
����������
�������

Citation: Ma, Z.; Zhang, W.; Shi, K.

Improving the Accuracy of Estimates

of Indoor Distance Moved Using

Deep Learning-Based Movement

Status Recognition. Sensors 2022, 22,

346. https://doi.org/10.3390/

s22010346

Academic Editor: Stefanos Kollias

Received: 27 November 2021

Accepted: 28 December 2021

Published: 4 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Improving the Accuracy of Estimates of Indoor Distance Moved
Using Deep Learning-Based Movement Status Recognition
Zhenjie Ma, Wenjun Zhang and Ke Shi *

School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074,
China; mazhenjie@hust.edu.cn (Z.M.); zhangwenjun@hust.edu.cn (W.Z.)
* Correspondence: keshi@hust.edu.cn

Abstract: As a result of the development of wireless indoor positioning techniques such as WiFi,
Bluetooth, and Ultra-wideband (UWB), the positioning traces of moving people or objects in indoor
environments can be tracked and recorded, and the distances moved can be estimated from these
data traces. These estimates are very useful in many applications such as workload statistics and
optimized job allocation in the field of logistics. However, due to the uncertainties of the wireless
signal and corresponding positioning errors, accurately estimating movement distance still faces
challenges. To address this issue, this paper proposes a movement status recognition-based distance
estimating method to improve the accuracy. We divide the positioning traces into segments and use
an encoder–decoder deep learning-based model to determine the motion status of each segment.
Then, the distances of these segments are calculated by different distance estimating methods based
on their movement statuses. The experiments on the real positioning traces demonstrate the pro-
posed method can precisely identify the movement status and significantly improve the distance
estimating accuracy.

Keywords: indoor positioning; movement distance estimation; movement status recognition

1. Introduction

The increasing market demand for indoor location-based services has driven a rapid
development in indoor positioning techniques in recent years. A large number of indoor
positioning solutions based on WiFi [1], Bluetooth [2], and UWB [3] have been proposed.
After deploying these solutions in indoor environments, the positioning traces of moving
people or objects can be recorded, and the distances traveled by these moving people or
objects can be estimated. Indoor distance estimation is a frequently used function in many
real applications, such as workload statistics and job allocation in warehouse logistics, and
is highly useful for optimizing workflow and improving productivity.

However, due to the uncertainties of wireless signal propagation and corresponding
positioning errors, accurately estimating movement distance from positioning traces still
faces challenges. In comparison with outdoor environments, indoor environments are
more challenging for positioning. The ambient objects in the indoor environments, such as
walls, the ground, furniture, and the human body, commonly lead to Non-Line-of-Sight
(NLOS) propagation. These objects also may cause the wireless signals to reflect, scatter,
and diffract. Compared with outdoor environments, this causes more severe multipath
effects and more greater distance error [3].

Regarding localization, the indoor environment is more dynamic than the outdoor
environment. Human movement, opening and closing of doors, and changes in the location
of furniture may affect signal propagation. Therefore, the signal received is highly time-
varying at a fixed position, which results in significant positioning error [1].

Numerous methods have been proposed to reduce the positioning error; for exam-
ple, WiFi fingerprinting-based methods can limit the error to the meter level [4–6], and

Sensors 2022, 22, 346. https://doi.org/10.3390/s22010346 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22010346
https://doi.org/10.3390/s22010346
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4250-6208
https://doi.org/10.3390/s22010346
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22010346?type=check_update&version=1


Sensors 2022, 22, 346 2 of 15

UWB Time Difference of Arrival (TDOA)-based methods [7] can limit the error to the
sub-meter level. However, deviations between the returned positioning results and the
actual positions exist. Directly calculating the distance via linear interpolation may lead to
a significant error; for example, even when the object is stationary, the position returned
by the positioning system at each positioning time interval varies, which causes direct
calculations to significantly overestimate the distance.

Some data smoothing methods [8] can be utilized to process the positioning trace
data, remove outlier data, ensure the processed trace is closer to the actual trajectory, and
improve distance estimation accuracy. These methods work well only when the object’s
movement falls into a smooth pattern without frequent and sudden changes; for example,
when a worker in the warehouse walks from one pick-up location to another, his movement
is usually smooth.

However, when a worker in the warehouse operates in a narrow corridor between
shelves to check and sort items, his movement falls into another pattern that involves a
large number of sudden changes in direction and speed. The data smoothing methods
may not work well under this pattern, and some customized data processed methods
are needed.

When a person walks around an indoor space, his trajectory usually consists of
several segments, and each segment corresponds to a movement pattern; for example,
when a worker works in a warehouse, some parts of his trajectory are smooth, some are
characterized by a large number of changes, and some are stationary. The estimating
method needs to handle all of these statuses well. To the best of our knowledge, there is no
single data smoothing method that can meet this requirement.

Some outdoor positioning and navigating methods have been proposed to estimate
the distance/time traveled using low rate and error-prone Global Positioning System (GPS)
raw data [9]. These methods either utilize road network information to reconstruct the
trajectory and make the reconstructed trajectory conform to the actual trajectory [10], or
utilize extra sensors, such as an accelerator and compass, to calibrate the GPS points [11].
However, apparent road networks, which constrain the target’s movement in indoor space,
may not exist. Moreover, extra sensors may incur additional costs.

This paper proposes a movement status recognition-based distance estimating method
to improve the estimation accuracy. We divide the positioning traces into segments and use
a deep learning model to determine the motion status of each segment. Then, the distances
of these segments are calculated by different distance estimating methods based on their
movement status.

The main contributions of this paper can be summarized as follows. First, we split
the recorded trace into segments and propose an encoder–decoder deep learning-based
model to determine the motion status of each segment. Second, different data smoothing
methods are applied for each segment to process the raw data points and reconstruct the
trace based on its motion status. Additionally, the experiments on the real positioning
traces demonstrate the proposed method can precisely identify the movement status and
significantly improve the distance estimating accuracy.

The remainder of this paper is organized as follows. Section 2 discusses related work,
and our movement status recognition-based distance estimating method is presented in
Section 3. Section 4 presents the performance evaluation details. Finally, Section 5 concludes
the paper and notes the direction of future work.

2. Related Work
2.1. Distance Estimation

As a result of the development of wireless and sensing technology, more indoor
positioning systems have been deployed to obtain the position traces of moving objects in
indoor space. Although some systems utilize more complex signal characteristics, such as
channel state information, to improve positioning accuracy [12], an error at each location
point still exists due to vulnerable signal transmission. Due to this error, the recorded



Sensors 2022, 22, 346 3 of 15

trace deviates from the actual trajectory and results in a significant cumulative error in
distance estimation.

Data smoothing and filtering techniques, such as moving average filtering and Kalman
filtering, can be used to eliminate outliers from traces to make the recorded trajectory closer
to the real trajectory [8]. As statistical methods, data smoothing and filtering reduce
wide variances or statistical noise to detect trends. For a trace following a simple pattern,
these approaches work well. However, a trace usually contains multiple patterns [13].
Thus, it is hard to derive a single data smoothing and filtering method that can achieve
better performance.

In outdoor positioning and navigation systems, researchers have presented meth-
ods to accurately estimate the distance from GPS traces. Brunsdon et al. [14] presented
a method based on the idea of the principal curve to reconstruct the trajectories from
GPS point data. Map matching-based methods [15] have been proposed to improve the
accuracy of the reconstructed trajectory by utilizing the information of underlying road
networks. Mizzi et al. [16] proposed a method to identify the pedestrian mobility charac-
teristics on a road network to help reconstruct trajectories. Lopez et al. [17] studied the
effect of missing GPS observations on the traveled distance estimation and proposed a
regression model. Dewhirst et al. [11] proposed a method combining accelerometer-based
speed and magnetometer heading estimates (dead reckoning) with low fix rate GPS drift
correction to improve the accuracy of path and distance traveled estimates for studies of
animal locomotion.

