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a b s t r a c t

Transporters are the main determinant for pharmacokinetics characteristics of drugs, such as absorption, 
distribution, and excretion of drugs in humans. However, it is difficult to perform drug transporter vali-
dation and structure analysis of membrane transporter proteins by experimental methods. Many studies 
have demonstrated that knowledge graphs (KG) could effectively excavate potential association information 
between different entities. To improve the effectiveness of drug discovery, a transporter-related KG was 
constructed in this study. Meanwhile, a predictive frame (AutoInt_KG) and a generative frame (MolGPT_KG) 
were established based on the heterogeneity information obtained from the transporter-related KG by the 
RESCAL model. Natural product Luteolin with known transporters was selected to verify the reliability of the 
AutoInt_KG frame, its ROC-AUC (1:1), ROC-AUC (1:10), PR-AUC (1:1), PR-AUC (1:10) are 0.91, 0.94, 0.91 and 
0.78, respectively. Subsequently, the MolGPT_KG frame was constructed to implement efficient drug design 
based on transporter structure. The evaluation results showed that the MolGPT_KG could generate novel 
and valid molecules and that these molecules were further confirmed by molecular docking analysis. The 
docking results showed that they could bind to important amino acids at the active site of the target 
transporter. Our findings will provide rich information resources and guidance for the further development 
of the transporter-related drugs.

© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Drug development is a long and complex process, and each 
successful drug undergoes an initial screening of over 100,000 
candidate compounds and hundreds of preclinical animal experi-
ments at an average cost of $2.8 billion [1]. Even so, 90 % of lead 
compounds fail in Phase II clinical trials, and drug pharmacokinetics 
(PK) is mainly responsible for failure [2,3]. The study of drug PK 
could improve the selection efficiency of candidate compounds to 
save time and money consumed by drug clinical trials [4,5]. There-
fore, drug PK research has always been an important direction in 
drug development. There are many in vitro and in vivo methods 
currently available to study PK. However, it is complex and ex-
pensive to perform PK experiments based on a large number of 
compounds.

To reduce failure probability in clinical trials caused by PK, many 
absorption, distribution, metabolism, and excretion-toxicity 
(ADMET) predictive models were established to improve the effec-
tiveness of drug design. Daina et al. (2017）have developed an 
ADMET predictive model using support vector machines (SVM) and 
Bayesian methods based on the physical and chemical properties of 
compounds, descriptors, and drug similarity [6]. Cheng et al. (2012） 
have developed admetSAR 2.0, a web predictive server with 47 
predictive models including molecular fingerprints and random 
forest (RF), SVM, and K-nearest neighbor (KNN) based on different 
datasets [7]. Schyman et al. have developed a web server vNN con-
taining 15 ADMET predictive models, which can rapidly assess the 
cytotoxicity, mutagenicity, cardiotoxicity, and other important 
properties of drug candidates [8]. Minnich et al. have developed an 
open-source software pipeline ATOM Modeling PipeLine (AMPL), 
which can predict key safety and pharmacokinetic-relevant para-
meters by different machine learning models [9]. Wei et al. (2022） 
have developed a web server Interpretable-ADMET with 90 quali-
tative classification models and 28 graph-based quantitative re-
gression models to predict ADMET, which also provides interpretive 
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models based on gradient-weighted class activation map for iden-
tifying the substructures which are important to specific properties 
[10]. However, most of these methods mainly rely on drug molecule 
structural information, and the influence of biomacromolecules such 
as transporter are not taken into consideration. Some drugs that do 
not strictly meet the ADMET threshold criteria are also approved by 
the food and drug administration (FDA). To improve the accuracy of 
PK study of candidate compounds, more related information should 
be considered.

