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Abstract

The genetic bases of growth and body weight are of economic and scientific interest, and tel-

eost fish models have proven useful in such investigations. The Oryzias latipes species

complex (medaka) is an abundant freshwater fish in Japan and suitable for genetic studies.

We compared two wild medaka stocks originating from different latitudes. The Maizuru pop-

ulation from higher latitudes weighed more than the Ginoza population. We investigated the

genetic basis of body weight, using quantitative trait locus (QTL) analysis of the F2 offspring

of these populations. We detected one statistically significant QTL for body weight on

medaka chromosome 4 and identified 12 candidate genes that might be associated with

body weight or growth. Nine of these 12 genes had at least one single nucleotide polymor-

phism that caused amino acid substitutions in protein-coding regions, and we estimated the

effects of these substitutions. The present findings might contribute to the marker-assisted

selection of economically important aquaculture species.

Introduction

Growth and body weight are economically important traits in the livestock industry and in

aquaculture. Such traits involve complex physiological processes that are controlled by various

environmental and genetic factors. Quantitative trait locus (QTL) mapping and marker-assis-

ted selection for economic traits, including growth and body weight in aquaculture, have

recently been conducted in several studies using molecular markers such as microsatellites and

single nucleotide polymorphisms (SNP) [1–7].

Body weight depends not only on growth traits but also on body composition and metabo-

lism. Genome-wide association studies (GWAS) of body mass index (BMI) over the past

decade have associated several hundred SNPs with body weight and obesity [8,9].
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Animal models play essential roles in most aspects of medicine. Diet-induced obesity in

zebrafish and mammalian obesity are pathophysiologically similar; thus, the roles of genes

associated with visceral adiposity have been examined in zebrafish models of human obesity

[10,11]. Understanding the genetic basis of body weight in teleost fish models could help

deepen the medical understanding of obesity.

Ecological profiles of body size are distributed within species according to the Bergmann’s

rule, which states that animals living at high latitudes are generally larger than those living in

low latitudes [12]. Some exceptions exist, but the findings of several studies are in line with the

Bergmann’s rule and its applicability in many types of mammals [13], birds [14,15], and ecto-

thermic vertebrate and invertebrate taxa [16]. However, the underlying genetic mechanisms

that result in a body size cline remain obscure.

Medaka are small freshwater fish that are native to Japan, Korea, and China. Japanese wild

populations of the Oryzias latipes species complex are widely distributed from high to low lati-

tudes throughout the Japanese archipelago. Previous phylogeographic studies using allozymes,

mitochondrial DNA (mtDNA) sequences, and genome-wide SNP analysis revealed that Japa-

nese wild medaka comprise Northern and Southern Japanese populations [17–20]. The aver-

age rate of SNPs between two inbred strains derived from the two populations is 3.4% [21].

Inbred strains and wild stocks of medaka originating from Japanese wild populations are cur-

rently available through the National BioResource Project (NBRP) (https://shigen.nig.ac.jp/

medaka/top/top.jsp). Phenotypic variations between these two populations have been

described for several traits, including brain [22] and craniofacial morphology [23], body color

and sexual dimorphism [24], vertebral regionalization and number [25], aggressiveness [26],

startle behavior [27], and male-specific ossified processes and sex steroid levels [28,29]. Several

QTL have been detected by focusing on these phenotypic variations using genetic analyses

based on draft [21] and updated medaka genome sequences (http://utgenome.org/medaka_

v2/#!Top.md). We investigated two medaka wild stocks originating from different latitudes.

Body weight was higher in the Maizuru population than in the Ginoza population from high

and low latitudes, respectively. We investigated the genetic basis of body weight via QTL analy-

sis of the F2 offspring of these medaka populations. We detected one statistically significant

QTL for body weight on chromosome 4 and assessed candidate genes located within that QTL

region.

Materials and methods

Ethics statement

The Animal Experiment Committee at the National Institutes of Natural Sciences, Japan

approved the study protocol (14A108, 15A047). The medaka used in these experiments were

treated according to the animal experiment guidelines of the National Institutes of Natural Sci-

ences, Japan.