Prentow et al. [18] proposed a method to estimate and iteratively refine an underlying
route network from a large positioning trace set in indoor space. Then, the trace is aggre-
gated and cleaned, which facilitates distance estimation. However, the constructed route
networks may not be as accurate as road networks.

2.2. Movement Status Recognition

Movement status recognition can be considered as time series classification (TSC).
Many TSC methods [19] have been proposed, most of which can be divided into three types:
distance based, feature based, and ensemble based. Here, time series data are positioning
traces (which some researchers call trajectories). Some existing trajectory classification
methods aim to differentiate between trajectories (or segments) of different statuses, such
as motions, transportation modes, and human activities [20,21].

TraClass [22] generates a hierarchy of features by partitioning trajectories and ex-
ploring region-based and trajectory-based clustering and assigns class labels to mov-
ing objects based on generated discriminative features. Joo et al. [23] utilize a Hidden
Markov Model (HMM) to classify the trajectories into various kinds of foragers’ motion
patterns. Gao et al. [24] use a Minimum Bounding Rectangle (MBR) to represent tra-
jectory data and use the k Nearest Neighbor (kNN) approach to classify the trajectory.
Zheng et al. [13] constructed a decision tree-based classifier to divide a user’s trajectory by
transportation modes.

Most existing methods extract features from each trajectory and build a model to
classify each trajectory. For example, velocity and velocity change rate can be used to
distinguish stationary, walking, and driving statuses. However, it is hard to identify
the universal and identifiable features for all application scenarios due to the motion
uncertainty and noisy trace data.

Due to the rapid development of artificial intelligence, deep learning-based TSC
methods, such as convolutional neural network (CNN)-based methods, have rapidly
emerged and achieved a competitive level of performance [25,26]. Additionally, deep
learning-based methods allow joint end-to-end feature extraction and classification.

Liu et al. classify travel modes of raw human trajectories using a bi-LSTM neural net-
work [27]. They further utilize a gated recurrent unit (GRU) [28] to model spatial-temporal
correlations of the trajectories to improve classification accuracy. A CNN architecture [29] is
also proposed to infer transportation modes from GPS trajectories. Unlike these methods us-



Sensors 2022, 22, 346 4 of 15

ing CNN or RNN to extract high-level features, we present a customized encoder–decoder
architecture that can extract features and remove the positioning errors simultaneously to
improve the accuracy.

3. Methodology
3.1. Overview

Figure 1 shows the overview of our proposed approaches, comprising three main
steps: trace segmentation, movement status recognition, and distance estimation.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 15 
 

 

encoder–decoder architecture that can extract features and remove the positioning errors 
simultaneously to improve the accuracy. 

3. Methodology 
3.1. Overview 

Figure 1 shows the overview of our proposed approaches, comprising three main 
steps: trace segmentation, movement status recognition, and distance estimation. 

Trace
Segmentation

Movement Status 
Recognition

Distance 
Estimation

stationary
unintentional 

movement
short range 

intentional movement

long range intentional movement

Status based 
segment 

processing 

Distance 
caculation

 
Figure 1. Overview of our method. 

A trace P recorded by a positioning system is represented by a series of chronologi-
cally order points (p1, p2, …, pn), where each point consists of a geospatial coordinate set 
and a time stamp, such as pi = (xi, yi, zi, ti). Given a trace P and a time interval [ti, tj], where 
ti < tj, the segment Ps is defined as a subset of P such that Ps contains all points between ti 
and tj of trace P.  

Trace segmentation divides a trace P into continuous segments with the same time 
interval for further classification. Suppose the sampling rate of the positioning system is 
fixed, and each segment contains the same number of points. To accurately classify the 
movement status, each segment should be homogeneous in its movement status charac-
teristics and contain enough characteristics information to distinguish between different 
statuses. Therefore, the time interval value should be carefully selected based on applica-
tion scenarios. We will study adaptive segmentation methods with flexible time interval 
settings in future work. 

After segmentation, movement status recognition solves the problem of assigning 
segments to classes of similar movement status characteristics using a deep learning-
based classifier. According to moving objects’ behavior and spatial-temporal change, the 
status is divided into four classes: long-range intentional movement, short-range inten-
tional movement, unintentional movement, and stationary.  

The long-range intentional movement represents the motion mode when an object 
moves from one position to another to complete specific work; for example, a worker in a 
warehouse walks from one pick-up location to another. It usually causes a relatively sig-
nificant and smooth spatial change in a given time interval. The short-range intentional 
movement represents the motion mode when an object moves around a position to com-
plete specific work; for example, a worker in a warehouse walks around one pick-up lo-
cation to check and sort items. In this mode, the spatial information changes rapidly and 
repeatedly in a relatively small range. 

Stationary status means there is no spatial change in a given time interval. In real 
application scenarios, an entirely stationary status is rare; for example, a worker in a ware-
house is hardly still even when he or she is resting. Under this circumstance, the worker 
may move slightly around his resting position. Unintentional movement is represented 

Figure 1. Overview of our method.

A trace P recorded by a positioning system is represented by a series of chronologically
order points (p1, p2, . . . , pn), where each point consists of a geospatial coordinate set and a
time stamp, such as pi = (xi, yi, zi, ti). Given a trace P and a time interval [ti, tj], where ti < tj,
the segment Ps is defined as a subset of P such that Ps contains all points between ti and tj
of trace P.

Trace segmentation divides a trace P into continuous segments with the same time
interval for further classification. Suppose the sampling rate of the positioning system is
fixed, and each segment contains the same number of points. To accurately classify the
movement status, each segment should be homogeneous in its movement status charac-
teristics and contain enough characteristics information to distinguish between different
statuses. Therefore, the time interval value should be carefully selected based on applica-
tion scenarios. We will study adaptive segmentation methods with flexible time interval
settings in future work.

After segmentation, movement status recognition solves the problem of assigning
segments to classes of similar movement status characteristics using a deep learning-based
classifier. According to moving objects’ behavior and spatial-temporal change, the status
is divided into four classes: long-range intentional movement, short-range intentional
movement, unintentional movement, and stationary.

The long-range intentional movement represents the motion mode when an object
moves from one position to another to complete specific work; for example, a worker in
a warehouse walks from one pick-up location to another. It usually causes a relatively
significant and smooth spatial change in a given time interval. The short-range intentional
movement represents the motion mode when an object moves around a position to complete
specific work; for example, a worker in a warehouse walks around one pick-up location to
check and sort items. In this mode, the spatial information changes rapidly and repeatedly
in a relatively small range.

Stationary status means there is no spatial change in a given time interval. In real
application scenarios, an entirely stationary status is rare; for example, a worker in a
warehouse is hardly still even when he or she is resting. Under this circumstance, the worker
may move slightly around his resting position. Unintentional movement is represented



Sensors 2022, 22, 346 5 of 15

by this motion mode. Compared with stationary status, unintentional movement usually
has more spatial change. Compared with short-range intentional movement, the motion
caused by unintentional movement is more random.

After status recognition, each segment is processed by a data smoothing method
decided by its status. Then the distance of each segment is calculated using processed data,
and the total distance traveled is obtained by summing all these segments’ distance.

The details of the deep learning-based classifier and status-based distance estimation
are given in the following two subsections.

3.2. Deep Learning-Based Movement Status Recognition

The motion characteristics of moving objects are uncertain. Moreover, it is hard
to derive the error model of the positioning system due to vulnerable wireless signal
transmission. Therefore, building an explicit model describing the relations between
movement status and trace segment is an unsolved (and highly challenging) problem.

Instead, we use an end-to-end deep learning network to build an implicit model by
observing labeled examples. By observing the relationship between trace segments and
ground truth movement status, a neural network can learn an implicit representation
of the relationship. Then, it can use this representation to identify statuses of unlabeled
trace segments.

We devised a classifier for implementing movement status recognition, which takes
the trace segments as inputs and generates the status labels as outputs. As shown in
Figure 2, the proposed classifier adopts an encoder–decoder architecture, with two parallel
decoders feeding off the encoder.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 15 
 

 

by this motion mode. Compared with stationary status, unintentional movement usually 
has more spatial change. Compared with short-range intentional movement, the motion 
caused by unintentional movement is more random. 