Transporters are the main determinant for PK, safety, and efficacy 
of drugs [11]. Most of transporters are membrane proteins which can 
transport drugs and other molecules, such as the P-glycoprotein (P- 
gp) family, the Multidrug Resistance-associated Protein (MRP) fa-
mily, the Breast Cancer Resistance Protein (BCRP) family, the Organic 
Anion Transporter (OAT) family, the Organic Anion-transporting 
Polypeptide (OATP) family and the Solute Carrier Family (SLC) family. 
The P-gp family is a membrane protein transporter that can use ATP 
hydrolysis to transport drugs. It mainly exists in the intestine, liver, 
kidney, brain and vascular endothelial, and can transport a variety of 
drugs, including anticancer drugs, antiviral drugs, antibiotics, an-
algesics and antiarrhythmic drugs. The MRP family mainly exists in 
liver, intestine, kidney, lung, heart, and central nervous system. It 
participates in the transport of antineoplastic drugs, antibacterial 
drugs and antifungal drugs. The BCRP family (also known as ABCG2) 
is a gut-liver cell-expressed ATP-binding glucose transporter that 
transports anticancer drugs, antibiotics, NSAIDs, antimicrobials, li-
posome-delivered drugs. The OAT family is a particularly important 
class of transporter that can transport a variety of organic anions, 
including drugs, hormones, amino acids, and uric acid. The OATP 
family transports organic anion drugs, such as antibacterial drugs, 
monocyte antigens, anticoagulants and non-steroidal anti-in-
flammatory drugs. The SLC transport drug by regulating membrane 
permeability, including activity transport and energy transport. It 
can transport a variety of drugs, including antibiotics, antiviral drugs, 
anti-inflammatory drugs, antineoplastic drugs, analgesics, neuro-
leptic drugs, antibacterial drugs, antiallergic drugs, and anti-
spasmodic drugs. Transporters also influence pharmacokinetics 
characteristics such as absorption, distribution, and excretion of 
drugs in humans. For example, URAT1 is responsible for the re-
absorption of uric acid in the kidney, while OCT1 and MDR1 are 
involved in the hepatic uptake and efflux of a wide range of drugs. 
There are also transporters that assist drugs in passing the blood- 
brain barrier, such as the glucose transporter 1, the fatty acid 
transport protein (FATP) family and amino acid transporter protein 
(LAT). The drugs can be transported to brain throughout the blood-
stream by specific binding with transporters. The drug off-target 
effects, the toxicity of drugs, or drug-drug interactions are mainly 
caused by drug accumulation in non-target tissues, thus resulting in 
failure to reach target tissues. However, it is difficult to perform drug 
transporter validation and its structure analysis by experimental 
methods. Therefore, it is urgent to explore effective method for 
transporter prediction and drug design based only on transporter 
sequences.

With the development of technology, artificial intelligence (AI) 
and big data have been used for different stages of drug discovery. 
Traditional graph and network methods for integrating biomedical 
data contain only one relationship, while knowledge graphs can 
integrate multiple heterogeneous information, such as multiple en-
tities (proteins, targets, drugs, and genes, etc.) and relationships 
(protein-protein interactions, drug-drug interactions, drug-target 
interactions, etc.). At present, many studies have demonstrated the 
ability of knowledge graphs to obtain potential association in-
formation between different entities [12–15]. So, the potential as-
sociation information between transporters and drugs could be 
explored by knowledge graphs. In this study, the AutoInt_KG and 
MolGPT_KG frame were constructed by KG-embedding features and 

structure features, as shown in Fig. 1. The AutoInt_KG frame was 
trained with the structural node features and sequence features of 
the transporter and the drug in the knowledge graph firstly. And the 
transporter that may interact with the drug was predicted by the 
AutoInt [16] model with a self-attention fusion mechanism. The 
performance evaluation of the model and case validation of natural 
products indicated that the AutoInt_KG frame could effectively 
predict the potential transporters of small molecular. In the 
MolGPT_KG frame, the drug SEFLES sequences [17] are encoded as 
vectors via one-hot encoding, and then the KG embedding features 
and sequence features of the transporter are used as conditions to 
train the MolGPT model [18] to generate drug-like small molecules 
with specific transporters. Finally, the docking analysis of the three 
selected drug transporters between the small molecules generated 
by MolGPT_KG show that the MolGPT_KG frame could effectively 
generate novel and valid small molecules which could bind to im-
portant active sites of the transporters.

2. Materials and methods

2.1. Knowledge graph construction

The data used in this study were obtained from Variability of 
Drug Transporter Database (VARIDT) [19], disease-drug data from 
the Comparative Toxicogenomics Database (CTD) [20], drug side 
effects data from the Side Effect Resource (SIDER) [21], and drug- 
drug interaction data from the Drug-Drug Interaction Database 
(DDInter) [22]. And the details information of the data sources is 
presented in Supplementary Table S1. The VARIDT database contains 
the approved or clinical transporter drug data, epigenetic regulatory 
data, genetic polymorphism data, and data of exogenous factors 
regulating drug transporter activity. The smallest unit of the 
knowledge graph is RDF triple[23]. A total of 423 transporters-gene 
triples, 1897 transporters-drug triples, 73 transporters-endogenic 
factors triples, 2547 drug-gene triples, 7174 epigenetic regulators- 
gene triples, 3467 gene-diseases triples, 619 genetic polymorph-
isms-diseases triples, and 1432 diseases-drug triples were selected 
from the VARIDT database. Totally, 266345 disease-drug triples were 
selected from the CTD database. A total of 149614 drug-side effect 
triples were screened from SIDER, a database providing drug side 
effect data. Totally, 94508 drug-drug interaction triples were se-
lected from the DDInter database, as shown in Table 1. Then, all 
drugs are uniformly mapped to PubChem ID, and all proteins col-
lected from different databases are uniformly mapped to Uniprot ID. 
The knowledge graph constructed in this study contained a total of 
20137 nodes and 527888 edges, and all the data were stored in triple 
format.