Animals

The NBRP Medaka (https://shigen.nig.ac.jp/medaka/) supplied adult medaka (G0 generations)

from stocks originating from wild North and South Japanese populations at Maizuru City

(Maizuru stock; strain ID, WS215) located at 35˚ 280 N 135˚ 230 E, Kyoto Prefecture) and

Ginoza Village (Ginoza stock; strain ID, WS255) located at 26˚ 280 N 127˚ 580 E, Kunigamigun,

Okinawa Prefecture), respectively. We then raised several generations of these fish in the labo-

ratory. The Maizuru and Ginoza stocks were crossed to collect the G1 generations, respectively.

Then, Maizuru females were mass-mated with Ginoza males and vice versa to obtain the F1

offspring, which was used to analyze body weight. Five Maizuru × Ginoza pairs were mated to
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generate the F2 offspring for QTL mapping. Three of these pairs comprised Ginoza females

and Maizuru males and two comprised Maizuru females and Ginoza males.

Two to four weeks after hatching, all the generations were transferred outdoors between

June and July, 2014, and maintained for 1 year under natural temperature and photoperiod at

the outdoor experimental field of the National Institute of Basic Biology (34˚ 570 N 137˚ 90 E)

in Okazaki, Aichi, Japan. Between June and July 2015, the fish were transferred to experimen-

tal aquariums and maintained in water circulation systems at 26˚C ± 1˚C for 1 month. The

fish were fed with artificial dry food twice daily. Body weight was analyzed in 10 Ginoza G1, 26

Maizuru G1, 15 F1 hybrid, and 126 F2 fish euthanized with 0.05% 3-aminobenzoic acid ethyl

ester methanesulfonate salt (MS222). Water was removed from the fish by blotting them with

paper towels; then, each fish was weighed. Thereafter, the fish were frozen in liquid nitrogen

and stored in a deep freezer (-80˚C).

Restriction site-associated DNA sequencing (RAD-Seq) and SNP

markers

Genomic DNA was extracted from muscle tissue using DNeasy Blood & Tissue Kits (Qiagen

GmbH, Hilden, Germany) according to the manufacturer’s instructions. The concentration of

DNA was determined using a Qubit 3.0 fluorometer (Thermo Fisher Scientific Waltham, MA,

USA). Genomic DNA (40 ng) from each sample was digested using two restriction enzymes,

BglII and EcoRI, ligated with a Y-shaped adaptor, and amplified by polymerase chain reaction

(PCR) using KAPA HiFi HS ReadyMix (Kapa Biosystems Inc., Wilmington, MA, USA). Frag-

ments (~300–360 bp) were selected using E-Gel Size Select (Life Technologies, Carlsbad, CA,

USA). Details of the library preparation method are described elsewhere [30]. The fragments

were sequenced on a HiSeq 2500 platform (Illumina Inc., San Diego, CA, USA) in 50-bp sin-

gle-end mode. We conducted RAD-Seq in 10 parent fish from the 5 Maizuru × Ginoza pairs,

3–4 from the F1 generation of each Maizuru × Ginoza pair, and 126 of the F2 generation. The

reads were quality filtered using Trimmomatic [31] under the following parameters: trimmo-

matic-0.32.jar SE -threads 8 -phred33 ILLUMINACLIP TruSeq3-PE-2.fa:2:30:10 LEADING:19

TRAILING:19 SLIDINGWINDOW:30:20 AVGQUAL:20 MINLEN:51. The trimmed reads

were mapped to the draft genome of the Hd-rR inbred medaka strain (v. 2.2.4, http://

utgenome.org/medaka_v2/#!Assembly.md), and SNPs were called using the Stacks pipeline

[32]. We identified RAD tags with a homozygous genotype in all Maizuru and all Ginoza and

those that had different alleles between all Maizuru and all Ginoza parents for SNP marker

selection. Among these markers, we selected those that were heterozygous in all the F1 individ-

uals and genotyped in > 80% of the 126 F2 fish. Finally, we selected 371 RAD markers for QTL

analysis (S1 Table). Genetic distances (cM) involving each chromosome were calculated using

the Kosambi map function [33].

Raw sequence data were deposited in the DDBJ Sequence Read Archive (DRA) (https://

www.ddbj.nig.ac.jp/dra/index.html) under the accession numbers DRR226810-DRR226964.

Analysis of QTL

Quantitative trait loci associated with body weight were mapped in the 126 F2 fish, and simple

interval mapping [34] proceeded using R/qtl software [35,36]. Genome-wide significant (5%)

and suggestive (10%) thresholds of a single QTL were determined by 1000 permutation tests.

