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Abstract 

The instrumental variable method has been employed within economics to infer causality in the presence of 
unmeasured confounding. Emphasising the parallels to randomisation may increase understanding of the underlying 
assumptions within epidemiology. An instrument is a variable that predicts exposure, but conditional on exposure 
shows no independent association with the outcome. The random assignment in trials is an example of what would 
be expected to be an ideal instrument, but instruments can also be found in observational settings with a naturally 
varying phenomenon e.g. geographical variation, physical distance to facility or physician’s preference. The fourth 
identifying assumption has received less attention, but is essential for the generalisability of estimated effects. The 
instrument identifies the group of compliers in which exposure is pseudo-randomly assigned leading to exchange-
ability with regard to unmeasured confounders. Underlying assumptions can only partially be tested empirically and 
require subject-matter knowledge. Future studies employing instruments should carefully seek to validate all four 
assumptions, possibly drawing on parallels to randomisation.
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Background
Random assignment of exposure ensures that unmeas-
ured confounding can be regarded as random [1]. By 
design both measured and unmeasured confounders are 
expected to be equally distributed across assignment 
groups. This leads to exchangeability i.e. if the exposure 
status had been reversed, the final outcome measure 
comparing the two groups would not have changed [2, 3]. 
Non-compliance may invalidate analyses based on actual 
received treatment if related to the risk of outcome. 
Employing the random assignment as an instrument may 
estimate the causal average effect had everyone complied 
[4].

In observational studies, causal inference is chal-
lenged by the lack of random exposure assignment [5]. 
Self-selection occurs when patients select themselves 
for a specific exposure. This type of confounding has 
been investigated within the fields of oral contraceptives, 

postmenopausal hormone therapy, statins and influenza 
vaccines and termed “compliance bias” [6], “prevention 
bias” [7], “healthy adherer effect” [8] and “healthy user 
effect/bias” [9]. The effect of preventive interventions on 
health outcomes may be overestimated, because those 
who choose to participate in general are healthier than 
non-participants. Confounding by indication occurs 
when physicians or other health professionals select 
patients for a specific exposure [10, 11]. Confounding by 
indication leads to an underestimation of the treatment 
effect when physicians reserve treatment for the frailest 
patients and an overestimation when physicians choose 
the healthiest patient for treatment [12]. Healthy user 
bias and confounding by indication are intractable biases 
that are difficult to rule out even after exhaustive con-
trol for prognostic [13], social and personal factors [6]. If 
a suitable instrument can be identified, the causal aver-
age effect among compliers may be estimated even in the 
presence of unmeasured confounding.

Within economics, the instrumental variable method 
has been commonly employed to estimate causal 
effects in the presence of unmeasured confounding 
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[14]. Instruments were originally conceptualised as 
exogenous variables in structural equation models and 
assumptions related to the disturbances. For epidemiolo-
gists, the instrumental variable method and underlying 
assumptions may be easier conceptualised by emphasis-
ing the parallels to randomisation. The objective of this 
paper is to review the instrumental variable assumptions 
and potential validation using directed acyclic graphs 
and introduce the two-stage instrumental regression 
technique.

Three basic assumptions
An instrument is defined as a variable that predicts the 
exposure, but conditional on exposure shows no inde-
pendent association with the outcome. The instrument 
affects the outcome solely through the effect on exposure. 
The random assignment in a trial is an example of an 
ideal instrument, but a naturally occurring phenomenon 
may also be found in observational settings that meet the 
required assumptions. The underlying assumptions have 
been slightly differently characterised in the literature [4, 
12, 14–20], but three general assumptions can be identi-
fied. Figure 1 depicts a randomised controlled trial with 
an assignment indicator Z, exposure X and outcome Y 
that share common causes U, which represents unmeas-
ured factors that bias the association X → Y. The variable 
Z is an instrument because it meets the following three 
assumptions:

1.	 The relevance assumption: The instrument Z has a 
causal effect on X.

2.	 The exclusion restriction: Z affects the outcome Y 
only through X.

3.	 The exchangeability assumption: Z does not share 
common causes with the outcome Y [19]. This 
assumption has also been termed the independence 
assumption [15, 18], ignorable treatment assignment 
[14], or described as no confounding for the effect of Z 
on Y [16].