2.2. Knowledge graph embedding

In this study, the knowledge graph embedding was performed 
based on a bilinear model RESCAL [24]. This RESCAL model can map 
entities to vectors and characterize each relationship in KG by es-
tablishing relationship matrix based on the interaction of entity 
pairs to catch the potential feature vectors of the knowledge graph. 
This model exhibits multiple advantages. First, it uses collective 
learning to learn relationship representation. Since the tensor of the 
entity and the relationship tends to be sparse, the model captures 
the information of the knowledge graph by a binary decomposition 
method. Specifically, Xk was expressed as follows.

= …X AR A fork m, 1, ,k k (1) 

Where A denotes the potential weight of an entity; Rk is an asym-
metric ×r r squared matrix, and this matrix can simulate the in-
teraction between the k tensor components in X . The RESCAL score 
is calculated by a bilinear scoring function:
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Where h indicates head entity; t denotes tail entity; and 
Mr represents relational matrix.

2.3. Construction workflow of predictive AutoInt_KG frame

The construction of transporter predictive frame of AutoInt_KG 
mainly includes three steps: (1) training data preparation, (2) data 
preprocessing, and (3) predictive model construction.

At step 1 training data preparation, a total of 1897 transporter- 
drug interaction data verified by experiment were collected from 
VARIDT databases and used as positive samples. Subsequently, the 
tail entities in the triples were randomly replaced by a drug with no 
clear relationship between transporter, and the treated triples were 
used as negative samples. To investigate the influence of unbalanced 
data on the model performance, two types of datasets were con-
structed with the ratio of positive/negative samples of 1: 1 and that 
of 1: 10, respectively. Ten sample datasets were constructed with 
each dataset randomly divided into training and test sets at the ratio 
of 7: 3 for 10-fold cross-validation.

At step 2 data preprocessing, the heterogeneity information of 
KG was obtained by the KG embedding method. The high noise of 
biological data adversely affects the predictive ability of the model. 
To solve this problem, the sequence characteristics of drug and 
transporter were added to the model input features. The drug 
features were represented by molecular fingerprint descriptor (the 
representation of structural features of a molecule) based on 
Morgan algorithm [25]. In order to convert the transporter se-
quence into matrix, the transporter sequence features were re-
presented by CTD descriptor calculated by PyBioMed tool with 
default parameters [26]. To further solve the problems of data 
noise and sparseness, the dimension of drug features and trans-
porter sequence features were reduced to 400 via principal com-
ponent analysis (PCA). Then, the reduced KG embedding features 
and structure features would be concatenated as input features of 
the AutoInt_KG.

Table 1 
The summarized of the triples in the KG. 

Triple Number

Transporters-gene 423
Transporters-drug 1897
Transporters-endogenic factors 73
Drug-gene 2547
Epigenetic regulators-gene 7174
Gene-diseases 3467
Genetic polymorphisms-diseases 619
Disease-drug 266777
Drug-side effect 149614
Drug-drug interaction 94508

Fig. 1. Workflow diagram of this study. This workflow mainly include two part：AutoInt_KG frame and MolGPT_KG frame. The AutoIn_KG is used to predict the potential 
transporter of the small molecule. The MolGPT_KG is used to generate novel and valid molecules with the specific transporter.
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At step 3 predictive model construction, four models were con-
structed and compared in this study, including three commonly used 
classification models of machine learning, namely, logistic regres-
sion (LR) [27], SVM [28], and RF [29], and one deep neural network 
model AutoInt [16]. Among them, the AutoInt model simulates the 
interaction between different features by adding interaction layers 
to the neural network where each feature can interact with all other 
features, and the interaction layer based on the multi-headed self- 
attention mechanism is the core of AutoInt. This interaction layer 
can automatically identify relevant features to generate meaningful 
higher-order features through the multi-attention mechanism. For 
the mth embedding em, the standard residual connection is in-
troduced as the output em

Res.

= +e Relu e W e W( * ), *m
Res

m Res m Res
H dd (3) 

Where em indicates the embedding vector of query m; and em de-
notes the embedding vector after attention head treatment.

The final prediction results are output by sigmoid function ( ):

= … +y w e e e b wˆ ( ( ) ),T Res Res
M
Res HM

1 2
d (4) 

AutoInt_KG was evaluated by ROC-AUC and PR-AUC. The ROC- 
AUC was calculated by selecting a threshold within the [0,1] range to 
connect the corresponding true positive rate (TPR) and false positive 
rate (FPR). This metric commonly used to evaluate the performance 
of classification models, with a value between [0,1]. The closer the 
value to 1, the better the model’s performance. However, the ROC- 
AUC focus on both positive samples and negative samples, which is 
not a good evaluation index in the unbalanced datasets. PR-AUC was 
calculated by the precision and recall metric which measure the 
ability of a model to predict positive samples correctly, and thus the 
PR-AUC fluctuated more dramatically than ROC-AUC when the po-
sitive and negative samples were unbalanced. According to the da-
taset we constructed in step 1 above, the number of negative 
samples is far greater than the number of positive samples (the 
number of known transporter-drug interaction pairs is too small). In 
order to evaluate the impact of unbalanced samples on model per-
formance, the PR-AUC was used to measure the performance of the 
model when datasets were unbalanced.