Bayesian credible intervals (95% CI) were computed using the R/qtl function. Physical lengths

of credible intervals (Mb) were predicted by extending the physical position of the nearest

flanking markers.
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Analyses of SNPs in the candidate genes

We selected genes within the 95% CI that were positioned according to the NCBI

ASM223467v1 (GCF_002234675.1) assembly and associated with growth, body weight, and

obesity on the basis of a literature search. We sequenced the selected candidate genes for the

Maizuru and Ginoza fish and cataloged the SNPs located on their coding regions (S2 Table).

We then analyzed these polymorphisms using GENETYX software (version 13, GENETICS

Inc., Tokyo, Japan) to detect variants that could cause amino acid substitutions. We only con-

sidered polymorphisms in which all eight sequenced Ginoza and Maizuru individuals (n = 4

each) were homozygous for the allele. We then analyzed the amino acid substitutions using

Protein Variation Effect Analyzer (PROVEAN) v1.1 to estimate their functional effects on the

encoded protein [37]. A non-synonymous amino acid substitution with a potential functional

effect was found on one of the genes (sned1), and its protein sequence (accession number

XP_011471983.1) was compared with those of two teleost fishes, Gasterosteus aculeatus (stick-

leback; ENSGACG00000003698) and Danio rerio (zebrafish; XP_017212114.1), Mus musculus
(mice; XP_006529380.1), and Homo sapiens (humans; XP_011509233) using the sequence

alignment tool, ClustalW (version 2.1, DNA Data Bank of Japan).

Results

Body weight variation

Fig 1 shows that body weight was significantly higher in the Maizuru than in the Ginoza

(p< 0.01, Student t-test), and Fig 2 shows a broader range of body weight distribution in the

F2 generation than in the parental populations.

Identification of body weight QTL

A genetic map was constructed using 371 SNP markers obtained by RAD-seq (Fig 3). The total

length of the genetic map of the 24 chromosomes was 1496.32 cM, and the average calculated

interval between each marker was 4.51 cM (Table 1). Physical lengths were determined based

on reference medaka genome data. The total physical length was 676.74 Mb, and the average

interval between each marker was 1.75 Mb (Table 1).

A QTL analysis of the 126 F2 fish identified a statistically significant QTL region on the dis-

tal arm of chromosome 4, with a maximum LOD of 4.14 (Figs 3 and 4). The closest SNP

marker was 56900. We calculated the mean body weight of the F2 individuals that were homo-

zygous for the Maizuru and Ginoza alleles of the closest marker and the heterozygous fish. The

mean body weight was higher among individuals that carried a homozygous or heterozygous

Maizuru allele than among those that carried a homozygous Ginoza allele (Fig 4C). We con-

firmed a linkage between an amplified fragment length polymorphism marker located on the

distal position of chromosome 4 (0.68 Mb, S3 Table) and the SNP marker 56900 (4.7 cM) by

genotyping using PCR.

Differences in the amino acid sequences of the candidate genes between

Maizuru and Ginoza

The 95% Bayesian CI of the QTL was 0–7 cM (Fig 4B), and the physical location of the CI esti-

mated from the genetic and physical positions of the markers 56900 (0 cM, 2.38 Mb) and

55681 (17.7 cM, 11.01 Mb) that were the closest to the QTL (Fig 3B) was 0–5.74 Mb. Among

the 141 genes encoding proteins within the CI, we identified 12 that are reportedly associated

with body weight or growth. Nine of these genes had at least one SNP that caused substitutions

of amino acids in the coding regions (Table 2). We estimated, using PROVEAN, that most of
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these amino acid substitutions exerted neutral protein functional effects. However, one substi-

tution in the protein SNED1 encoded by the gene sned1 at G1013S appeared to have a deleteri-

ous (significantly different function) effect with a PROVEAN score of -2.648 (cutoff, -2.5). The

amino acid glycine at 1013 in Ginoza SNED1 is conserved across other vertebrates, such as tel-

eost, stickleback and zebrafish, as well mice and humans (Fig 5). In contrast, serine, which

substituted for glycine in Maizuru SNED1, was not found in any other analyzed species.

