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Abstract

Background: Severity gradation of missense mutations is a big challenge for exome annotation. Predictors of
deleteriousness that are most frequently used to filter variants found by next generation sequencing, produce
qualitative predictions, but also numerical scores. It has never been tested if these scores correlate with disease
severity.

Results: wANNOVAR, a popular tool that can generate several different types of deleteriousness-prediction scores,
was tested on Fabry disease. This pathology, which is caused by a deficit of lysosomal alpha-galactosidase, has a
very large genotypic and phenotypic spectrum and offers the possibility of associating a quantitative measure of
the damage caused by mutations to the functioning of the enzyme in the cells. Some predictors, and in particular
VEST3 and PolyPhen2 provide scores that correlate with the severity of lysosomal alpha-galactosidase mutations in
a statistically significant way.

Conclusions: Sorting disease mutations by severity is possible and offers advantages over binary classification.
Dataset for testing and training in silico predictors can be obtained by transient transfection and evaluation of
residual activity of mutants in cell extracts. This approach consents to quantitative data for severe, mild and non
pathological variants.
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Background
Exome sequencing has become very popular for the
diagnosis of genetic diseases.This is certainly due to
high-throughput platforms that have greatly reduced the
costs of sequences and to the tools for the analysis of
data that are freely available to researchers. Pipelines for
the processing [1] and the annotation of data have been
proposed with the intent of “democratizing the ability to

compile information on large amounts of genetic varia-
tions in individual laboratories” [2]. A critical step in the
annotation process is represented by the evaluation of
missense mutations. A popular annotation tool, wANNO-
WAR [3], can generate several different types of
deleteriousness-prediction scores running SIFT [4], LRT
[5], MutationAssessor [6], FATHMM [7], PROVEAN [8],
VEST3 [9] metaSVM [10], metaLR [10], M-CAP [11],
PolyPhen-2 [12], MutationTaster [13], CADD [14], DANN
[15], fathmm-MKL coding [16], GenoCanyon [17], GERP
++, [18, 19], phyloP7way vertebrate, phyloP20way mam-
malian [20], phastCons7way vertebrate, phastCons 20 way
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mammalian [21], SiPhy 29way logOdds [22]. However in
the real world the situation is not simple. A continuum is
observed, ranging from very sever to mild cases. The
border between “disease mutation” and “non disease mu-
tation” is artificial and dichotomizing continuous variables
is problematic. We decided to address this point and chal-
lenge wANNOWAR [3] with a real example, Fabry disease
(FD). Mutations that are responsible for this pathology,
affect the functioning or the stability of lysosomial
alpha-galactosidase (AGAL)(Uniprot: AGAL_HUMAN
P06280; EC: 3.2.1.22), which is encoded by the gene GLA
on the X chromosome.
AGAL is a dimer and its structure has been deter-

mined by X-ray crystallography [23–25]. More than 400
missense mutations have been described so far. This
number is a surprisingly high value for a protein of 429
aminoacids and almost every amino acid has been found
to be mutated. The large genotypic spectrum corre-
sponds to the large phenotypic spectrum of FD, with re-
spect to age at onset, rate of disease progression, severity
of clinical manifestations. Patients with the late onset
form of FD retain some AGAL activity and are asymp-
tomatic until adult age when they develop cardiac and/
or kidney problems [26–29]. When a severe mutation is
diagnosed, enzyme replacement must be started even be-
fore the symptoms are manifested [30–32], for cases
retaining some residual activity, a therapy with small
molecules, can be possible [33–35]. Indeed for FD, as
well as for other diseases which are due to deficits in
lysosomal glycosidases, it is possible to employ iminosu-
gars that stabilize the endogenous protein of the patient
acting as pharmacological chaperones or reduce sub-
strate accumulation [36–38]. Iminosugars represent a
lucky case of drug repositioning because they were first
derived to cure HIV and subsequently used to treat lyso-
somal storage disorders [24, 39–41].
The classification of FD genotypes is generally carried