2.4. Construction workflow of generative MolGPT_KG frame

2.4.1. Construction of MolGPT_KG frame
To generate target transporter-specific small molecules, a gen-

erative frame MolGPT_KG was constructed based on the transporter 
sequence features and heterogeneous information of KG in this 
study. To construct the generative model, small molecule datasets 
and transporter data were preprocessed as follows. Firstly, 877 drug- 
transporter triples verified by experiment were selected and used to 
train the generative model in this study. To expand the small mo-
lecule training dataset and to ensure the diversity and drug-likeness 
of molecules in the datasets, the similar small molecules with a 
Tanimoto coefficient (the metric of the similarity between mole-
cules) > 0.8 based on Morgan fingerprint were screened from the 
ChEMBL database [30,31]. Totally, 7838 small molecules were ob-
tained and used for subsequent analysis. To evaluate the small mo-
lecules obtained by similarity search, the distribution of molecular 
weight (MW), hydrogen bond acceptor number (NumHAcceptors), 
hydrogen bond donor number (NumHDonors), rotatable bond 
number (NumRotatableBonds), topological polar surface area (TPSA) 
and LogP of the 7838 small molecule compounds and the 877 drug 
small molecules were analyzed and compared. To improve the va-
lidity of the generated molecules, a new molecular string re-
presentation SELFIES(The representation process of selfies is shown 
in Supplementary Fig. S2.) was used to train the generative model 

[17]. SELFIES used Chomskytype-2-based grammar to represent 
molecules so as to avoid potential invalidity molecular strings pro-
blems and improve the validity of the molecule generation with the 
valence of molecules considered. The transporter sequences were 
preprocessed with the features of each transporter represented by 
CTD descriptors, which was consistent with transporter sequences 
preprocessing in the AutoInt_KG.

Subsequently, the generative MolGPT_KG frame was built based 
on the MolGPT model proposed by Bagal et al. [32]. The MolGPT 
model was trained to generate molecules with particular scaffolds 
and molecular properties. The model was composed of stacked de-
coder blocks with each decoder block consisting of a masked self- 
attention layer and a fully connected layer. During the training 
phase, all molecular tokens were mapped into a vector of 256 di-
mension through the embedded layer, and the position tokens and 
the segment tokens were also mapped into the vector of 256 di-
mension through the separate fully connected linear layer. The 
segment tokens were used to distinguish condition tokens from 
molecular tokens. Finally, the molecular token embedding, position 
token embedding, and segment token embedding were con-
catenated as the input features to train the generative MolGPT_KG 
frame. In the MolGPT_KG frame, the molecular optimization condi-
tions were converted into transporter sequence features based on 
the model architecture of the MolGPT. Therefore, the function of 
MolGPT_KG was to optimize molecules so as to generate transporter- 
specific molecules.

To verify whether the KG embedding information could improve 
the performance of the generative model, two types of input features 
were used to train the generative model. One type was only based on 
the transporter sequence feature, and the other type was based on 
the sequence feature and the KG embedding feature of the trans-
porter. In addition, three known transporter targets were selected 
for further evaluation, including type 1 glucosamine transporter 
(PDBID: 5EQG), type L amino acid transporter (PDBID: 6JMQ), and p- 
glycoprotein 1 (PDBID: 7A69), and their corresponding ligand mo-
lecules were (2∼{S})-3-(4-fluorophenyl)-2-[2-(3-hydroxyphenyl) 
ethanoylamino]-∼{N}-[(1∼{S})-1-phenylethyl] propenamide (5RE), 
cholesterol (CLR), and vincristine, respectively. Finally, MolGPT_KG 
generated 5000 molecules for each transporter target based on two 
different input features.

2.4.2. Evaluation metrics of molecules generated by MolGPT_KG
The performance of the MolGPT_KG was evaluated by the fol-

lowing metrics: 

• Validity: It refers to the percentage of valid molecules in all the 
generated molecules. The RDkit and selfies tools are used to 
verify whether the generated SELFIES string can be successfully 
loaded [33]. This validity metric is mainly to assess how well the 
model learned the SELFIES grammar and the valency of atoms.

• Uniqueness: It refers to the percentage of the unique molecule 
(without repetition) in the generated valid molecule. This metric 
is to evaluate how well the model learned the molecular struc-
ture distribution.

• Novelty: It indicates the percentage of the generated valid and 
unique molecules that are not in the training set. Low novelty is a 
sign of overfitting.

• Internal Diversity: This metric indicates the diversity of the 
generated molecules. The mean value of Tanimoto coefficients is 
used to measure the similarity between molecules.