The relevance assumption is self-evident in a ran-
domised controlled trial, where the assignment ideally 
determines exposure. Although assignment and treat-
ment will not be perfectly correlated due to non-com-
pliance, Z will certainly be predictive of X. The exclusion 

restriction is satisfied by effective double-blindness, 
which means that neither health professionals nor par-
ticipants know the assignment [16]. Therefore, Z cannot 
have a direct impact on Y. Moreover, the exchangeability 
assumption is trivially satisfied because randomisation 
is expected to lead to equally distributed confounders 
across assignment groups [14].

An unbiased estimate of the average effect X  →  Y 
can be estimated from the average effects of Z → Y and 
Z → X [4]. The usual instrumental variable estimand for 
a dichotomous treatment is the ratio:

For a continuous treatment the instrumental variable 
estimand is the ratio:

Intuitively, the numerator corresponds to the inten-
tion-to-treat effect of the causal effect of assignment on 
outcome [16, 19]. The denominator is a measure of com-
pliance with the assigned exposure. When non-compli-
ance increases, the denominator shrinks and inflates the 
diluted intention-to-treat estimate in order to estimate 
the causal effect had everyone complied. Applying instru-
mental variable methods within randomised control tri-
als can take account of non-compliance, see for example 
[21, 22].

Instrumental variable methods may be extended to 
observational studies if the relevance assumption is 
slightly changed to a more general version: The instru-
ment Z and exposure X are associated either because Z 
has a causal effect on X, or because X and Z share a com-
mon cause [16]. In the latter instance the unmeasured 
causal instrument U* is the common cause of the meas-
ured surrogate or proxy instrument Z and the exposure 
X, see Fig. 2.

In the literature many different types of proposed 
instruments in observational studies can be identified 
such as genetic factors known as Mendelian randomi-
sation, access to treatment based on geographic vari-
ation or physical distance to a facility, and preference 

E[Y |Z = 1]− E[Y |Z = 0]

E[X |Z = 1]− E[X |Z = 0]

Cov(Y ,Z)

Cov(X ,Z)

Z X Y 

U 

Fig. 1  A randomised controlled trial with instrument Z, exposure X, 
outcome Y and unmeasured factors U

U* X Y

U

Z
Fig. 2  An observational study with proxy instrument Z, unmeasured 
instrument U*, exposure X, outcome Y and unmeasured factors U
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for treatment based on facility or physician treatment 
variation [18, 19]. Some authors encourage the exploita-
tion of natural variation [15], while others caution that 
the challenge of identifying a valid instrument is not 
trivial [16, 17]. Martens and colleagues establish a hier-
archy of instruments [17], where the most valid obser-
vational instrument is a variable that is controlled by 
the researcher e.g. a randomised encouragement to stop 
smoking. Secondly, some examples of natural randomisa-
tion processes can be found e.g. Mendelian randomisa-
tion, where alleles are allocated at random in offspring. 
When neither an active randomisation nor a natural 
randomisation exists, the third opportunity is to select a 
source of natural variation as an instrument and carefully 
justify that the assumptions are satisfied. Often natural 
variation only gives rise to a weak association between 
instrument and exposure. As the degree of valid ran-
domisation weakens, the need for careful scrutiny of the 
exchangeability assumption increases. In addition, the 
exclusion restriction must be carefully considered in the 
absence of blinding [17].

The three basic assumptions allow for identification of 
an upper and lower bound of the causal effect [4, 15, 16, 
23]. Unfortunately, these bounds will typically be wide 
and even compatible with both a preventive effect, a 
causative effect or no effect at all [19]. The wide bounds 
underscores the uncertainty related to estimating the 
causal effect. Moreover, they show how much “informa-
tion” that needs to be provided by a fourth assumption in 
order to obtain a point estimate [24].

The fourth identifying assumption
The fourth identifying assumption is related to effect 
homogeneity [16, 19]. In clinical settings effects of expo-
sure are often heterogeneous e.g. statins are more effec-
tive among patients with high levels of cholesterol than 
patients with low levels. Examples of homogeneous expo-
sure effects are rare though the effect of appendectomies 
has been suggested as a case [12]. In the most extreme 
version of the homogeneity assumption, the effect of 
exposure X on outcome Y should be constant across indi-
viduals, which is biologically implausible. A weaker, more 
plausible assumption is that of no effect modification by 
Z on the X–Y causal effect in subpopulations of exposed 
and unexposed [19]. In other words, among the exposed 
the causal effect is unrelated to the instrument and like-
wise among the unexposed the causal effect is unrelated 
to the instrument. This assumption is not naturally intui-
tive, but it can be shown that additive effect modification 
by unmeasured confounders for the X–Y effect is suffi-
cient to ensure that the assumption does not hold [19]. In 
practice, some of the unmeasured confounders will most 
likely be effect modifiers.