After status recognition, each segment is processed by a data smoothing method de-
cided by its status. Then the distance of each segment is calculated using processed data, 
and the total distance traveled is obtained by summing all these segments’ distance. 

The details of the deep learning-based classifier and status-based distance estimation 
are given in the following two subsections. 

3.2. Deep Learning-Based Movement Status Recognition 
The motion characteristics of moving objects are uncertain. Moreover, it is hard to 

derive the error model of the positioning system due to vulnerable wireless signal trans-
mission. Therefore, building an explicit model describing the relations between move-
ment status and trace segment is an unsolved (and highly challenging) problem.  

Instead, we use an end-to-end deep learning network to build an implicit model by ob-
serving labeled examples. By observing the relationship between trace segments and ground 
truth movement status, a neural network can learn an implicit representation of the relation-
ship. Then, it can use this representation to identify statuses of unlabeled trace segments. 

We devised a classifier for implementing movement status recognition, which takes 
the trace segments as inputs and generates the status labels as outputs. As shown in Figure 
2, the proposed classifier adopts an encoder–decoder architecture, with two parallel de-
coders feeding off the encoder.  

The encoder takes in the input trace segment and generates a concise representation 
that feeds into the location and trajectory decoder. The encoder consists of a one-dimen-
sional convolutional layer C1, a pooling layer P1, a one-dimensional convolutional layer 
C2, a pooling layer P2, and a one-dimensional convolutional layer C3. For C1 to C3, the 
kernel numbers are 64, 128, and 256. ReLU is used as the activation function. For P1 to P2, 
max pooling is used, and the subregions are nonoverlapping with a size of 2. 

Trace 
segment

Real 
Trajectory 

segment
(Ground truth)

Encoder

Trajectory Decoder

Status Decoder

Fu
ll 

C
on

ne
ct

ed
 L

ay
er

 

Softmax

Segment
status

C
on

v1
d(

3,
 1

, 2
)

M
ax

Po
ol

1d
(2

)

C
on

v1
d(

2,
 2

, 2
)

C
on

v1
d(

2,
 3

, 3
)

M
ax

Po
ol

1d
(2

)

C
on

vT
ra

ns
po

se
1d

(3
, 1

, 2
)

M
ax

U
np

oo
l1

d(
2)

C
on

vT
ra

ns
po

se
1d

(2
, 2

, 2
)

C
on

vT
ra

ns
po

se
1d

(2
, 3

, 3
)

M
ax

U
np

oo
l1

d(
2)

C1 P1 C2 P2 C3 FC

 
Figure 2. Classifier’s architecture: the classifier takes the trace segments as inputs and generates the 
status labels. For each Conv1d and ConvTranspose1d, the three values shown are [<kernel size>, 
<stride>, <padding>]. For each MaxPool1d and MaxUnpool1d, the value shown are [<kernel size>]. 

The trajectory decoder uses the concise representation generated by the encoder to 
reproduce the ground truth trajectory corresponding to the input trace segment by de-
convolutional and de-pooling operations. For each one-dimensional convolutional layer 

Figure 2. Classifier’s architecture: the classifier takes the trace segments as inputs and generates the
status labels. For each Conv1d and ConvTranspose1d, the three values shown are [<kernel size>,
<stride>, <padding>]. For each MaxPool1d and MaxUnpool1d, the value shown are [<kernel size>].

The encoder takes in the input trace segment and generates a concise representa-
tion that feeds into the location and trajectory decoder. The encoder consists of a one-
dimensional convolutional layer C1, a pooling layer P1, a one-dimensional convolutional
layer C2, a pooling layer P2, and a one-dimensional convolutional layer C3. For C1 to C3,
the kernel numbers are 64, 128, and 256. ReLU is used as the activation function. For P1 to
P2, max pooling is used, and the subregions are nonoverlapping with a size of 2.

The trajectory decoder uses the concise representation generated by the encoder to
reproduce the ground truth trajectory corresponding to the input trace segment by de-



Sensors 2022, 22, 346 6 of 15

convolutional and de-pooling operations. For each one-dimensional convolutional layer
of the encoder, there is a corresponding one-dimensional de-convolutional layer in the
trajectory decoder. For each pooling layer of the encoder, there is a corresponding de-
pooling layer in the trajectory decoder. Training the trajectory decoder to reproduce the
actual trajectory can teach the encoder to remove the error caused by the positioning system.
Recall that vulnerable wireless signal transmission causes random positioning errors in the
input trace segments. If we do not correct these random errors, the classifier will not learn
the movement status characteristics, thereby severely limiting its capability. To remove
positioning errors, it needs training data that has ground truth trajectories as targets. The
actual position data need to be gathered in the data collecting process.

The status decoder, which consists of a fully connected layer and a softmax layer,
provides the classification results. The fully connected layer generates the final feature
maps for classification. The softmax layer provides the posterior probability of each class
which is coded in one-hot format and passed to the output.

Our encoder–decoder classifier takes trace segments as the inputs. The trajectory
decoder generates the actual trajectories as outputs, and the status decoder generates the
status classes as outputs. We employ L2 comparative loss for the trajectory decoder and
cross-entropy loss for the status decoder. The overall loss function is a weighted sum of the
losses of the trajectory decoder and the status decoder.

We utilize labeled trace segments and ground truth trajectory segments to train the
classifier end-to-end during the training phase. The classifier learns to remove the posi-
tioning errors utilizing the trajectory decoder. Because the trajectory loss and status loss
are summed to update the encoder, the status decoder obtains access to the information
regarding removing positioning errors, thus enabling it to learn and predict accurate move-
ment status. Once the classifier is trained, the trajectory decoder is no longer needed. Only
the encoder and status decoder are stored, and continuously receive the trace segments
and identify their movement status.

3.3. Distance Estimation

After movement status recognition, each trace segment has a status label. The trace
segments are processed, and the corresponding distances are calculated using specific
methods decided by the segments’ labels.

For the trace segment labeled as stationary, the corresponding distance is zero. We
use the Kalman filter to process the raw trace segment labeled as long-range intentional
movement. The Kalman filter works in a two-step process: prediction and estimation. In the
prediction step, the filter produces estimates of the current position along with their error
probabilities. These estimates are updated using a weighted average of the raw position
data with more weight being given to the estimates with higher certainty. The predicted
position is compared with the actual poisoning data to obtain the optimum output in the
estimation step. Therefore, noises and errors of the raw data are removed. The distance is
calculated based on processed trace segments.

The long-range intentional movement has a clear and stable motion pattern, for which
the Kalman filter is suitable for making an accurate prediction. The processed trace segment
is closer to the actual trajectory than the raw data segment. However, it is hard for the
Kalman filter to accurately predict the trace segments labeled as short-range intentional
movement and unintentional movement; in particular, it is hard to determine whether
raw data spikes are caused by positioning errors or sudden motion changes. Hence,
we use least-squares polynomial fitting to process the raw trace segments and generate
a polynomial curve to approximately represent the actual trajectory. The length of the
generated polynomial curve is the distance.

Finally, the distance corresponding to the whole trace is the sum of the distances of all
the trace segments.



Sensors 2022, 22, 346 7 of 15

4. Performance Evaluation

In this section, we verify the effectiveness of the proposed method based on the data
obtained from the real environments and make comparisons with other existing methods.

4.1. Setup

We collect the data from a TDOA-based UWB location system deployed in an auto
parts factory space (see Figure 3a). As depicted in Figure 3b, four UWB positioning anchors
(indicated by red dots) were deployed on the site. All the anchors utilize the network time
protocol to implement full time synchronization. The system locates workers wearing UWB
tags at a frequency of 2 Hz. The tag sends a broadcast message, and the anchor receives it
and records the arrival time. Then, all the anchors send the arrival time of receiving this
message to the location server. Because the location of anchors is different, the different
anchors will record the different arrival times. The location server can calculate the location
of the tag by a hyperbolic algorithm. The TDOA methodology enables the simultaneous
tracking of multiple tags within the system. If there are enough computing and storage
resources, our method can simultaneously process multiple users’ traces.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 15 
 

 

4. Performance Evaluation 
In this section, we verify the effectiveness of the proposed method based on the data 

obtained from the real environments and make comparisons with other existing methods. 