=D v S
s

T s si ( ) 1
1

| |
( 1, 2)

s s S

p
2

,1 2 (5) 
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Where s s( 1, 2) is all pairs of molecules in a molecular set S; T is 
absolute value; and p is power.

• Scaffold diversity: It refers to the percentage of the unique scaf-
folds in the generated molecules.

• QED: This metric quantifies drug-likeness by the main molecular 
properties. This metric value is between 0 and 1. The closer the 
value to 1, the higher the drug-likeness [34].

• SAScore: Simple rule-based design is used to quickly assess the 
ease of synthesis of compounds, and 6.0 is set as threshold as 
previously reported [35]. SAScore is calculated according to the 
following formula.

=SA score fragment Score complex Penalty (6) 

Where fragment Score is calculated by the frequency of ECCFP4 fin-
gerprints. complex Penalty is calculated based on such elements as 
ring structure, large ring, and molecular weight. The SAScore ranges 
from 1 to 10.

To further evaluate the validity of the generated molecules, 
molecular docking analysis was performed by MOE software to re-
veal the relationship between generated molecules and their cor-
responding transporter targets. Docking scores and the important 
amino acid binding sites were analyzed.

3. Results

3.1. Construction and validation of the AutoInt_KG

3.1.1. Construction of the AutoInt_KG
In this study, 8 models were built based on two types of datasets 

(1: 1 positive/negative sample ratio for balanced dataset, and 1: 10 
for unbalanced dataset). The choice of positive and negative ratios 
was based on previous work [12]. The ROC-AUC and PR-AUC were 
used for evaluating model performance. The ablation experiment 
was performed to determine whether the KG embedding informa-
tion could improve the performance of AutoInt_KG.

To compare the performance of different models based on the 
balanced and the unbalanced datasets, ROC-AUC and PR-AUC of 
each model were displayed in Fig. 2 in the form of boxplots. Based 
on the balanced datasets, the AutoInt_KG performed best in terms 
of both ROC-AUC (0.911) and PR-AUC (0.914). This result shows 

that the transporter prediction model constructed with the 
knowledge graph embedding feature possess good performance. 
Based on the unbalanced datasets, AutoInt_KG also performed best 
in terms of ROC-AUC (0.938) and PR-AUC (0.777). These results 
showed that no matter in the balanced datasets or the unbalanced 
datasets, the performance of the AutoInt model with KG 
embedding features was better than that of the models without KG 
embedding features. However, compared with that in the 
balanced dataset, the PR_AUC in unbalanced dataset showed a 
downward trend, indicating that the unbalance of the datasets had 
influence on the performance of predictive model. The above re-
sults suggested that the AutoInt model with KG embedding also 
could maintain a certain stability in the unbalanced datasets. The 
10-fold cross-validation results of the AutoInt models with or 
without KG embedding features were presented in the 
Supplementary Fig. S1, respectively. The results showed that all 
the models exhibited stability and generalization to some 
degree.

Considering the above results and the fact that the positive/ne-
gative sample ratio was far greater than 10 in this study, the 
AutoInt_KG was selected for the further validation research.

3.1.2. Validation of the AutoInt_KG
The natural product Luteolin with known transporter informa-

tion was selected for further validating the effectiveness of the ob-
tained AutoInt_KG predictive frame. The transporters OAT1, OAT3, 
and OATP1B1 of Luteolin have been reported by Li et al. and Xiang 
et al. [36,37]. The predicted results of AutoInt_KG was summarized 
and shown in Table 2. The results showed that all the three reported 
transporters appeared in the top 15 of the prediction result lists, and 
transporters OAT3, OAT1, and OATP1B1 ranked the 2nd, 9th, and 
11th, respectively. The results confirmed the effectiveness of the 
AutoInt_KG. Since the reported Luteolin experiment in vitro only 
monitored the inhibitory activity of OAT1, OAT3, and OATP1B1, the 
other transporters ranking at the top such as the OCT2 (top1) re-
sponsible for the uptake of carnitine by active cells, and the BCRP 
(top3) mainly responsible for renal and extrarenal urate excretion 
and protoporphyrin IX export are worthy of further experimental 
study.

Fig. 2. Comparison of ROC-AUC and PR-AUC in 8 different models. LR, logistic regression model with transporter sequences only; LR_KG, logistic regression model with trans-
porter sequences and KG embedding; SVM, support vector machine model with transporter sequence only; SVM_KG, support vector machine model with transporter sequence 
and KG embedding; RF, random forest model with transporter sequence only; RF_KG, random forest model with transporter sequence and KG embedding; AutoInt, AutoInt model 
with transporter sequence only; and AutoInt_KG, AutoInt model with transporter sequence and KG embedding. All results were obtained by 10-fold cross-validation. The 1:1 
positive/negative sample ratio indicates balanced datasets and the 1:10 positive/negative sample ratio represents unbalanced datasets. Red box represents balanced datasets, and 
blue box indicates unbalanced datasets.
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3.2. Construction and validation of the generative frame MolGPT_KG