out on the base of clinical evaluation of patients [42].
Specialized databases such as fabry-database.org [43, 44]
annotate mutations with qualitative phenotypes. How-
ever a more punctual classification of FD mutations is
possible. In fact in order to test the effects of drugs on
different mutations, a cell based assay has been devel-
oped [45, 46]. Expression vectors encoding mutant
AGAL are transiently transfected into COS or HEK293
cells and the residual activity of the enzyme is measured
in the extracts of cells that had been treated or not
treated with the drug. Residual activity is normalized by
the total amount of proteins in the cell (HEK293 or
COS) and depends on the stability of the mutant as well
as on its specific activity. The ratio between the normal-
ized residual activity of a given mutant and that of wild
type AGAL is measured under the same conditions. Part
of these data, i.e. those obtained in the absence of the

drug, can be “repositioned”, so to speak. They offer the
unique possibility of associating a numerical value that
correlates to the severity of the damage to hundreds of
mutations and consent to evaluate the performance of
the most popular predictors of deleterious variant in a
realistic scenario of gradual disease severity.

Methods
Missense GLA mutations with phenotypic annotation
derived from clinical observation of patients were ob-
tained from a disease specific database of clinical pheno-
types and genotypes, fabry-database.org [43, 44] (dataset
1). The mutations (genomic Reference Sequence and
protein Reference sequence) and the phenotypes are re-
ported in the 1st, 10th and last column of Additional file
1, respectively.
Missense GLA mutations with residual activity annota-

tion were obtained from Fabry_CEP [47, 48]. Relative re-
sidual activity is the ratio between the activity measured in
cell extracts for a given mutant and the activity of wild
type AGAL tranfected into suitable eukaryotic vectors ×
100. When residual activity for a given mutation had been
measured by more than one lab, the average value was
considered (dataset 2). The mutations (genomic Reference
Sequence and protein Reference sequence) and the re-
sidual activities are reported in the 1st, 10th and last col-
umn of Additional file 2, respectively.
The nucleotide numbering on coding DNA Reference

Sequence was obtained for each mutation from the ap-
propriate reference link in fabry-database.org or
FABRY_CEP.
Nucleotide mutations were mapped onto the reference

genome Ensembl GRCh37 release 91 [49].
We performed statistical analysis and data visualisation

using the R environment for statistical computing [50].
We calculated descriptive statistics and drew

box-and-whiskers plots of residual activity for severe
and mild mutations subpopulations using the graphics::-
boxplot() function on the intersection of the two
datasets.
We manually created a confusion matrix using data

from the first dataset (175 mutations, from Fabry-data-
base.org, Additional file 1), and measured the goodness
of wANNOVAR qualitative predictors using the follow-
ing indexes:
Raw accuracy: TPþTN

PþN

Balanced Accuracy: 0:5 ðTPP þ TN
N Þ

F1 score: 2 TP
2 TPþFPþFN

Matthew’s correlation coefficient: TP TN−FP FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþFPÞðTPþFNÞðTNþFPÞðTNþFNÞ
p

We coded an R function for the simultaneous calcula-
tion of these indexes.
Using the second dataset (280 mutations, manually

built), we expressed the correlation between the rank
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score of tools and residual activity as Pearson’s r, and
then tested for no correlation using the stats::cor.test()
function with ‘less’ alternative (i.e. negative correlation)
and the ‘pearson’ method. We drew box-and-whiskers
plots of residual activity for every wANNOVAR predic-
tion and conservation tool using the graphics::boxplot()
function on the second dataset (280 mutations, manually
built).
On the same dataset, we used the graphics::barplot()

function for drawing the rank scores of the mutations
whose activity is equal or higher than that of
wild-type for every wANNOVAR prediction and con-
servation tool.

Results
In some cases manifestations of FD occur at an early age
with general, neurological, cardiovascular and renal
signs, in other cases in adulthood and with a limited
subset of symptoms. For this reason a qualitative pheno-
typic classification of mutations based on the symptoms
observed in the patients, has been attempted and classic
or severe ones have been distinguished from mild, late
onset or variant forms [42].
Fabry-database.org [43, 44] provides a list of mutations

and their qualitative phenotypic classification. Since FD
is X linked and the association between genotype and
phenotype is clearer in males [51], only the 175 hemizy-
gous cases have been gathered from Fabry-database.org
and form the first dataset analysed in this paper. The
variants were annotated with wANNOVAR [3] and the
output is provided in Additional file 1 with the original
qualitative phenotypic description in the last column. In
the first place it can be noticed that only 51 cases are
also present in ClinVar, which is a public archive of