4.1. Setup 
We collect the data from a TDOA-based UWB location system deployed in an auto 

parts factory space (see Figure 3a). As depicted in Figure 3b, four UWB positioning an-
chors (indicated by red dots) were deployed on the site. All the anchors utilize the network 
time protocol to implement full time synchronization. The system locates workers wear-
ing UWB tags at a frequency of 2 Hz. The tag sends a broadcast message, and the anchor 
receives it and records the arrival time. Then, all the anchors send the arrival time of re-
ceiving this message to the location server. Because the location of anchors is different, the 
different anchors will record the different arrival times. The location server can calculate 
the location of the tag by a hyperbolic algorithm. The TDOA methodology enables the 
simultaneous tracking of multiple tags within the system. If there are enough computing 
and storage resources, our method can simultaneously process multiple users’ traces.  

 
(a) 

 
(b) 

Figure 3. Experimental environment. (a) Auto parts factory space; (b) Space layout. 

We manually set 12 different paths that served as ground truth data. Each path con-
sisted of pre-defined positioning points that can be further divided into sub-sequences cor-
responding to different movement statuses. The path length varied between 200 and 220 m. 

Figure 3. Experimental environment. (a) Auto parts factory space; (b) Space layout.

We manually set 12 different paths that served as ground truth data. Each path con-
sisted of pre-defined positioning points that can be further divided into sub-sequences
corresponding to different movement statuses. The path length varied between 200 and
220 m. The average value was 210 m. The workers wearing the UWB tags walked along



Sensors 2022, 22, 346 8 of 15

these paths 60 times. Each movement status lasted at least 25 s. Each path consisted
of three segments corresponding to the long-range intentional movement status, two–
three segments corresponding to the short-range movement status, three segments cor-
responding to the stationary status, and two–three segments corresponding to the unin-
tentional movement status. The collected data contains 7468 trace segments. Figure 4
shows the trace samples of different movement statuses collected by the deployed UWB
positioning system.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 15 
 

 

The average value was 210 m. The workers wearing the UWB tags walked along these paths 
60 times. Each movement status lasted at least 25 s. Each path consisted of three segments 
corresponding to the long-range intentional movement status, two–three segments corre-
sponding to the short-range movement status, three segments corresponding to the station-
ary status, and two–three segments corresponding to the unintentional movement status. 
The collected data contains 7468 trace segments. Figure 4 shows the trace samples of differ-
ent movement statuses collected by the deployed UWB positioning system. 

  
(a) (b) 

  
(c) (d) 

Figure 4. Ten-second trace samples of different movement statuses collected by the deployed UWB 
positioning system. (a) stationary; (b) short-range intentional movement; (c) long-range intentional 
movement; (d) unintentional movement. 

Experiments were conducted on a computer server with an Intel Xeon processor (2.30 
GHz), 32 GB of memory, and Nvidia Tesla K80 12GB graphics card.  

4.2. Movement Status Classification Performance 
4.2.1. Metrics 

We use the following three metrics to evaluate the performance of our classifier: pre-
cision (P), recall (R), and F1-score (F1).  

Precision is the fraction of true positive samples among the samples that the classifier 
labels as positive. Recall, also known as sensitivity, is the fraction of samples labeled as 
positive among the total number of positive samples. Precision is defined as: P = ∑ 𝑇𝑃∑ 𝑇𝑃 + ∑ 𝐹𝑃  (1)

Figure 4. Ten-second trace samples of different movement statuses collected by the deployed UWB
positioning system. (a) stationary; (b) short-range intentional movement; (c) long-range intentional
movement; (d) unintentional movement.

Experiments were conducted on a computer server with an Intel Xeon processor
(2.30 GHz), 32 GB of memory, and Nvidia Tesla K80 12GB graphics card.

4.2. Movement Status Classification Performance
4.2.1. Metrics

We use the following three metrics to evaluate the performance of our classifier:
precision (P), recall (R), and F1-score (F1).

Precision is the fraction of true positive samples among the samples that the classifier
labels as positive. Recall, also known as sensitivity, is the fraction of samples labeled as
positive among the total number of positive samples. Precision is defined as:

P =
∑m

i=1 TPi

∑m
i=1 TPi + ∑m

i=1 FPi
(1)



Sensors 2022, 22, 346 9 of 15

and recall is defined as:

R =
∑m

i=1 TPi

∑m
i=1 TPi + ∑m

i=1 FNi
(2)

where TP is the number of true positives labeled by the classifier, FP is the number of
false positives labeled by the classifier, FN is the number of false negatives labeled by the
classifier, and m is the number of classes. Here, m is 4.

The F1-score is a means of combining the precision and recall of the classifier, and is
defined as the harmonic mean of the classifier’s precision and recall:

F1 =
2(P ∗ R)

P + R
(3)

4.2.2. Classifier Implementation and Training

We implemented the proposed classifier in PyTorch. The recorded trace segments and
corresponding paths’ sub-sequences were used to train this classifier. When training the
model, we used Adam as our optimizer. Figure 5 shows the effect of the training dataset
ratio on the performance of our classifier.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 15

and recall is defined as: R = ∑ 𝑇𝑃∑ 𝑇𝑃 + ∑ 𝐹𝑁 (2)

where TP is the number of true positives labeled by the classifier, FP is the number of false 
positives labeled by the classifier, FN is the number of false negatives labeled by the clas-
sifier, and m is the number of classes. Here, m is 4. 

The F1-score is a means of combining the precision and recall of the classifier, and is 
defined as the harmonic mean of the classifier’s precision and recall:F1 = 2 𝑃 ∗ 𝑅𝑃 + 𝑅 (3)

4.2.2. Classifier Implementation and Training 
We implemented the proposed classifier in PyTorch. The recorded trace segments 

and corresponding paths’ sub-sequences were used to train this classifier. When training 
the model, we used Adam as our optimizer. Figure 5 shows the effect of the training da-
taset ratio on the performance of our classifier.  

Figure 5. The impact of the training dataset ratio. 

We found 60% and 70% are the best training dataset ratios for achieving the best 
performance. When this ratio is low, there are few examples in the training dataset. This 
results in a low testing accuracy because the model overfits the training dataset or the 
training dataset is not sufficiently representative. When the percentage of data in the train-
ing dataset is higher than 70%, the accuracy is still high but slightly lower than the best 
value. Too many examples may cause the training dataset to be over-representative.
Therefore, we allocated 60% of the available data for training, and the remaining 40% data
were allocated to the test datasets.  

Figure 6 plots the training and validation loss of our classifier during the training 
process. It is obvious that the training and validation loss both converge and have no sig-
nificant change after 100 epochs. To limit training time, our training process terminated 
after 100 epochs. 

Figure 5. The impact of the training dataset ratio.

We found 60% and 70% are the best training dataset ratios for achieving the best
performance. When this ratio is low, there are few examples in the training dataset. This
results in a low testing accuracy because the model overfits the training dataset or the
training dataset is not sufficiently representative. When the percentage of data in the
training dataset is higher than 70%, the accuracy is still high but slightly lower than the
best value. Too many examples may cause the training dataset to be over-representative.
Therefore, we allocated 60% of the available data for training, and the remaining 40% data
were allocated to the test datasets.

Figure 6 plots the training and validation loss of our classifier during the training
process. It is obvious that the training and validation loss both converge and have no
significant change after 100 epochs. To limit training time, our training process terminated
after 100 epochs.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 6. The loss during the training process. 

4.2.3. Comparison with Other Classifying Methods  
We compared our classifier with three methods: kNN, SVM, and CNN. Both kNN and 

SVM first extract the features from the raw trace segments, including the range of coordinate 
changes and its variance, the average velocity, and their variance, and then implement the 
classification based on these features. We found that directly feeding the noisy and error-
containing data into the kNN or SVM classifier resulted in poor performance. In order to 
demonstrate the effectiveness of the trajectory decoder, the CNN classifier adopts a similar 
architecture to our classifier but does not contain the trajectory decoder. 