However, an alternative assumption that does not 
require effect homogeneity has been put forward. This 
is the assumption of monotonicity or no defiers [19, 25]. 
It comes at the expense of limiting the generalisability of 
the causal effect estimate. Imagine a simple situation with 
a dichotomous instrument and a dichotomous exposure. 
If we assume that we are capable of observing the value of 
the exposure under both the actual assignment and the 
counterfactual assignment, we can identify four different 
subgroups, see Table 1 [14]. In reality, only the exposure 
under the actual assignment is observed, and therefore 
we cannot distinguish between these subgroups in real 
life.

Never takers are the individuals that—regardless of 
which group they are assigned to—never would be 
exposed. Likewise, the always takers are the individu-
als that—regardless of assignment—always would be 
exposed. The compliers are the individuals whose expo-
sure follows the assignment. The compliers are also 
referred to as the marginal [12] or co-operative [4] sub-
jects. Within this subgroup the instrument is expected 
to achieve exchangeability. Exposure is able to follow 
assignment, because prognostic factors are not that 
weak or strong that the patient would either never get 
the treatment or always get the treatment. Instead treat-
ment depends on the instrument i.e. a controlled or 
naturally occurring randomly varying phenomenon. For 
example, a new treatment that is only available at one 
central facility might show better outcomes for severe 
cases as compared to the traditional treatment available 
at smaller decentralised facilities. Mild cases would never 
be referred to the central facility, whereas severe cases 
would always be referred. Cases that are neither mild 
nor severe might be referred depending on their physi-
cal distance to the central facility. This means that when 
comparing two patients with similar prognostic factors, 
where one lives nearby and the other far away, the first 
might get referred to the central facility and the latter 
not. Had the first one lived far away and the other nearby, 
their exposure status would have been reversed. In this 
way, the instrument pseudo-randomly assigns treatment 
across exchangeable groups. Finally, the group of defiers 
is the individuals whose exposure is the opposite of their 

Table 1  Four subgroups defined in terms of counterfactu-
als by combinations of assignment and exposure

Z = 0

X = 0 X = 1

Z = 1

 X = 0 Never takers Defiers

 X = 1 Compliers Always takers
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assignment. In the previous example this means that a 
patient living nearby the central facility would in fact get 
referred to a decentralised facility and had this patient 
contrary to fact lived far away, the patient would have 
been referred to the central facility. This group is crucial 
for the fourth identifying assumption, which states that 
there are no defiers [25].

Four simple plots in Fig.  3 clarify the connection 
between the naming of the monotonicity assumption 
and the concept of no defiers [19]. Always takers and 
never takers have a constant value of exposure regard-
less of assignment that is a zero causal effect of Z on X. 
If no defiers exist, then the only subpopulation in which 
Z can affect X is the compliers. This is illustrated by the 
monotonically increasing graph in the third plot. If no 
defiers exist, the effect of Z on Y will only stem from the 
group of compliers. Therefore the instrumental vari-
able estimand will inflate the average causal effect to the 
causal effect had everyone in the population been com-
pliers [15]. This effect estimate is termed the local aver-
age treatment effect (LATE) [14, 19, 24]. The relevance 
of this effect estimate has been questioned, since the 
group of compliers cannot be identified, and therefore it 
is difficult to convert the effect estimate to an estimate of 
practical relevance for decision makers [26]. The group of 
compliers as well as the effect estimate will vary from one 
study to another depending on the proposed instrument 
[12]. However, strong implausible assumptions of effect 
homogeneity are needed to estimate the average treat-
ment effect in the population (ATE) [24].

Validation of assumptions
The relevance assumption of a Z–X association is empiri-
cally verifiable and comprise the first step in the most 
common instrumental estimation technique: the two-
stage least squares estimator [14–16, 19]. The first stage 

predicts the expected value of exposure based on the 
instrument. The association is evaluated using F-statistics, 
r2 or the risk difference. As a rule of thumb the instrument 
is declared weak if the F-statistic is less than 10 [19]. Weak 
instruments will result in wide confidence intervals. The 
exclusion restriction cannot be verified from the data [16, 
19]. Instead subject-matter knowledge must be applied to 
rule out the possibility of any direct effect of the instru-
ment on exposure, see Fig.  4. In randomised controlled 
trials effective double blinding ensures this. In observa-
tional studies using physician’s preference as an instru-
ment, this assumption would be violated if the physician 
prescribes other drugs in combination with their pre-
ferred treatment e.g. nausea-relieving medication in com-
bination with chemotherapy in a study evaluating side 
effects in different treatment regimens.