reports of the relationships among human variations and
phenotypes [52].
To test whether it is possible to broadly distinguish FD

mutations collected from Fabry-database.org by the
qualitative predictions provided by wANNOVAR anno-
tation, the observed phenotypes were reduced to two
classes, a severe group POS of 152 cases, which clusters
mutations originally defined as “severe” or “classic”, and
a mild group NEG of 23 cases, which clusters those mu-
tations originally defined as “mild”, “late onset”, “variant”
or “atypical variant” in fabry-database.org. For the pre-
dicted phenotypes, if the tool provides binary classifica-
tion, like in the case of SIFT [4], the more deleterious
one, D in the case of SIFT, is considered as predicted
POS, the other one, T in the case of SIFT is considered
as predicted NEG. If the tool provides multiple classes,
as in the case of PolyPhen-2 [12], the most deleterious
one, D in the case of PolyPhen-2, is considered as pre-
dicted POS, the other ones, P and B in the case of
PolyPhen-2, is considered as predicted NEG. The results
are summarized in Table 1. Since the two classes have
different sizes, Matthews correlation coefficient should
be preferred for the evaluation of predictors [53].
For most tools the values are quite low and in some

cases no discrimination is possible.
A different way of ordering by severity, relies on the

residual activity of AGAL mutants measured in vitro in
HEK293 or COS cell transiently transfected with expres-
sion plasmids. Values for 280 mutations have been col-
lected gathering results of several laboratories [33, 45,
54–62]. They form the second dataset analyzed in this
paper. wANNOVAR annotation for these mutants can
be found in Additional file 2 with the relative residual
activity in the last column.

Table 1 Accuracy Indexes

Category Predictor Raw Accuracy Balanced accuracy F1-score Matthew’s correlation coefficient

B SIFT 0.749 0.549 0.241 0.092

B LRT 0.794 0.576 0.280 0.162

B MutationAssessor 0.191 0.460 0.247 −0.106

B FATHMM 0.846 0.500 0.000 0.000

B PROVEAN 0.737 0.557 0.258 0.103

Meta MetaSVM 0.846 0.500 0.000 0.000

Meta MetaLR 0.846 0.500 0.000 0.000

Meta M-CAP 0.846 0.500 0.000 0.000

ML Polyphen2_HDIV 0.771 0.592 0.310 0.175

ML Polyphen2_HVAR 0.691 0.621 0.341 0.188

ML MutationTaster 0.194 0.433 0.230 −0.156

ML FATHMM-MKL 0.829 0.505 0.063 0.022

Accuracy indexes measuring the ability to differentiate severe from mild GLA mutations for all the predictors used by wANNOVAR. Categories are B for
“biologically based prediction method”, ML for “Machine Learning based prediction method”, and Meta for “Meta prediction method”
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The intersection between the two datasets is formed
by 67 mutations of the severe group POS and 12 of the
mild group NEG, for which relative residual activity is
available. The median residual activity of severe muta-
tions POS is 0.1 (Fig. 1). This finding suggests that se-
vere cases have null, or very close to null activity, when
tested in transfected cells. The box plot in Fig. 1 shows
20% outliers with high residual activity in POS popula-
tion that might represent an overestimation in the ori-
ginal literature.
Contrary to what occurs in the first dataset of muta-

tions whose phenotypic annotation is derived from clin-
ical literature (Additional file 1), the second dataset,
whose annotation is based on residual activity

(Additional file 2), is balanced with half of the mutations
with values above 0.
The box plot in Fig. 2 shows the distribution of rank

scores for mutations showing 0 residual activity. Rank
scores were created by wANNOVAR to make the func-
tional prediction scores and conservation scores more
comparable to each other and monotonic (a higher score
indicating “more likely to be damaging”) [63]. As can be
observed FATHMM [7], metaSVM [10], metaLR [10],
M-CAP [11]correctly assign high scores to very severe
cases. On the other side, the histograms in Fig. 3 show
the rank scores assigned by the predictors to 6 non
pathological mutation whose residual activity is compar-
able or higher than that of wild type. The same