The evaluation results are listed in Table 1. SVM performed slightly better than kNN 
because SVM maps the feature data to a higher-dimensional space and makes it easier to 
find a linear decision line in this new space. CNN performed slightly better than SVM and 
kNN. It shows that the end-to-end learning capacities provided by deep learning improve 
the classification accuracy without heavy crafting in data pre-processing compared with 
feature engineering. However, the precision and recall values of these three classifiers are 
all lower than 90%. Our classifier achieves remarkable performance and outperforms the 
other methods, and the precision and recall are above 97%. With the help of the trajectory 
decoder, the encoder can effectively remove the errors caused by the positioning systems. 

Table 1. Summary of performance evaluation results. 

 Precision Recall F1-Score 
kNN 83.53% 82.69% 83.11% 
SVM 86.13% 85.75% 85.94% 
CNN 88.05% 87.76% 87.90% 

Our classifier  97.81% 97.78% 97.79% 

In order to obtain a deeper insight into the performance, the confusion matrices of all 
four classifiers are given in Figure 7. We found the most challenging part was distinguishing 
stationary and intentional movement status. The misidentification rates of kNN and SVM 
are above 30%, and even for CNN, this value is close to 30%. The reason for this is that the 
difference between the unintentional movement and the stationary status is not significant, 
and the positioning errors easily blur this difference. By utilizing the trajectory decoder to 
restore the output of the encoder to the ground truth trajectory, the encoder of our classifier 
learns the ability to remove the positioning errors caused by vulnerable wireless transmis-
sions, which significantly reduces the misidentification between these two statuses. It also 
results in more accurate identification of the other statuses by our classifier.  

Figure 6. The loss during the training process.



Sensors 2022, 22, 346 10 of 15

4.2.3. Comparison with Other Classifying Methods

We compared our classifier with three methods: kNN, SVM, and CNN. Both kNN and
SVM first extract the features from the raw trace segments, including the range of coordinate
changes and its variance, the average velocity, and their variance, and then implement
the classification based on these features. We found that directly feeding the noisy and
error-containing data into the kNN or SVM classifier resulted in poor performance. In
order to demonstrate the effectiveness of the trajectory decoder, the CNN classifier adopts
a similar architecture to our classifier but does not contain the trajectory decoder.

The evaluation results are listed in Table 1. SVM performed slightly better than kNN
because SVM maps the feature data to a higher-dimensional space and makes it easier to
find a linear decision line in this new space. CNN performed slightly better than SVM and
kNN. It shows that the end-to-end learning capacities provided by deep learning improve
the classification accuracy without heavy crafting in data pre-processing compared with
feature engineering. However, the precision and recall values of these three classifiers are
all lower than 90%. Our classifier achieves remarkable performance and outperforms the
other methods, and the precision and recall are above 97%. With the help of the trajectory
decoder, the encoder can effectively remove the errors caused by the positioning systems.

Table 1. Summary of performance evaluation results.

Precision Recall F1-Score

kNN 83.53% 82.69% 83.11%
SVM 86.13% 85.75% 85.94%
CNN 88.05% 87.76% 87.90%

Our classifier 97.81% 97.78% 97.79%

In order to obtain a deeper insight into the performance, the confusion matrices of all
four classifiers are given in Figure 7. We found the most challenging part was distinguishing
stationary and intentional movement status. The misidentification rates of kNN and SVM
are above 30%, and even for CNN, this value is close to 30%. The reason for this is that the
difference between the unintentional movement and the stationary status is not significant,
and the positioning errors easily blur this difference. By utilizing the trajectory decoder
to restore the output of the encoder to the ground truth trajectory, the encoder of our
classifier learns the ability to remove the positioning errors caused by vulnerable wireless
transmissions, which significantly reduces the misidentification between these two statuses.
It also results in more accurate identification of the other statuses by our classifier.

Table 2 provides the execution time (including training time and inference time) of
all four classifiers. For kNN, no training is needed, but inference (represented by average
classification time for one segment) is high because it needs to compute the distance of
each trace segment in the training dataset from the testing trace segment. Training an
SVM classifier involves solving the quadratic problem and choosing the support vectors,
which leads to a high training time of 6.3 s in our experiment. The inference time of SVM is
lower than that of kNN because SVM only needs to determine the side of a hyperplane on
which a given point lies. Training a deep learning-based model is computation intensive.
As a result, the training time of CNN and our classifier is 451 and 876 s, respectively,
which is much higher than that of SVM. Compared with CNN, our classifier needs almost
twice the training time because our classifier introduces an extra trajectory decoder. In
the testing stage, CNN and our classifier have the same architecture, which leads to the
same inference time. The inference time is low because the convolution computation can
be quickly undertaken by matrix computation.



Sensors 2022, 22, 346 11 of 15Sensors 2022, 22, x FOR PEER REVIEW 11 of 15 
 

 

A
ctual status

Output status

Stationary Unintentional 
movement

Short range 
intentional 
movement

Long range 
intentional 
movement

Stationary

Unintentional 
movement

Short range 
intentional 
movement
Long range 
intentional 
movement

512 276 0 0

157 540 2 0

11 18 669 7

2 17 35 744
 

A
ctual status

Output status

Stationary Unintentional 
movement

Short range 
intentional 
movement

Long range 
intentional 
movement

Stationary

Unintentional 
movement

Short range 
intentional 
movement
Long range 
intentional 
movement

532 256 0 0

109 579 11 0

4 15 676 7

2 7 20 769
 

(a) (b) 

A
ctual status

Output status

Stationary Unintentional 
movement

Short range 
intentional 
movement

Long range 
intentional 
movement

Stationary

Unintentional 
movement

Short range 
intentional 
movement
Long range 
intentional 
movement

545 243 0 0

102 595 1 1

1 7 689 5

2 2 7 787
 

A
ctual status

Output status

Stationary Unintentional 
movement

Short range 
intentional 
movement

Long range 
intentional 
movement

Stationary

Unintentional 
movement

Short range 
intentional 
movement
Long range 
intentional 
movement

769 19 0 0

27 670 2 0

1 6 692 3

1 1 5 791
 

(c) (d) 

Figure 7. Confusion matrices of different classifiers. (a) kNN; (b) SVM; (c) CNN; (d) Ours. 

Table 2 provides the execution time (including training time and inference time) of 
all four classifiers. For kNN, no training is needed, but inference (represented by average 
classification time for one segment) is high because it needs to compute the distance of 
each trace segment in the training dataset from the testing trace segment. Training an SVM 
classifier involves solving the quadratic problem and choosing the support vectors, which 
leads to a high training time of 6.3 s in our experiment. The inference time of SVM is lower 
than that of kNN because SVM only needs to determine the side of a hyperplane on which 
a given point lies. Training a deep learning-based model is computation intensive. As a 
result, the training time of CNN and our classifier is 451 and 876 s, respectively, which is 
much higher than that of SVM. Compared with CNN, our classifier needs almost twice 
the training time because our classifier introduces an extra trajectory decoder. In the test-
ing stage, CNN and our classifier have the same architecture, which leads to the same 
inference time. The inference time is low because the convolution computation can be 
quickly undertaken by matrix computation. 

Table 2. Comparison of the execution time of different classifiers. 

 Training Time Average Classifying Time for One Segment 
kNN / 1.32 s 
SVM 6.3 s 0.83 s 
CNN 451 s 0.0079 s 

Our classifier  876 s 0.0079 s 

4.3. Impact of Trace Segment Size 
Figure 8 shows the impact of trace segment size on our classifier’s accuracy. Because 

the sampling frequency is fixed, we use the number of positioning points in a trace seg-
ment to represent its size. When the size is small, a trace segment contains few positioning 
points and may not carry enough information for our classifier to successfully discrimi-
nate between the movement statuses. For example, when a trace segment contains 10 
points, the corresponding movement lasts only 5 s because the sampling frequency is 2 

Figure 7. Confusion matrices of different classifiers. (a) kNN; (b) SVM; (c) CNN; (d) Ours.