Discussion

Medaka fish found at various latitudes provide an excellent model for investigating the genetic

basis of body weight. Therefore, we compared two wild medaka stocks from Maizuru and

Ginoza at different latitudes. Fish from the parental populations and the F1 and F2 generations

were reared under the same environmental conditions to avoid the effects of plastic responses

to temperature and other variables such as food availability during growth. Mean body weight

differed significantly between the Maizuru and Ginoza individuals (Fig 1), reflecting the

involvement of genetic components in the determination of body size. The Bergmann’s rule is

currently defined as a within-species tendency for body size to increase as latitude increases

[12]. Our results conformed to Bergmann’s rule, as body weight was greater among the North-

ern Maizuru population than the Southern Ginoza population.

The identification of genes that regulate complex multigenic traits such as growth and body

weight has proven challenging. Over 6000 genes are considered to influence body weight in

mice [38]. Multiple QTL regions are associated with body weight in Atlantic salmon (Salmo
salar) [2]. Our QTL analysis identified a significant QTL on chromosome 4 (peak LOD, 4.14)

(Fig 3), and the effects of the allele of the marker with the highest score supported the

Fig 1. Mean body weight of Maizuru (n = 26) and Ginoza (n = 10). Data are shown as the means and standard errors

(SE). Body weight was significantly higher in Maizuru than in Ginoza stock (512.6 vs. 374.7 mg; ��p< 0.01; Student t-
tests).

https://doi.org/10.1371/journal.pone.0234803.g001
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phenotype found in the parental strains (the body weight was higher for the Maizuru allele

than the Ginoza allele in the F2 medaka). This explains 14% of the variance.

We identified 12 candidate genes involved in body weight and growth regulation within the

significant QTL region. The genes cilp2, expressing cartilage intermediate layer protein 2, and

sned1, expressing sushi, nidogen and EGF-like domain-containing protein 1, are associated

with BMI in humans [39]; mef2b (myocyte-specific enhancer factor 2B), rfxank (regulatory

factor X-associated ankyrin-containing protein), and rab6b (Ras-related protein Rab-6B) are

associated with body weight and growth traits in sheep [40–42]; sgcb (sarcoglycan beta) is

Fig 2. Distribution of body weight of the Ginoza, Maizuru, F1, and F2 fish. The Y axis indicates the frequency; the X

axis indicates the body weight categories at 20-mg intervals. Black triangles indicate the means.

https://doi.org/10.1371/journal.pone.0234803.g002
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Fig 3. Genetic map of the single nucleotide polymorphism (SNP) markers. (A) Marker distribution across the 24

medaka chromosomes. (B) Genetic map of chromosome 4 show the marker names and locations (cM). Markers with

the highest logarithm of odds (LOD) scores in the QTL analysis are shown in red.

https://doi.org/10.1371/journal.pone.0234803.g003

Table 1. Summary of markers used in the present study.

Chromosome no. No. of markers Genetic length (cM) Average marker interval (cM) Physical length (Mb) Average marker interval (Mb)

1 16 52.23 3.48 34.38 2.05

2 10 50.5 5.61 22.52 2.1

3 22 73.18 3.48 37.51 1.68

4 11 56.87 5.69 29.86 2.75

5 21 96.32 4.82 32.35 1.61

6 14 47.04 3.62 28.5 1.32

7 15 74.12 5.29 33.17 1.92

8 10 70.61 7.84 26.12 2.79

9 16 66.73 4.45 33.05 1.72

10 21 79.51 3.98 31.09 1.52

11 15 36.82 2.63 23.49 1.65

12 16 58.75 3.92 24.39 1.25

13 10 28.19 3.13 26.89 1.46

14 24 65.83 2.86 28.27 1.01

15 14 66.65 5.13 29.59 1.9

16 19 66.33 3.68 29.84 1.25

17 16 74.15 4.94 31.74 1.92

18 13 60.63 5.05 28.49 1.57

19 14 68.67 5.28 25.31 1.75

20 16 64.06 4.27 24.71 1.63

21 13 61.22 5.1 29.82 2.35

22 22 68.5 3.26 24.06 1.1

23 10 62.08 6.9 21.47 2.38

24 13 47.29 3.94 20.12 1.43

Total 371 1496.28 4.51 676.74 1.75

https://doi.org/10.1371/journal.pone.0234803.t001
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associated with body weight in broilers [43]; scly (selenocysteine lyase), cep19 (19-kDa centro-

somal protein), dhcr24 (24-dehydrocholesterol reductase), and lmo4 (LIM domain transcrip-

tion factor) are associated with body weight and obesity traits in mammals [44–47]; and

mrpl55 (mitochondrial ribosomal protein L55) has a critical role in development and body size

in Drosophila [48]. Furthermore, sgta (small glutamine-rich tetratricopeptide repeat-contain-

ing protein alpha) is a regulator of growth hormone receptors, which consequently influence

body weight, because sgta knockout mice are smaller than wild-type mice [49].

