-degrading enzymes such as
chitinases, T. atroviride Tga3 was also found to be required
for the production of antifungal metabolites [22]. While
there is a clear correlation between sporulation of the
fungus and the secretion of antifungal metabolites in the T.
atroviride parental strain, Atga3 mutants were fully impaired
in the production of peptaibols although they exhibited a
hypersporulating phenotype [62].

Interestingly, the Tmkl MAP kinase was found to
regulate the expression of chitinase-encoding genes in T.
atroviride in a way similar to the Tga3 Ga protein [63].
This suggests that a MAPK cascade involving Tmk1 acts
downstream of Tga3 in governing chitinase production.

The crucial roles of the subgroup I and III Ge proteins
in regulating mycoparasitism-relevant processes implicates
that identifying and clarifying the role of the corresponding
G-protein-coupled receptors will be a fundamental step
toward understanding the processes of host recognition and
activation of the attack of phytopathogenic host fungi by
mycoparasitic Trichoderma species.

Recently, analysis of GPCRs in Trichoderma started and
resulted in the in silico identification of more than 50 such
receptors in the genome of both T. reesei [64] as well as the
mycoparasitic species T. atroviride and T. virens (S. Zeilinger,
M. Omann, unpublished). Based on this analysis, four
GPCR-encoding genes from the mycoparasite T. atroviride
were isolated and further characterized. The obtained results
showed that at least the Gpr1 receptor, grouping to the class
of cAMP receptor-like (CRL) proteins (class V of fungal
GPCRs), plays a major role during vegetative growth and
conidiation in T. atroviride [64].

Furthermore, mutants bearing a gpr1 gene whose expres-
sion is silenced by an RNAi approach, showed a complete
loss of mycoparasitism accompanied by a failure to attach
to and coil around host hyphae. Interestingly, this defect
in host recognition and infection structure formation could
be restored by addition of exogenous cAMP [65]—similar
to what was found for T. atroviride Atga3 mutants [22].
These results suggest that Gprl regulates infection structure
formation via the cAMP-pathway by signaling via the Tga3
Ga protein.

4. Conclusions

Mycoparasitism comprises the interaction between two
fungi involving an elaborate cross-talk of the host and
the pathogen. During recent years, an increasing number
of studies on the signaling pathways participating in this
interaction have been performed and revealed high conser-
vation of the investigated compounds from mycoparasitic
Trichoderma to homologous proteins from other fungi.

Accordingly, signaling pathways employing, for example,
Ga subunits of heterotrimeric G proteins, mitogen-activated
protein kinases, adenylyl cyclases, and G-protein-coupled
receptors have been shown to be important for virulence in
fungi being pathogenic to plants animals/humans, as well as
mycoparasites.

In mycoparasitic Trichoderma species, both subgroup
I and subgroup III Ga proteins were shown to govern
mycoparasitism-relevant processes such as the production of
cell wall lytic enzymes and antifungal metabolites and the
formation of infection structures. Both subgroup I and III
Ga proteins of T. atroviride signal—at least partially—rvia the



cAMP pathway as Tgal was proven to negatively influence
the activity of adenylate cyclase whereas Tga3 stimulated its
activity (Figure 2).

The essential role of G-protein signaling in activation
of the mycoparasitic response of Trichoderma was further
supported by the functional characterization of T. atroviride
Gprl. Similar to the Tga3 Ga subunit, the Gprl G-protein-
coupled receptor seems to be involved in recognizing host-
derived signals and transducing them via the cAMP pathway.
Gprl, therefore, is the first GPCR from a mycoparasitic
fungus which was functionally characterized and the first
7-transmembrane receptor belonging to the CRL class of
fungal GPCRs for which pathogenicity-related functions
could be shown.

Although during recent years there has been considerable
progress in elucidating G-protein-mediated signaling in
pathogenic fungi, there are still many unsolved questions
especially concerning host recognition and regulation of
signaling events. The elucidation of these processes will for
sure be highly beneficial not only for developing mechanisms
and substances for combating these pathogens, but also for a
better understanding of the molecular processes underlying
fungal mycoparasitism.
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