Table 2. Comparison of the execution time of different classifiers.

Training Time Average Classifying Time for One Segment

kNN / 1.32 s
SVM 6.3 s 0.83 s
CNN 451 s 0.0079 s

Our classifier 876 s 0.0079 s

4.3. Impact of Trace Segment Size

Figure 8 shows the impact of trace segment size on our classifier’s accuracy. Because
the sampling frequency is fixed, we use the number of positioning points in a trace segment
to represent its size. When the size is small, a trace segment contains few positioning
points and may not carry enough information for our classifier to successfully discriminate
between the movement statuses. For example, when a trace segment contains 10 points, the
corresponding movement lasts only 5 s because the sampling frequency is 2 Hz. It is hard
for our classifier to distinguish between stationary status and unintentional movement
status. It is also hard for our classifier to distinguish between long-range and short-range
movement statuses. The F1-score drops below 0.8.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 15 
 

 

Hz. It is hard for our classifier to distinguish between stationary status and unintentional 
movement status. It is also hard for our classifier to distinguish between long-range and 
short-range movement statuses. The F1-score drops below 0.8.  

 
Figure 8. The impact of trace segment size. 

As the number of positioning points grows, the trace segment is more sufficiently 
representative, which leads to a higher F1-score. Because one movement status lasts at 
least 25 s in our experiment, we find the best F1-Score when the number of points is 50. 
When the size is too large, a trace segment may not be homogeneous in its movement 
status. Some positioning points correspond to a given movement status, and some corre-
spond to another, which has a significantly negative effect on the classification accuracy. 
This explains why the F1-score decreases when the number of points exceeds 50. The de-
creasing trend accelerates as the size increases further. 

The results prove that the trace segment size has a significant effect on the final per-
formance. Now the segmentation method prefers a small time interval to ensure the move-
ment status of the divided segment is homogeneous. In real applications, the duration of 
a movement status varies. The small value of the time interval may cause a trajectory part 
corresponding to a single movement status to be divided into several segments. We will 
study adaptive segmentation methods that can divide the trace based on motion charac-
teristics in future work. 

4.4. Distance Estimation Results 
4.4.1. Metrics 

We used mean absolute error (MAE) and mean absolute percentage error (MAPE) as 
the metrics to evaluate the performance of distance estimation. These two metrics are de-
fined as: MAE = ∑ |𝑦 − 𝑦 |𝑛  (4)

MAPE = 1𝑛 |𝑦 − 𝑦 |𝑦  (5)

where 𝑦  is the actual distance, 𝑦  is the estimated distance, and n is the number of 
traces. MAE is the absolute value of the difference between the estimated value and the 
actual value. It gives less weight to outliers, which is not sensitive to outliers. One problem 
with MAE is that the relative size of the error is not always obvious. Sometimes it is hard 
to tell a large error from a small error. MAPE is the absolute error normalized over the 
actual value, computed for every data point and then averaged, which allows the error to 
be compared across data with different scales. 

Figure 8. The impact of trace segment size.



Sensors 2022, 22, 346 12 of 15

As the number of positioning points grows, the trace segment is more sufficiently
representative, which leads to a higher F1-score. Because one movement status lasts at least
25 s in our experiment, we find the best F1-Score when the number of points is 50. When
the size is too large, a trace segment may not be homogeneous in its movement status.
Some positioning points correspond to a given movement status, and some correspond
to another, which has a significantly negative effect on the classification accuracy. This
explains why the F1-score decreases when the number of points exceeds 50. The decreasing
trend accelerates as the size increases further.

The results prove that the trace segment size has a significant effect on the final
performance. Now the segmentation method prefers a small time interval to ensure the
movement status of the divided segment is homogeneous. In real applications, the duration
of a movement status varies. The small value of the time interval may cause a trajectory
part corresponding to a single movement status to be divided into several segments. We
will study adaptive segmentation methods that can divide the trace based on motion
characteristics in future work.

4.4. Distance Estimation Results
4.4.1. Metrics

We used mean absolute error (MAE) and mean absolute percentage error (MAPE)
as the metrics to evaluate the performance of distance estimation. These two metrics are
defined as:

MAE =
∑n

i=1|yi − ŷi|
n

(4)

MAPE =
1
n

n

∑
i=1

|yi − ŷi|
yi

(5)

where yi is the actual distance, ŷi is the estimated distance, and n is the number of traces.
MAE is the absolute value of the difference between the estimated value and the actual
value. It gives less weight to outliers, which is not sensitive to outliers. One problem with
MAE is that the relative size of the error is not always obvious. Sometimes it is hard to tell a
large error from a small error. MAPE is the absolute error normalized over the actual value,
computed for every data point and then averaged, which allows the error to be compared
across data with different scales.

4.4.2. Comparison with Other Distance Estimating Methods

We compared the performance of our approach with the following methods:

1. ED, calculating the Euclidean distance between the consecutive points of raw trace
and using the sum of these distances as the estimated distance;

2. KF, utilizing Kalman filter to process the raw trace, and using the distance of processed
trace as the estimated distance;

3. LSF, utilizing least square fitting to process the raw trace, and using the distance of
processed trace as the estimated distance;

4. kNN-S, dividing the raw trace into segments, classifying the statuses of segments by
kNN, and using status-based estimation to obtain the final distance;

5. SVM-S, dividing the raw trace into segments, classifying the statuses of segments by
SVM, and using status-based estimation to obtain the final distance;

6. CNN-S, dividing the raw trace into segments, classifying the statuses of segments by
CNN, and using status-based estimation to obtain the final distance.

The last three methods are similar to ours except that different classifiers are used.
The results are given in Figures 9 and 10. ED undoubtedly causes the most significant
deviation from the actual distance among all the methods. The raw trace data contains
positioning errors, making ED significantly overestimate the distance, especially when the
walker is stationary. The outlier points also make the estimated distance larger than the
actual distance. Its MAE reaches 49.23 m, and MAPE reaches 23.3%.



Sensors 2022, 22, 346 13 of 15

Sensors 2022, 22, x FOR PEER REVIEW 13 of 15 
 

 

4.4.2. Comparison with Other Distance Estimating Methods  
We compared the performance of our approach with the following methods: 

1. ED, calculating the Euclidean distance between the consecutive points of raw trace 
and using the sum of these distances as the estimated distance; 

2. KF, utilizing Kalman filter to process the raw trace, and using the distance of pro-
cessed trace as the estimated distance; 

3. LSF, utilizing least square fitting to process the raw trace, and using the distance of 
processed trace as the estimated distance; 

4. kNN-S, dividing the raw trace into segments, classifying the statuses of segments by 
kNN, and using status-based estimation to obtain the final distance; 

5. SVM-S, dividing the raw trace into segments, classifying the statuses of segments by 
SVM, and using status-based estimation to obtain the final distance; 

6. CNN-S, dividing the raw trace into segments, classifying the statuses of segments by 
CNN, and using status-based estimation to obtain the final distance. 
The last three methods are similar to ours except that different classifiers are used. 

The results are given in Figures 9 and 10. ED undoubtedly causes the most significant 
deviation from the actual distance among all the methods. The raw trace data contains 
positioning errors, making ED significantly overestimate the distance, especially when the 
walker is stationary. The outlier points also make the estimated distance larger than the 
actual distance. Its MAE reaches 49.23 m, and MAPE reaches 23.3%.  