The exchangeability assumption is partially verifiable 
in data using measured covariates [15, 19]. A tabulation 
of the distribution of measured confounders across levels 
of the proposed instrument will reveal potential unbal-
ances. However, confounding from unmeasured covari-
ates cannot be ruled out. Figure  5 shows that bias may 
arise if U has a direct effect on Z. In controlled trials, 
randomisation ensures that confounders are expected 
to be equally distributed across assignment groups, but 
in observational studies special attention must be paid 
to proposed instruments, especially studies based on 

Fig. 3  Effect of instrument Z on exposure X in four subgroups

U* X Y

U

Z
Fig. 4  Graphical representation of exclusion restriction
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natural variation. In studies based on physical distance, 
another factor such as socioeconomic status that affects 
both treatment and outcome, may also affect distance 
to central facility. In preference-based studies, a cluster-
ing of high-risk patients may occur around physicians 
with a specific preference if patients at higher risk “doc-
tor shop” by seeking out physicians depending on their 
preference [15]. Obviously, this self-assignment will vio-
late the randomness of the instrument and create a spu-
rious association. Although the exclusion restriction and 
exchangeability assumption cannot be verified from the 
data, different approaches to falsifying invalid instru-
ments have been proposed [20, 27].

The fourth assumption of monotonicity or no defiers is 
ruled out by design in randomised controlled trials, because 
blinding removes the possibility of defiance [15]. In obser-
vational studies, validation requires subject-matter knowl-
edge and is difficult to test empirically [12, 19]. When using 
physician’s preference as an instrument, complex decision 
processes with multiple factors may violate the monotonic-
ity assumption [25]. A preference-based instrumental anal-
ysis may be supplemented with a survey of treatment plans 
and preferences among physicians in order to empirically 
assess the monotonicity assumption [25].

Any violations of the exclusion and exchangeability 
assumption will result in a biased estimate. However, a 
weak instrument will have a multiplicative effect on the 
bias in the numerator, since this is inflated by the small 
denominator [16, 17]. This may result in an instrumental 
variable estimate that is even more biased than the con-
ventional estimate based on actual exposure. Therefore, 
careful consideration of possible violations is required.

An intuitive introduction to estimation
The most common instrumental estimation technique is 
the two-stage least squares estimator [15, 19]. The first 
stage predicts the expected value of exposure based on 
the instrument in a linear model:

The second stage then predicts the outcome as a func-
tion of the predicted exposure from the first stage:

The parameter β1 is equivalent to the instrumental 
variable estimator. Any measured covariates to predict 
the exposure may be added in the first stage and again in 
the second stage. Conditioning on these covariates will 
relax the assumption of marginal exchangeability to an 
assumption of conditional exchangeability based on the 
covariates [15].

To intuitively understand the estimation process, con-
ventional and instrumental linear regression are pre-
sented visually in Fig.  6 based on hypothetical data. 
Normally, in a conventional regression the observed 
values of exposure constitute the independent variable 
that predicts the dependent variable. In the instrumen-
tal regression, the first stage shows the linear prediction 
of the exposure based on the instrument. In the second 
stage the predicted values from the above fitted line are 
employed as the independent variable instead of the 
observed values. The actual exposure has been replaced 
by the predicted exposure. The instrumental regression 
line based on predicted values shows a steeper slope than 
the dotted line of conventional regression that may have 
been affected by unmeasured confounding. The basic 
idea is that the predicted values are unaffected by the 
common unmeasured causes that confound the X →  Y 
relation.

Conclusions
Three basic assumptions for the instrumental variable 
method have been characterised in the literature, but 
the fourth identifying assumption of monotonicity has 

E[X |Z] = α0 + α1Z

E[Y |Z] = β0 + β1E[X |Z]

U* X Y

U

Z
Fig. 5  Graphical representation of exchangeability assumption
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received less attention. Future studies employing instru-
ments should carefully seek to validate all four assump-
tions, possibly drawing on parallels to randomisation.
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