3.2.1. Training data acquisition and analysis
To validate the effectiveness of molecules obtained by similarity 

search, the properties distribution of the obtained molecules and the 
original drug molecules were analyzed (As shown in Fig. 3). The 
results showed that the distribution of molecular weight (MW), 
hydrogen receptor number (NumHAcceptors), hydrogen bond donor 
number (NumHDonors), rotatable bond number (NumRotata-
bleBonds), LogP, and TPSA of small molecules searched by similarity 
exhibited high-level overlap with property distribution of the ori-
ginal drug molecules. Therefore, this study expanded the training 
datasets by using small molecules obtained by similarity search.

3.2.2. Construction and evaluation of the MolGPT_KG
The loss curve of the model shows the model converges at epoch 

8 (Supplementary Fig. S3).

Further, we used two types of initial vectors, namely, random 
initial vectors and fixed carbon atom initial vectors to analyze the 
effect of initial vectors on molecule generation. Based on these two 
types of initial vectors, each model generated 5000 molecules, and 
these molecules were used for evaluating the performance of model. 
Our results showed that the average validity of generated molecules 
based on random initial vectors and fixed initial vector was more 
than 90 % (Tables 3, 4), indicating that the model learned the se-
mantic features of molecular strings and generated semantically 
correct molecular strings. The novelty of generated molecules was 
100 %, suggesting that the model did not overfit. However, the un-
iqueness of the generated molecules was only around 60 %, which 
might be due to the structural diversity was limited to a certain 
range. This limited structural diversity might further be explained by 
the fact that the molecules of training datasets were obtained by 
similarity search based on 877 drug small molecules in this study, 
and the limited sampling space led to the generation of many du-
plicate molecules.

The uniqueness of the generated molecules based on fixed initial 
vector was lower than that based on random initial vectors. After 
adding KG entities embedding information, the uniqueness of the 
generated molecules based on two types of initial vector was re-
duced, which might be because adding KG entity embedding was 
equivalent to increasing the specificity of the transporter features, 
thus reducing the sampling space. Molecules generated based on 
random initial vectors generate some single atoms, and such single 
atoms are meaningless. Relatively, there are no such single atoms in 
the molecules generated based on a given fixed initial vector. 
Considering this, the molecules generated based on the fixed initial 
vectors were used for subsequent validation.

To compare the drug-likeness and the synthetic accessibility of 
generated molecules, we visualized the distribution of each dataset, 
as shown in Fig. 4. The Fig. 4A-B showed the QED (drug-likeness) and 
synthetic accessibility scores (SAScore) distribution. The QED dis-
tribution of the generated molecules based on different transporters 
showed that QED of one fifth of the generated molecules was more 
than 0.5 [38]. The SAScore distribution showed that SAScore of one 

Fig. 3. Comparison of the property distribution between the small molecules obtained by similarity search and the original drug molecules. Orange represents the original drug 
molecules. Green indicates the small molecules obtained from the similarity search.

Table 2 
The summarized of the prediction results for Luteolin. 

Uniprot ID Transporter Name

O76082 Organic cation/carnitine transporter 2 (OCT2)
Q8TCC7 Organic anion transporter 3 (OAT3)
Q9UNQ0 Breast cancer resistance protein (BCRP)
Q96FL8 Multidrug and toxin extrusion protein 1 (MATE1)
P33527 Multidrug resistance-associated protein 1 (ABCC1)
O15439 Multidrug resistance-associated protein 4 (ABCC4)
Q15758 Alanine/serine/cysteine/threonine transporter 2 (ASCT2)
Q9NVC3 Putative sodium-coupled neutral amino acid transporter 7 

(SNAT7)
Q4U2R8 Organic anion transporter 1 (OAT1)
O15245 Organic cation transporter 1 (OCT1)
Q9Y6L6 Organic anion transporting polypeptide 1B1 (OATP1B1)
O15438 Multidrug resistance-associated protein 3 (ABCC3)
P46721 Organic anion transporting polypeptide 1A2 (OATP1A2)
Q86VL8 Multidrug and toxin extrusion protein 2 (MATE2)
O76082 Organic cation/carnitine transporter 2 (OCT2)
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third of the generated molecules was more than 6 [39]. The above 
two metrics (QED and SAScore) showed that the generated mole-
cules by MolGPT_KG had potential to be used as lead compounds. To 
further validate this potential of MolGPT_KG, molecular docking 
analysis was performed based on the target transporter.

3.2.3. Validation of the MolGPT_KG by molecular docking
Since the goal of this study is to generate molecules with biolo-

gical significance, the above evaluation of generated molecules is too 
general. To further determine whether the generated molecules had 

transporter-binding capacity, the molecules with QED > 0.4 [40]
were selected to dock with the three transporters by MOE software.