Fig. 1 Distribution of residual activities for phenotypically annotated GLA mutations. The boxplot shows the distribution of residual activity in the
subpopulations of mutations with severe and mild effects. The red bars represent outliers

Fig. 2 Distribution of rank scores for mutations with null residual activity. The boxplot show the distribution of the rank scores for all the
predictors used by wANNOVAR. The red bars represent outliers. Predictor category label is B for “biologically based prediction method”, ML for
“Machine Learning based prediction method”, Meta for “Meta prediction method” and Cons for “Conservation scoring tool”
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predictors, FATHMM, metaSVM [10], metaLR [10],
M-CAP [11], give a constantly high score and tend to
over-estimate the damage caused by a mutation. In
Table 2 the correlation between the rank scores of the
predicting tools and the residual activity of all the muta-
tions in the second dataset (Additional file 2), is shown.
Results obtained by some predictors used by wANNO-
VAR, for example VEST3 (Pearson correlation coeffi-
cient 0.71; p < 0.0001) and PolyPhen-2 (Pearson
correlation coefficient − 0.62; p < 0.0001), demonstrate
that the rank scores can correlate with severity in a sta-
tistically significant manner. Methods based on evolu-
tionary and phylogenetic analysis perform very poorly.

Discussion
The gene GLA offers an example of the critical points
encountered when missense mutations are annotated. In
the first place getting the phenotype associated to a mu-
tation is difficult, most information is still missing in da-
tabases such as ClinVar [52] and is present only in
specialized databases. Mild and severe mutations can be
mis-classified in the literature. An example is provided
by the mutation D313Y, that is reported as “classic” in

fabry-database.org, but is regarded as “likely benign/un-
certain significance” in ClinVar [52] and is relatively fre-
quent in the population according to ExAC [64] and
1000Genomes [65] (Additional file 1). The residual activ-
ity of D313Y is as high as 75% than wild type (Additional
file 2) thus suggesting that the interpretation of fabry-da-
tabase.org, which is derived from the original source
[66], is overestimated. Other examples are provided by
the outliers in Fig. 1. Given these premises, it is not
surprising that the tools provided by wANNOWAR
cannot distinguish mild from severe mutations as they
are defined in the literature.
Hence to train or test algorithms that can grade dis-

ease severity, datasets of quantitative measures of the
damage caused by mutations to the proteins must be
available. In this paper we used data produced by a cell
based assay that measures relative residual activity in the
cells. We showed that some of the popular tools used
for exome analysis, are able to grade disease severity,
even though they had not been trained or tested for this
specific purpose. A summary of all the tools employed
in this study is provided in Additional file 3. The best re-
sult was obtained with VEST3 [9] that uses a supervised

Fig. 3 Rank scores for mutations with residual activity equal or greater than wild type alpha-galactosidase. The histograms show the rank scores
of the six mutations whose residual activity is greater or equal than the wild type alpha-galactosidase, for each of the wANNOVAR predictors.
Mutations are color coded, and are detailed inset
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machine learning algorithm, Random Forest based on 86
sequence features and trained with a positive class of
missense variants from the Human Gene Mutation
Database and a negative class of common missense vari-
ants detected in the Exome Sequencing Project popula-
tion. In a recent paper Plon and co-workers [67]
compared the performance of several algorithms using
benign or pathogenic missense variants from the ClinVar
database [52]. They found “poor concordance among al-
gorithms, particularly for variants classified as benign by
clinical laboratories”. Nevertheless they observed that
VEST3 has the lowest rate of false positive calls, i.e. be-
nign variants in ClinVar that are erroneously predicted
as pathogenic. This finding suggests that the training
protocol employed by VEST3 reduces over-prediction of
deleterious variants. The second best result was obtained
with PolyPhen-2 [12] that calculates bayesian probabil-
ities and uses eight sequence-based and three
structure-based predictive features. Since AGAL struc-
ture is known [23–25], it is possible that the incorpor-
ation of structure-based predictive features contributed