KF and LSF can be categorized as the same class of method, which first removes the 
positioning errors from the raw trace while retaining the actual movement patterns, and 
then estimates the distance from the processed trace. These two methods can reduce the 
distance estimating error. The MAE values of KF and LSF decrease to 17.19 and 14.62 m, 
respectively. The MAPE values of KF and LSF decrease to 8.2% and 7%, respectively. 
However, a walker’s trace usually contains multiple parts that correspond to different 
movement statues. KF and LSF cannot perform very well in all these statuses. Therefore, 
these two methods still cause notable errors. 

kNN-S, SVM-S, CNN-S, and our method are all status-based distance estimating 
methods. These methods divide the raw trace into multiple segments, use a specific clas-
sifier to determine each segment’s movement status, and apply different distance estimat-
ing methods to the segments according to their movement statuses. The distance overes-
timation caused by positioning errors when the moving target is stationary is eliminated. 
Using LSF to process the segments corresponding to the short-range intentional move-
ment status significantly reduces the distance underestimation compared with KF. The 
MAE values of these four methods are below 3.3 m, and the MAPE values of these four 
methods are below 2%.  

Our method achieves the lowest distance error because the encoder–decoder classi-
fier has the highest precision and recall rate. This proves that a status-based method can 
efficiently improve the distance estimation accuracy, and the underlying classifier is the 
key to achieving better performance. 

 
Figure 9. MAE versus different methods. Figure 9. MAE versus different methods.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 15 
 

 

 
Figure 10. MAPE versus different methods. 

5. Conclusions and Future Directions 
This paper presents a movement status recognition-based distance estimation 

method to improve estimation accuracy. We divide the positioning traces into segments 
and use an encoder–decoder-based deep learning model to determine the motion status 
of each segment. Then, the distances of these segments are calculated by different distance 
estimation methods based on their movement statuses.  

Our method divides the raw trace into multiple segments containing an equal num-
ber of positioning points. This number is set manually to ensure the divided segment is 
homogeneous in its movement status characteristics. This may result in short segments 
that have negative effects on classifying performance. We will study adaptive segmenta-
tion methods with flexible time interval settings in future work. We will also consider 
integrating segmentation and classification to further improve the accuracy. 

Author Contributions: Conceptualization, Z.M. and K.S.; methodology, Z.M., W.Z. and K.S.; soft-
ware, Z.M. and W.Z.; validation, Z.M., W.Z. and K.S.; data curation, Z.M. and W.Z.; writing—orig-
inal draft preparation, Z.M.; writing—review and editing, K.S.; visualization, W.Z.; supervision, 
K.S. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data used to support the findings of this study are available from 
the corresponding author upon request. 

Acknowledgments: We acknowledge the support and the use of the facilities and equipment pro-
vided by the Jiezhong Auto Co., Ltd, Wuhan, China. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Liu, F.; Liu, J.; Yin, Y.; Wang, W.; Hu, D.; Chen, P.; Niu, Q. Survey on WiFi-based indoor positioning techniques. IET Commun. 

2020, 14, 1372–1383. https://doi.org/10.1049/iet-com.2019.1059. 
2. Spachos, P.; Plataniotis, K.N. BLE Beacons for Indoor Positioning at an Interactive IoT-Based Smart Museum. IEEE Syst. J. 2020, 

14, 3483–3493. https://doi.org/10.1109/JSYST.2020.2969088. 
3. Alarifi, A.; Al-Salman, A.; Alsaleh, M.; Alnafessah, A.; Al-Hadhrami, S.; Al-Ammar, M.A.; Al-Khalifa, H.S. Ultra Wideband 

Indoor Positioning Technologies: Analysis and Recent Advances. Sensors 2016, 16, 707. https://doi.org/10.3390/s16050707. 
4. Qin, F.; Zuo, T.; Wang, X. CCpos: WiFi Fingerprint Indoor Positioning System Based on CDAE-CNN. Sensors 2021, 21, 1114. 

https://doi.org/10.3390/s21041114. 
5. Wang, X.; Wang, X.; Mao, S. Deep Convolutional Neural Networks for Indoor Localization with CSI Images. IEEE Trans. Netw. 

Sci. Eng. 2020, 7, 316–327. https://doi.org/10.1109/TNSE.2018.2871165. 

Figure 10. MAPE versus different methods.

KF and LSF can be categorized as the same class of method, which first removes the
positioning errors from the raw trace while retaining the actual movement patterns, and
then estimates the distance from the processed trace. These two methods can reduce the
distance estimating error. The MAE values of KF and LSF decrease to 17.19 and 14.62 m,
respectively. The MAPE values of KF and LSF decrease to 8.2% and 7%, respectively.
However, a walker’s trace usually contains multiple parts that correspond to different
movement statues. KF and LSF cannot perform very well in all these statuses. Therefore,
these two methods still cause notable errors.

kNN-S, SVM-S, CNN-S, and our method are all status-based distance estimating meth-
ods. These methods divide the raw trace into multiple segments, use a specific classifier to
determine each segment’s movement status, and apply different distance estimating methods
to the segments according to their movement statuses. The distance overestimation caused by
positioning errors when the moving target is stationary is eliminated. Using LSF to process
the segments corresponding to the short-range intentional movement status significantly
reduces the distance underestimation compared with KF. The MAE values of these four
methods are below 3.3 m, and the MAPE values of these four methods are below 2%.

Our method achieves the lowest distance error because the encoder–decoder classifier
has the highest precision and recall rate. This proves that a status-based method can
efficiently improve the distance estimation accuracy, and the underlying classifier is the
key to achieving better performance.

5. Conclusions and Future Directions

This paper presents a movement status recognition-based distance estimation method
to improve estimation accuracy. We divide the positioning traces into segments and
use an encoder–decoder-based deep learning model to determine the motion status of
each segment. Then, the distances of these segments are calculated by different distance
estimation methods based on their movement statuses.



Sensors 2022, 22, 346 14 of 15

Our method divides the raw trace into multiple segments containing an equal number
of positioning points. This number is set manually to ensure the divided segment is
homogeneous in its movement status characteristics. This may result in short segments
that have negative effects on classifying performance. We will study adaptive segmentation
methods with flexible time interval settings in future work. We will also consider integrating
segmentation and classification to further improve the accuracy.

Author Contributions: Conceptualization, Z.M. and K.S.; methodology, Z.M., W.Z. and K.S.; soft-
ware, Z.M. and W.Z.; validation, Z.M., W.Z. and K.S.; data curation, Z.M. and W.Z.; writing—original
draft preparation, Z.M.; writing—review and editing, K.S.; visualization, W.Z.; supervision, K.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Acknowledgments: We acknowledge the support and the use of the facilities and equipment pro-
vided by the Jiezhong Auto Co., Ltd, Wuhan, China.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, F.; Liu, J.; Yin, Y.; Wang, W.; Hu, D.; Chen, P.; Niu, Q. Survey on WiFi-based indoor positioning techniques. IET Commun.

2020, 14, 1372–1383. [CrossRef]
2. Spachos, P.; Plataniotis, K.N. BLE Beacons for Indoor Positioning at an Interactive IoT-Based Smart Museum. IEEE Syst. J. 2020,

14, 3483–3493. [CrossRef]
3. Alarifi, A.; Al-Salman, A.; Alsaleh, M.; Alnafessah, A.; Al-Hadhrami, S.; Al-Ammar, M.A.; Al-Khalifa, H.S. Ultra Wideband

Indoor Positioning Technologies: Analysis and Recent Advances. Sensors 2016, 16, 707. [CrossRef] [PubMed]
4. Qin, F.; Zuo, T.; Wang, X. CCpos: WiFi Fingerprint Indoor Positioning System Based on CDAE-CNN. Sensors 2021, 21, 1114.

[CrossRef]
5. Wang, X.; Wang, X.; Mao, S. Deep Convolutional Neural Networks for Indoor Localization with CSI Images. IEEE Trans. Netw.