Table 5 shows the percentage of those generated molecules 
whose docking score was higher than that of ligands in all the 
generated molecules (Sgenerated > Sligand) and the maximum docking 
scores (SMax). For the transporter P11166 system, the proportion of 
Sgenerated > Sligand was 19.53 %. For the transporter Q01650 system, 
the proportion of Sgenerated > Sligand was 4.77 %. The ligand of P08183 
was vincristine, a natural product with high docking scores due to its 
heterogeneity and ability to form many hydrogen bonds with 
P08183. The Vincristine has 12 hydrogen bond acceptors and 3 hy-
drogen bond donors, so it can form many hydrogen bonds with 
proteins, which leads to the ability of vincristine to bind to multiple 
transporters at the same time (such as ABCC1, ABCC2, ABCC10, etc.). 
Therefore, when vincristine enters the human body and binds to 
these proteins, it will cause some side effects, such as neurotoxicity 
[41]. Taken together, molecular docking validation analysis results 
confirmed that the MolGPT_KG could generate valid small molecules 
against target transporter. In addition, the interaction sites between 

Fig. 4. QED and SAScore distribution of generated molecules. (A) QED distribution. (B) SAScore distribution. Red curve indicates molecules generated based on the transporter 
P08183. Yellow curve indicates molecules generated based on the transporter Q01650. Green curve represents molecules generated based on the transporter P11166.

Table 5 
Docking results of the generated molecules. 

Transporter Sgenerate > Sligand Sbest

P11166 19.53 % -11.1671
Q01650 4.77 % -44.4529
P08183 0.00 % -10.5525

Table 3 
Evaluation of generated molecules based on random initial vectors. 

Transporter Model Validity Uniqueness Novelty Sca Diversity Diversity

P11166 Seq 91.12 % 79.90 % 100 % 45.38 % 91.96 %
Seq+KG 94.36 % 67.24 % 100 % 39.38 % 92.72 %

Q01650 Seq 92.32 % 78.10 % 100 % 40.95 % 92.16 %
Seq+KG 96.36 % 63.92 % 100 % 36.20 % 93.22 %

P08183 Seq 91.18 % 79.10 % 100 % 45.51 % 91.94 %
Seq+KG 94 % 68.82 % 100 % 40.10 % 92.54 %

Table 4 
Evaluation of generated molecules based on fixed initial vectors. 

Transporter Model Validity Uniqueness Novelty Sca Diversity Diversity

P11166 Seq 99.98 % 60.18 % 100 % 52.08 % 85.13 %
Seq+KG 100 % 55.60 % 100 % 46.44 % 84.38 %

Q01650 Seq 100 % 62.10 % 100 % 51.79 % 86.00 %
Seq+KG 100 % 59.34 % 100 % 46.41 % 87.54 %

P08183 Seq 99.98 % 61.52 % 100 % 52.11 % 85.32 %
Seq+KG 100 % 58.28 % 100 % 48.40 % 85.29 %
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the generated molecules and the transporter were systematically 
analyzed.

According to docking score and molecular structure, several 
molecules were screened for binding site analysis. Figs. 5–7 showed 
the interaction between P11166, Q01650, or P08183 transporter and 
the generated molecules with the highest docking score, respec-
tively. And the table about the molecular structure and the docking 
score of the ligand and top 5 molecules was shown in the 
Supplementary Tables S2–S4.

As shown in Fig. 5, the P11166 transporter interacted with the 
selected generated molecules with the highest docking score. Pre-
vious study has reported the residues Trp388 are involved in the 
interaction between P11166 transporter and different ligands (such 
as GLUT-i1, GLUT-i2 and Cytochalasin B) [42]. The ligand forms one 
Pi-Pi stacked bond and Pi-Pi T-shaped bond with TRP388. Fig. 5B 
showed that the generated molecule formed one Conventional Hy-
drogen Bond and one Pi-Donor Hydrogen Bond with Trp388. The 
RMSD of less than 2.0 Å is usually used for acceptable docking results
[43]. The RMSD of 1.7969 Å for the generated molecular 

demonstrated that the docking results are acceptable. The overlap 
situation in 3D view was shown as the Fig. 5C.

As shown in Fig. 6, Q01650 transporter also interacted with the 
generated molecules with highest docking score. One previous study 
has revealed that the Q01650 transporter can transport CLR [44]. As 
shown in Fig. 6A, it can be seen that CLR ligand mainly interact with 
Leu156, Leu333, and Phe336. Fig. 6B showed that the generated 
molecule also could form one pi-sigma bond with Leu 156. The 
RMSD of 1. 6124 Å for the generated molecular demonstrated that 
the docking results are acceptable. The overlap map was shown in 
the Fig. 6C.