to the good results obtained with PolyPhen-2. Two ver-
sions of the same program exist. PolyPhen-2 HumDiv is
trained with a positive class of mutation causing Men-
delian diseases from UniProt and a negative class of var-
iants found in closely related mammalian homologs
whereas PolyPhen-2 HumVar is trained with a positive
class consisting of all human disease-causing mutations
from UniProt and a negative class consisting of nsSNPs
without annotated involvement in disease. HumDiv per-
formed slightly better than HumVar. Among the tools
that are not limited to exonic missense mutations,
CADD is the best performing one. MutationAssessor is
the best performing method based on biological princi-
ples with a combinatorial entropy formalism. In a previ-
ous paper we had shown that the flexibility of the
residue where the mutation occurs is the best structural
property to predict AGAL mutants residual activity [68].
Results obtained by VEST3, PolyPhen-2, CADD and
MutationAssessor are better than those obtained with
molecular dynamics (Pearson correlation coefficient R
0.50; p < 0.0001). Although the majority of disease muta-
tions in GLA affect protein stability, methods based on a
single structural property perform worse than those rely-
ing on several properties.
Admittedly our analysis has two major limitations. In

the first place only the programs run by wANNOVAR
[3] were considered leaving out those softwares that use
three-dimensional structures, for example SDM [69],
PoPMuSiC [70] and mCSM [71]. In the second place
only one gene was considered. Yet GLA represents a
unique case since, to the best of our knowledge, there
are few data about residual activity of other mutant pro-
teins. We hope that the effort that was put in place for
GLA were extended.

Conclusions
Our paper aims at soliciting a combined effort to pro-
duce a large database where the residual activity mea-
sured in a cell-based test for diverse proteins is gathered.
Indeed this is feasible if cDNA encoding mutants are
expressed by transient transfection in suitable mamma-
lian cells. In case of FD, it has been shown that this in
vitro test recapitulates what can be observed ex vivo in
the cells derived from patients. This approach is not lim-
ited to the variants already observed in the patients or in
the healthy population and provides data for negative
controls too, i.e. mutation that do not affect residual ac-
tivity. One obvious limitation of the method is that the
effect of exonic mutation affecting splicing cannot be
evaluated. Once a large dataset from diverse genes is
gathered, it could be used to train linear classifiers. We
also suggests that programs relying on several features,
including structure-based ones, are included in the tools

Table 2 Correlations

Category Name Pearson’s r p-value

B SIFT − 0.493 7.87E-19

B LRT −0.486 2.76E-18

B MutationAssessor −0.573 5.22E-26

B FATHMM −0.054 1.85E-01

B PROVEAN −0.546 1.86E-23

Meta VEST3 −0.699 1.08E-42

Meta MetaSVM 0.285 1.00E + 00

Meta MetaLR −0.482 5.77E-18

Meta M-CAP −0.255 8.09E-06

ML POLYPHEN2 HDIV −0.672 1.67E-38

ML POLYPHEN2 HVAR −0.648 4.53E-35

ML MutationTaster −0.499 2.42E-19

ML CADD −0.595 1.78E-28

ML DANN −0.388 8.51E-12

ML FATHMM-MKL −0.434 1.35E-14

ML GenoCanyon −0.282 7.95E-07

n GERP++ −0.405 9.34E-13

Cons phyloP7way vertebrate −0.441 4.79E-15

Cons phyloP20way mammalian −0.214 1.54E-04

Cons phastCons7way vertebrate −0.486 2.55E-18

Cons phastCons 20 way mammalian −0.256 7.35E-06

Cons SiPhy 29way logOdds −0.389 7.65E-12

Pearson’s r correlation coefficient between rank scores and residual activities,
together with the associated p-value for significance scoring, for all the
predictors used by wANNOVAR. Bold text is used for the highest correlations.
Categories are B for “biologically based prediction method”, ML for “Machine
Learning based prediction method”, Meta for “Meta prediction method” and
Cons for “Conservation scoring tool”
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used for the high throughput annotation of data deriving
from exome sequencing.

Additional files

Additional file 1: wANNOVAR annotated GLA mutation with qualitative
phenotypes. (XLSX 121 kb)

Additional file 2: wANNOVAR annotated GLA mutation with relative
residual activities. (XLSX 212 kb)

Additional file 3 Summary of the predictors evaluated in this study and
their main characteristics (XLSX 13 kb)
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