Among the identified candidate genes, nine had amino acid substitutions that distin-

guished Maizuru from Ginoza (Table 2). The SNED1 amino acid substitution G1013S was

predicted to be deleterious (functionally different) according to the PROVEAN score. In

addition, the Ginoza amino acid variant, glycine, was prevalent among other vertebrate

groups, whereas the serine residue in Maizuru was not found in other investigated species

(Fig 5). SNED1 in humans is known as insulin-responsive sequence DNA-binding protein 1

(IRE-BP1); it is a transcription factor involved in the determination of BMI [37] and the

activation of insulin-responsive genes and obesity [50]. SNED1 is located at the terminal

region of chromosome 2 in humans. Patients with a deletion in that region, with break-

points at or within cytogenetic band 2q37, have a short stature among other features [51].

Sned1 might be involved in mouse skeletal development, as Sned1 knockout mice have cra-

niofacial malformations and growth defects [52]. Therefore, we speculate that a functional

difference in SNED1 protein activity caused by the amino substitution that distinguished

Maizuru from Ginoza induced the difference in body weight. However, unidentified genes

in the QTL region might also influence body weight through mechanisms other than differ-

ences in protein function, such as changes in their expression levels and/or profiles. These

speculations await further investigation.

Future studies are necessary to identify the genetic variation(s) responsible for the differ-

ences in body weight between the medaka populations studied here. Nevertheless, the present

results will contribute to the marker-assisted selection of economically important aquaculture

species and provide a better understanding of the genetic mechanisms underlying ecological

differences in body weight among populations at different latitudes.

Fig 4. QTL analysis of the F2 generation. (A) Results for all chromosomes. The significant QTL on chromosome 4 (B) has a peak LOD of 4.14.

Gray areas indicate 95% Bayesian CI. (C) Body weight for genotypes of SNP marker 56900, which had the highest LOD score among the markers.

Points represent the body weight of the F2 individuals homozygous for the Maizuru alleles (n = 29), heterozygous for the Ginoza and Maizuru

alleles (G/M, n = 46), and homozygous for the Ginoza alleles (n = 34). The means and standard errors (SE) are presented for each genotype.

Differences between the mean body weight of the Ginoza and G/M genotypes and of the Ginoza and Maizuru fish were statistically significant

(�p< 0.01, ANOVA and Tukey’s honestly significance difference (HSD) test) but those between the G/M and Maizuru fish were not.

https://doi.org/10.1371/journal.pone.0234803.g004
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Table 2. SNPs with non-synonymous substitutions in the candidate genes in Maizuru and Ginoza.

Gene symbol

(Accession no.)1
Description Position of

mRNA (bp)1
SNP Number of

amino acids

Non-synonymous

substitutions

Position

(bp)1
Maizuru Ginoza Position

(aa)1
Maizuru Ginoza

sgcb (XP_020558516.1) sarcoglycan beta 1356188–

1364186

1360124 G C 296 98 Leu Val

cilp2
(XP_011471792.1)

cartilage intermediate layer protein 2 2139202–

2161322

2161297 T C 1302 3 Lys Arg

2161159 G A 49 Ser Leu

2149453 T A 146 Thr Ser

2149400 A C 163 Asp Glu

2149359 C T 177 Ser Asn

2147355 T C 326 Asp Gly

2147167 C T 389 Val Ile

2146872 C T 420 Gly Asp

2141205 T A 961 Tyr Phe

2141068 T A 1007 Met Leu

2140229 G C 1286 Ile Met

mef2b
(XP_011471858.1)

myocyte-specific enhancer factor 2B 2306973–

2324496

2314502 G A 421 218 Pro Leu

2314431 A C 242 Ser Ala

2313743 C T 266 Gly Ser

2308851 A C 298 Val Gly

2308220 G C 360 Ser Thr

2308128 T C 391 Ile Val

rfxank
(XP_011471878.1)