Fig. 7 showed the interaction between the P08183 transporter 
and the selected generated molecule. As the main residues, Gln990 
and Phe983 have been reported to be involved in the interaction 
between P08183 transporter and ligand molecule [45]. Our docking 
results showed that the docking scores of the molecules generated 
by the model were lower than the ligands, which might be because 
docking molecule did not occupy enough large active cavity space. 
This is supported by previous report that the volume of the occupied 

Fig. 5. Interaction between P11166 (PDB ID: 5EQG) transporter, 5RE and generated molecule. (A) the 2D map of molecular interactions between 5RE and P11166 protein. (B) the 2D 
map of molecular interactions between the generated molecule with the highest docking score and the P11166 protein. (C) the overlap situation between 5RE (purple stick) and 
the generated molecule (green stick) with the highest docking score in 3D graph.
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pocket has a major influence on the ability of P08183 transporter to 
bind to the small molecule [45]. However, Fig. 7B showed that the 
binding site visualization graph showed that four pi-alkyl bonds 
were formed between the generated molecule and main residue 
Phe983. The RMSD of 1.9581 Å for the generated molecular de-
monstrated that the docking results are acceptable. The overlap map 
was shown in the Fig. 7C.

Considering the interaction between the above three proteins 
and the generated molecule with the highest docking score, the 
molecule generated by our model has the potential to bind with 
important sites of the protein. Except that there is only one overlap 
between Q01650 protein-binding amino acid and ligand-binding 
amino acid, the rest of other two proteins are bound to important 
sites, and the overlapping conformation is also within the desirable 
range.

To further investigate the diversity of the molecular at important 
binding sites, Tanimoto coefficient calculated based on Morgan fin-
gerprints was used to examine the similarity between the docking 
molecules and ligands. As shown in Fig. 8, the similarity was low. 
The above analysis suggested that our model had the potential to 

generate novel molecules with the ability to bind transporter active 
pocket with critical amino acid.

4. Discussion

Currently, researchers in different fields are working on drugs 
development. However, the most drugs fail in clinical trials due to 
the pharmacokinetics (PK). The PK affects multiple biological pro-
cesses such as drug absorption, and drug excretion, off-target, and 
drug-drug interactions. Although there are several studies of PK, the 
results are far from satisfactory. Our research on transporters pro-
vides a new perspective for the study of drug PK.

Due to the lack of transporter-related experiment data, this re-
search integrated data from the transporter databases VARIDT, the 
disease database CTD, the side effect database SIDER, and the drug- 
drug interaction database DDInter to construct a transporter-based 
knowledge graph. The heterogeneous information of transporter KG 
obtained by the classical KG embedding algorithm RESCAL was ap-
plied to establish predictive frame for predicting drug potential 

Fig. 6. Interaction between Q01650 (PDB ID: 6JMQ) transporter, CLR and generated molecule. (A) the 2D map of molecular interactions between CLR and Q01650 protein. (B) the 
2D map of molecular interactions between the generated molecule with the highest docking score and the Q01650 protein. (C) the overlap situation between CLR (purple stick) 
and the generated molecule (green stick) with the highest docking score in 3D graph.
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transporters and generative frame for generating new small mole-
cules against transporters.

The predictive frame AutoInt_KG was trained by integrating 
transporter sequence features, drug fingerprint features, and KG 
embedding features. The balanced datasets with positive/negative 
sample ratio of 1:1 and unbalanced datasets with positive/negative 
sample ratio of 1:10 were generated for evaluating model perfor-
mance. Four models LR, SVM, RF, and AutoInt were trained based on 
these two types of training datasets, and the results showed that 
AutoInt_KG performed best in both balanced and unbalanced 
datasets. Furthermore, the ablation experiments demonstrated that 
KG embedding features can improve the performance of the pre-
dictive model. The transporters of natural product Luteolin were 
predicted by the pre-trained model, and literature validation ana-
lysis showed that our model was able to predict potential compound 
transporters.

In the generative frame MolGPT_KG, three transporters were 
selected for generating molecules, and the generated molecules 
were further evaluated. The subsequent docking analysis showed 
that the model based on transporter sequence features and KG 
embedding features could generate molecules with a strong ability 
to bind transporter active pocket at the important binding sites. Our 
findings will provide theoretical basis for the further development of 
the transporter-related drugs.

In addition to depending on transporter sequences, transporter- 
molecular interactions also rely on secondary, tertiary, and even 
quaternary structures which are more complex than primary se-
quence structure, and these complex structures are expected to 
become new research direction. Future studies are also suggested to 
explore the relation between transporter and drug side effects. 
Furthermore, transporter KG can be combined with meta path 
method to analyze the mechanism of transporter.

Fig. 7. Interaction between P08183 (PDB ID: 7A69) transporter, vincristine and generated molecule. (A) the 2D map of molecular interactions between vincristine and P08183 
protein. (B) the 2D map of molecular interactions between the generated molecule with the highest docking score and the P08183 protein. (C) the overlap situation between 
vincristine and the generated molecule with the highest docking score in 3D graph.
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