Sci. Eng. 2020, 7, 316–327. [CrossRef]
6. Abbas, M.; Elhamshary, M.; Rizk, H.; Torki, M.; Youssef, M. WiDeep: WiFi-based Accurate and Robust Indoor Localization System

using Deep Learning. In Proceedings of the 2019 IEEE International Conference on Pervasive Computing and Communications
PerCom, Kyoto, Japan, 11–15 March 2019. [CrossRef]

7. Zabalegui, P.; de Miguel, G.; Goya, J.; Moya, I.; Mendizabal, J.; Adín, I. Residual based fault detection and exclusion methods
applied to Ultra-Wideband navigation. Measurement 2021, 179, 109350. [CrossRef]

8. Einicke, G. (Ed.) Smoothing, Filtering and Prediction: Estimating The Past, Present and Future; InTech: Rijeka, Croatia, 2012. [CrossRef]
9. Mooney, S.J.; Sheehan, D.M.; Zulaika, G.; Rundle, A.G.; McGill, K.; Behrooz, M.R.; Lovasi, G.S. Quantifying Distance Overestima-

tion from Global Positioning System in Urban Spaces. Am. J. Public Health 2016, 106, 651–653. [CrossRef] [PubMed]
10. Yin, Y.; Shah, R.R.; Wang, G.; Zimmermann, R. Feature-based Map Matching for Low-Sampling-Rate GPS Trajectories. ACM

Trans. Spat. Algorithms Syst. 2018, 4, 1–24. [CrossRef]
11. Dewhirst, O.P.; Evans, H.K.; Roskilly, K.; Harvey, R.J.; Hubel, T.Y.; Wilson, A.M. Improving the accuracy of estimates of animal

path and travel distance using GPS drift-corrected dead reckoning. Ecol. Evol. 2016, 6, 6210–6222. [CrossRef]
12. Tong, X.; Wan, Y.; Li, Q.; Tian, X.; Wang, X. CSI Fingerprinting Localization with Low Human Efforts. IEEE/ACM Trans.

Networking 2021, 29, 372–385. [CrossRef]
13. Zheng, Y.; Li, Q.; Chen, Y.; Xie, X.; Ma, W.-Y. Understanding mobility based on GPS data. In Proceedings of the 10th International

Conference on Ubiquitous Computing—UbiComp ’08, Seoul, Korea, 21–24 September 2008; p. 312. [CrossRef]
14. Brunsdon, C. Path estimation from GPS tracks. In Proceedings of the 9th International Conference on GeoComputation, National

Centre for Geocomputation, National University of Ireland, Maynooth, Ireland, 3–5 September 2007.
15. De Sousa, R.S.; Boukerche, A.; Loureiro, A.A.F. A Map Matching Based Framework to Reconstruct Vehicular Trajectories from

GPS Datasets. In Proceedings of the 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June
2020; pp. 1–6. [CrossRef]

16. Mizzi, C.; Fabbri, A.; Rambaldi, S.; Bertini, F.; Curti, N.; Sinigardi, S.; Luzi, R.; Venturi, G.; Davide, M.; Muratore, G.; et al.
Unraveling pedestrian mobility on a road network using ICTs data during great tourist events. EPJ Data Sci. 2018, 7, 44. [CrossRef]

http://doi.org/10.1049/iet-com.2019.1059
http://doi.org/10.1109/JSYST.2020.2969088
http://doi.org/10.3390/s16050707
http://www.ncbi.nlm.nih.gov/pubmed/27196906
http://doi.org/10.3390/s21041114
http://doi.org/10.1109/TNSE.2018.2871165
http://doi.org/10.1109/PERCOM.2019.8767421
http://doi.org/10.1016/j.measurement.2021.109350
http://doi.org/10.5772/2706
http://doi.org/10.2105/AJPH.2015.303036
http://www.ncbi.nlm.nih.gov/pubmed/26890178
http://doi.org/10.1145/3223049
http://doi.org/10.1002/ece3.2359
http://doi.org/10.1109/TNET.2020.3035210
http://doi.org/10.1145/1409635.1409677
http://doi.org/10.1109/ICC40277.2020.9148732
http://doi.org/10.1140/epjds/s13688-018-0168-2


Sensors 2022, 22, 346 15 of 15

17. Lopez, A.J.; Semanjski, I.; Gillis, D.; Ochoa, D.; Gautama, S. Travelled Distance Estimation for GPS-Based Round Trips Car-Sharing
Use Case. ToMS 2016, 5, 121–129. [CrossRef]

18. Prentow, T.; Thom, A.; Blunck, H.; Vahrenhold, J. Making Sense of Trajectory Data in Indoor Spaces. In Proceedings of the 2015
16th IEEE International Conference on Mobile Data Management, Pittsburgh, PA, USA, 15–18 June 2015; pp. 116–121. [CrossRef]

19. Torkamani, S.; Lohweg, V. Survey on time series motif discovery: Time series motif discovery. WIREs Data Mining Knowl. Discov.
2017, 7, e1199. [CrossRef]

20. Bian, J.; Tian, D.; Tang, Y.; Tao, D. Trajectory Data Classification: A Review. ACM Trans. Intell. Syst. Technol. 2019, 10, 1–34.
[CrossRef]

21. Zheng, Y. Trajectory Data Mining: An Overview. ACM Trans. Intell. Syst. Technol. 2015, 6, 1–41. [CrossRef]
22. Lee, J.-G.; Han, J.; Li, X.; Gonzalez, H. TraClass: Trajectory classification using hierarchical region-based and trajectory-based

clustering. Proc. VLDB Endow. 2008, 1, 1081–1094. [CrossRef]
23. Joo, R.; Bertrand, S.; Tam, J.; Fablet, R. Hidden Markov Models: The Best Models for Forager Movements? PLoS ONE 2013, 8,

e71246. [CrossRef]
24. Gao, Y.-J.; Li, C.; Chen, G.-C.; Chen, L.; Jiang, X.-T.; Chen, C. Efficient k-Nearest-Neighbor Search Algorithms for Historical

Moving Object Trajectories. J. Comput. Sci. Technol. 2007, 22, 232–244. [CrossRef]
25. Fawaz, H.I.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.-A. Deep learning for time series classification: A review. Data Min.

Knowl. Disc. 2019, 33, 917–963. [CrossRef]
26. Chen, W.; Shi, K. Multi-scale Attention Convolutional Neural Network for time series classification. Neural Netw. 2021, 136,

126–140. [CrossRef] [PubMed]
27. Liu, H.; Lee, I. End-to-end trajectory transportation mode classification using Bi-LSTM recurrent neural network. In Proceedings

of the 2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), Nanjing, China, 24–26
November 2017; pp. 1–5. [CrossRef]

28. Liu, H.; Wu, H.; Sun, W.; Lee, I. Spatio-Temporal GRU for Trajectory Classification. In Proceedings of the 2019 IEEE International
Conference on Data Mining (ICDM), Beijing, China, 8–11 November 2019; pp. 1228–1233. [CrossRef]

29. Dabiri, S.; Heaslip, K. Inferring transportation modes from GPS trajectories using a convolutional neural network. Transp. Res.
Part C Emerg. Technol. 2018, 86, 360–371. [CrossRef]

http://doi.org/10.7225/toms.v05.n02.003
http://doi.org/10.1109/MDM.2015.44
http://doi.org/10.1002/widm.1199
http://doi.org/10.1145/3330138
http://doi.org/10.1145/2743025
http://doi.org/10.14778/1453856.1453972
http://doi.org/10.1371/journal.pone.0071246
http://doi.org/10.1007/s11390-007-9030-x
http://doi.org/10.1007/s10618-019-00619-1
http://doi.org/10.1016/j.neunet.2021.01.001
http://www.ncbi.nlm.nih.gov/pubmed/33485098
http://doi.org/10.1109/ISKE.2017.8258799
http://doi.org/10.1109/ICDM.2019.00152
http://doi.org/10.1016/j.trc.2017.11.021

	Introduction 
	Related Work 
	Distance Estimation 
	Movement Status Recognition 

	Methodology 
	Overview 
	Deep Learning-Based Movement Status Recognition 
	Distance Estimation 

	Performance Evaluation 
	Setup 
	Movement Status Classification Performance 
	Metrics 
	Classifier Implementation and Training 
	Comparison with Other Classifying Methods 

	Impact of Trace Segment Size 
	Distance Estimation Results 
	Metrics 
	Comparison with Other Distance Estimating Methods 


	Conclusions and Future Directions 
	References