DNA-binding protein RFXANK 2358970–

2362447

_ _ _ 208 _ _ _

rab6b
(XP_004067647.1)

ras-related protein Rab-6B 2693698–

2739982

_ _ _ 215 _ _ _

sned1
(XP_011471983.1)

sushi, nidogen and EGF-like domain-

containing protein 1

2824005–

2850954

2850480 T C 1349 39 Lys Glu

2843533 T G 207 Gln Pro

2842008 T A 372 Thr Ser

2841981 A G 381 Tyr His

2837261 A G 559 Leu Pro

2837260 C T

2837250 C T 563 Ala Thr

2835940 T G 660 Asn Thr

2835939 G T

2835923 C G 666 Val Leu

2835883 G C 679 Thr Ser

2835439 G C 772 Gln Glu

2835283 A G 792 Tyr His

2833621 T G 912 Lys Gln

2833038 T C 1013 Ser Gly

2830096 T G 1070 Thr Pro

2829960 A G 1115 Val Ala

2829735 C A 1146 Ala Ser

2829731 C T 1147 Arg Lys

2829460 C G 1213 Ser Thr

2825995 T A 1315 Gln Leu

2825713 T A 1346 Asn Ile

(Continued)
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Supporting information

S1 Table. Single nucleotide polymorphism (SNP) markers used for quantitative trait locus

(QTL) mapping and genotyping for each SNP in the parental, F1, and F2 generations.

Number of markers used for QTL mapping: 371.

(XLSX)

S2 Table. Single nucleotide polymorphisms (SNPs) on the coding regions in 12 candidate genes

from the Maizuru and Ginoza individuals. Number of Maizuru and Ginoza fish: n = 4 each.

(XLSX)

S3 Table. Genotyping amplified fragment length polymorphism marker ch4_0.68M and

SNP marker 56900 in the parental and F2 generations. The forward and reverse primer

sequences of ch4_0.68M for genotyping using PCR are 50-caattgcctgtttgtcagttacac-30 and 50-

cgcctaatgccactccagcac-30, respectively. Their locations are 685055–685078 bp and 685136–

685156 bp on chromosome 4, respectively. The sizes of the amplified fragments separated

using Microchip Electrophoresis System MCE1-202 MultiNA microchip electrophoresis

(Shimadzu Corporation, Kyoto, Japan).

(XLSX)

Table 2. (Continued)

Gene symbol

(Accession no.)1
Description Position of

mRNA (bp)1
SNP Number of

amino acids

Non-synonymous

substitutions

Position

(bp)1
Maizuru Ginoza Position

(aa)1
Maizuru Ginoza

scly (XP_023809718.1) selenocysteine lyase 2908002–

2933175

2908316 A C 445 411 Ser Ala

cep19
(XP_023809746.1)

centrosomal protein 19 kDa 3244247–

3245808

3244607 C T 157 128 Asp Asn

dhcr24
(XP_004067663.1)

delta(24)-sterol reductase 3287533–

3295716

3288635 A C 516 396 Ser Ala

3288401 G A 452 Ala Val

lmo4
(XP_023809796.1)

LIM domain transcription factor

LMO4

4586958–

4596199

_ _ _ 165 _ _ _

sgta (XP_023809802.1) small glutamine-rich tetratricopeptide

repeat-containing protein alpha

5201953–

5215418

_ _ _ 342 _ _ _

mrpl55
(XP_023809802.1)

39S ribosomal protein L55,

mitochondrial

5446241–

5450258

5446451 T C 138 16 Thr Met

5446578 C A 21 Pro Thr

5446708 T A 64 Leu Gln

5450099 T A 118 Ser Thr

1Genes and positions are according to the NCBI ASM223467v1 (GCF_002234675.1) assembly.

The G1013S substitution in SNED1 with a deleterious effect (significantly different function) estimated by PROVEAN is shaded in gray.

https://doi.org/10.1371/journal.pone.0234803.t002

Fig 5. SNED1 protein sequence comparison. Glycine at position 1013 in Ginoza SNED1 (red square) is conserved

among other vertebrate species. Serine (blue square) was found only in Maizuru SNED1.

https://doi.org/10.1371/journal.pone.0234803.g005
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